Homology and functional similarity of an *hrp*-linked pathogenicity locus, *dspEF*, of *Erwinia amylovora* and the avirulence locus *avrE* of *Pseudomonas syringae* pathovar tomato

(plant disease resistance/coevolution/Hrp pathway)

Adam J. Bogdanove^{*}, Jihyun F. Kim, Zhongmin Wei[†], Peter Kolchinsky, Amy O. Charkowski, Alison K. Conlin, Alan Collmer, and Steven V. Beer[‡]

Department of Plant Pathology, Cornell University, Ithaca, NY 14853

Communicated by Steven D. Tanksley, Cornell University, Ithaca, NY, November 18, 1997 (received for review June 25, 1997)

ABSTRACT The "disease-specific" (dsp) region next to the hrp gene cluster of Erwinia amylovora is required for pathogenicity but not for elicitation of the hypersensitive reaction. A 6.6-kb apparent operon, dspEF, was found responsible for this phenotype. The operon contains genes dspE and dspF and is positively regulated by hrpL. A BLAST search revealed similarity in the *dspE* gene to a partial sequence of the avrE locus of Pseudomonas syringae pathovar tomato. The entire avrE locus was sequenced. Homologs of dspE and dspF were found in juxtaposed operons and were designated avrE and avrF. Introduced on a plasmid, the dspEF locus rendered P. syringae pv. glycinea race 4 avirulent on soybean. An E. amylovora dspE mutant, however, elicited a hypersensitive reaction in soybean. The avrE locus in trans restored pathogenicity to dspE strains of E. amylovora, although restored strains were low in virulence. DspE and AvrE are large (198 kDa and 195 kDa) and hydrophilic. DspF and AvrF are small (16 kDa and 14 kDa) and acidic with predicted amphipathic α helices in their C termini; they resemble chaperones for virulence factors secreted by type III secretion systems of animal pathogens.

Erwinia amylovora causes fire blight of apple, pear, and other rosaceous plants and elicits plant defense responses in nonhost plants. Required for these interactions are the clustered bacterial *hrp* genes, encoding regulatory proteins (ref. 1; Z.M.W., B. J. Sneath, and S.V.B., unpublished data), a large set of proteins broadly conserved among plant and animal pathogens and constituting a type III secretion pathway (known as the "Hrp pathway" in phytopathogenic bacteria; refs. 2 and 3), and at least two proteins secreted via the Hrp pathway (4, 5). *hrp* genes, present in all Gram-negative necrogenic plant pathogens, were discovered by transposon mutagenesis of *Pseudomonas syringae* pathovars and were named for the "hypersensitive reaction" (HR) and "pathogenicity" (reviewed in ref. 6). The HR is a manifestation of plant defense characterized by rapid necrosis at the site of pathogen ingress.

Pathogen avirulence (avr) genes (for a review see ref. 7) generate signals that trigger defense responses leading to disease resistance in plants with corresponding resistance (R) genes. Typically, *avr* genes are isolated by expressing a cosmid library from one pathogen in another pathogen and screening for narrowed host range. *avr* genes traditionally have been considered as negative determinants of host specificity at the race-cultivar level, but some, including the *avrE* locus from the bacterial speck pathogen *Pseudomonas syringae* pathovar (pv.) tomato (8), may restrict host range at the pathovar–species or

species-species level (9, 10). Many *avr* genes, including *avrE*, are *hrp* regulated. *avrE* and *avrPphE* (11) are physically linked to *hrp* genes. Only a few *avr* genes (such as *avrE*), however, play detectable roles in pathogen fitness or in virulence in hosts tested (12–16), and the selective force driving the maintenance in pathogen genomes of many of these host-range-limiting factors has remained a mystery.

When expressed *in trans*, the *avrE* locus renders *P. syringae* pv. glycinea, which causes bacterial blight of soybean, avirulent in each of 10 tested cultivars (17). The locus comprises two convergent transcription units, one preceded by a putative σ^{54} promoter and the other by a *hrp* box (17, 18), a sequence found upstream of many *hrp* and *avr* genes that are positively regulated by the alternate sigma factor HrpL (1, 18). Expression of both transcripts requires *hrpL*. The *avrE* locus contributes quantitatively to the virulence in tomato leaves of *P. syringae* pv. tomato strain PT23, but not of strain DC3000 (15, 17).

Transposon mutagenesis of *E. amylovora* revealed, linked to the *hrp* gene cluster, a "disease specific" (dsp; see ref. 19) region required for pathogenicity but dispensable for HR elicitation. Through sequencing and further mutagenesis, we have defined a two-gene apparent operon, the dspEF locus, responsible for this phenotype. Here, we present an analysis of the genes, including the finding that they are homologous with genes in the *avrE* locus. In addition, we show that the dspEF locus converts *P. syringae* pv. glycinea to avirulence in soybean, and that *avrE* restores pathogenicity to dsp mutant strains of *E. amylovora*. We discuss the implications of these findings with respect to the nature, evolution, and potential usefulness of bacterial genes encoding proteins involved in infection of plants.

MATERIALS AND METHODS

Recombinant DNA Techniques. DNA was isolated, cut by using restriction enzymes, and ligated, and transformed into *Escherichia coli* according to procedures described by Sambrook *et al.* (20). A *P. syringae* pv. tomato DC3000 genomic library was constructed and screened by using colony hybridization also as described (20). The library was constructed by

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

^{© 1998} by The National Academy of Sciences 0027-8424/98/951325-6\$2.00/0 PNAS is available online at http://www.pnas.org.

Abbreviations: dsp, disease specific; hrp, hypersensitive reaction and pathogenicity; HR, hypersensitive reaction; R gene, resistance gene; pv., pathovar; cfu, colony-forming units; GUS, β -glucuronidase; LB, Luria–Bertani; Hrp MM, hrp-gene-inducing minimal medium. Data deposition: The sequences reported in this paper have been

Data deposition: The sequences reported in this paper have been deposited in the GenBank database [accession nos. U97504 (*dspEF* locus and flanking DNA) and U97505 (*avrE* and *avrF*)].

^{*}Present address: Department of Agronomy, Purdue University, West Lafayette, IN 47907.

[†]Present address: Eden Bioscience Corp., 11816 North Creek Parkway, Bothell, WA 98011.

[‡]To whom reprint requests should be addressed. e-mail: svb1@ cornell.edu.

using pCPP47, a low-copy-number, broad-host-range cosmid (21). Except where noted, *E. coli* DH5 and *E. coli* DH5 α were used as hosts for DNA clones, and pBluescript or pBC plasmids (Stratagene) were used as vectors. *E. amylovora* was transformed by electroporation as described (22). Plasmids were mobilized into *E. amylovora* and *P. syringae* by using pRK2013 (23).

Nucleotide Sequencing and Analysis. The nucleotide sequence of the *dsp* region of *E. amylovora* strain Ea321 was determined by using subclones of pCPP430 (24). The nucleotide sequence of the *avrE* locus was determined by using subclones of pCPP2357, a clone selected from a *P. syringae* pv. tomato DC3000 genomic cosmid library based on hybridization with the *hrpRS* operon of *P. syringae* pv. syringae, and the finding, based on partial sequencing, that it contained the *avrE* locus. Nucleotide sequencing Facility on a Model 377 Sequencer (Perkin–Elmer/Applied Biosystems Division, Foster City, CA). Sequence analyses were performed by using the programs of the GCG 7.1 software package (Genetics Computer Groups, Madison, WI) and DNASTAR (DNAstar, Madison, WI). Database searches were performed by using BLAST (25).

Expression of DspE and DspE' in E. coli. The dspEF locus was cloned in two pieces into pCPP50, a derivative of pI-NIII¹¹³-A2 (26) with an expanded polylinker (D. W. Bauer and A.J.B., unpublished data), yielding pCPP1259. Expression in pCPP1259 is driven by the *lpp* promoter of *E. coli*, under the control of the lac operator. An intermediate clone, pCPP1244, extending from the start of the locus to the BamHI site in the middle of dspE, also was isolated. E. coli DH5a strains containing pCPP1259 and pCPP1244 were grown in Luria-Bertani (LB) medium at 37° C to an OD₆₂₀ of 0.3. Isopropylthio- β -D-galactoside then was added to 1 mM, and the cells further incubated until reaching an OD_{620} of 0.5. Cells were concentrated 2-fold, lysed, and subjected to SDS/PAGE as described (20). Cells containing pCPP50 were included for comparison. Proteins were visualized by Coomassie blue staining.

Deletion Mutagenesis of *dspE*. We deleted 1,554 bp from the 5' *Hind*III-*Bam*HI fragment of *dspE* in pCPP1237 by using unique *Stu*I and *Sma*I sites. The mutagenized clone then was inserted into the suicide vector pKNG101 (27) by using *E. coli* SM10 λ *pir* as a host, yielding pCPP1241. The mutation, designated Δ 1554, then was transferred into *E. amylovora* strains by using marker eviction as described previously (2). By using two *Bst*EII sites blunted with Klenow fragment, 1,521 bp were deleted from the 3' *Hind*III fragment of *dspE* in pCPP1246. This mutation, Δ 1521, was transferred into *E. amylovora* strains as above.

Pathogenicity Assays. For *E. amylovora* strains, cell suspensions of 5×10^8 colony-forming units (cfu) per ml were pipetted into wells cut in immature Bartlett pear fruit, or stabbed into Jonamac apple and cotoneaster shoot apices, and assays were carried out as described previously (28, 29). For *P. syringae* pv. glycinea strains, panels of primary leaves of 2-week-old soybean seedlings (*Glycine max*, cultivar Norchief) were infiltrated with bacterial suspensions of 8×10^5 cfu/ml as for the HR assay, below. Plants were then covered with clear plastic bags for 1 day and incubated under fluorescent lights (16 hr/day) at 22°C for 5–7 days. Leaves were scored for necrosis and chlorosis.

Bacterial Population Assays. Cotoneaster shoot tips, 10 cm long, that had been inoculated with *E. amylovora* strains were homogenized in 5 mM KPO₄ buffer, pH 6.8, at 5 days postinoculation. Inoculated pear fruits were homogenized at 7 days postinoculation. Homogenates were plated in a dilution series on LB agar with antibiotics (rifampicin, 25 μ g/ml; tetracyclin, 10 μ g/ml; kanamycin, 50 μ g/ml) as appropriate to determine bacterial populations. Triplicate shoots or fruits were assayed individually for each strain tested.

HR Assays. Tobacco leaf panels (*Nicotiana tabacum* L. 'xanthi') were infiltrated with bacterial cell suspensions as described previously (4, 30). Primary leaves of 2-week-old soybean seedlings (secondary leaves emerging) were infiltrated with bacterial cell suspensions as for tobacco. Plants were scored for HR (tissue collapse) after 24–48 hr on the laboratory bench. *E. amylovora* strains were suspended in 5 mM KPO₄ buffer, pH 6.8, and *P. syringae* strains in 10 mM MgCl₂.

GUS Assays. Cells were (i) grown in LB to an OD_{620} of 0.9-1.0; (ii) grown in LB to an OD₆₂₀ of 0.5, then washed and resuspended in an hrp-gene-inducing minimal medium (Hrp MM; ref. 31) to an OD_{620} of 0.2 and incubated at 21°C for 36 hr to a final OD_{620} of 0.9–1.0; or (*iii*) grown in LB to an OD_{620} of 0.5, washed and concentrated 2-fold in 5 mM KPO₄ buffer, pH 6.8, and then transferred to freshly cut wells in pear halves and incubated as for the pathogenicity assay for 36 hr. Cells were assayed for β -glucuronidase (GUS) activity essentially according to Jefferson (32). For the cells in LB or Hrp MM, 50 μ l were mixed with 200 μ l GUS extraction buffer (50 mM NaHPO₄, pH 7.0/10 mM 2-mercaptoethanol/10 mM Na₂EDTA/0.1% sodium lauryl sarcosine/0.1% Triton X-100) containing 2 mM 4-methylumbelliferyl B-D-glucuronide as substrate and incubated at 37°C for 100 min. For cells in pear fruit, the tissue surrounding the well was excised by using a #4 cork borer and homogenized in 5 mM KPO₄ buffer, pH 6.8. Two hundred microliters of homogenate was mixed with 800 μ l of GUS extraction buffer with substrate and incubated as above. Reactions were stopped by adding Na₂CO₃ to a final concentration of 0.2 M in a total volume of 2 ml. Fluorescence was measured by using a TKO 100 Mini-Fluorometer (Hoefer). For all samples, cell concentration was estimated by dilution plating, and fluorometric readings were converted to pmol of substrate hydrolyzed per 10⁸ cfu/min, after Miller (33).

RESULTS

The "Disease-Specific" (dsp) Region of E. amylovora Consists of a 6.6-kb, Two-Gene Apparent Operon. Mapping of previous transposon insertions (ref. 34; C. H. Zumoff, D. W. Bauer, B. J. Sneath, Z.M.W., and S.V.B., unpublished data) that abolish pathogenicity but not HR-eliciting ability confirmed the presence of the "disease-specific" (dsp) region downstream of the hrpN gene in strain Ea321 as reported in strain CFBP1430 (19). The sequence of approximately 15 kb of DNA downstream of hrpN from Ea321 was determined, revealing several ORFs (Fig. 1). One large ORF was found that encompassed the region to which all our dsp insertions mapped. This ORF was present in an apparent 6.6-kb operon containing another, smaller ORF downstream. The two ORFs were designated *dspE* and *dspF*, and the operon, the *dspEF* locus. *dspE* is preceded (beginning 70 bp upstream of the initiation codon) by the sequence GGAACCN₁₅CAACATAA, which matches the HrpL-dependent promoter consensus sequence, or "hrp box" of E. amylovora (1, 3) and strongly resembles the hrp box of P. syringae hrp and avr genes (18). Immediately downstream of dspF is A/T-rich DNA, followed by an ORF highly similar to the Salmonella typhimurium gene *spvR*, a member of the *lysR* family of regulatory genes (35). Immediately upstream of the dspEF locus is an Hrp-regulated gene, hrpW, encoding a second harpin (5).

The deduced product of dspE contains 1,838-aa residues and is hydrophilic. The predicted molecular mass, 198 kDa, was confirmed by expression in *E. coli* (Fig. 2). Expression of an intermediate clone containing only the 5' half of dspE yielded a protein of corresponding predicted mobility, suggesting that the N-terminal half of the protein might form an independently stable domain. DspF, predicted to be 16 kDa, acidic (pI, 4.45), and predominantly α -helical, with amphipathic α -helices

FIG. 1. The *dspEF* locus of *E. amylovora*: mutagenesis, complementation and heterologous expression constructs, and homology with and restoration of mutants by the *avrE* locus of *P. syringae*. Dashed boxes are uncharacterized ORFs; a solid triangle indicates an *hrp* box, and an open triangle indicates another promoter. Thick lines delineate the DNA for which sequence was accessioned. (*A*) The *dsp/hrp* gene cluster of *E. amylovora* in pCPP430. Operon names and types of proteins encoded are indicated at the top. B, *Bam*HI; E, *Eco*RI; H, *Hind*III. Half-arrows indicate internal promoters without similarity to the *hrp* box consensus. (*B*) The region downstream of *hrpN* containing the *dspEF* locus. Circles mark deletion mutations and representative transposon insertions: black, nonpathogenic and HR⁺ or HR-reduced (*dsp*); gray, reduced virulence and HR; white, wild type. T104 lies within the area marked by the dashed double arrow. K, Tn5miniKm; P, Tn5*phoA*; T, Tn10tet⁺; A, deletion mutation. The gray box is A/T-rich DNA. (*C*) Clones and subclones of the *dspEF* locus. Plasmid designations are indicated at the right. Restriction sites used for subcloning not shown above are shown in parentheses. A "+" aligned with a circle representing a mutation in *B* indicates that the subclone complements that mutation. (*D*) The *avrE* locus (transcription units III and IV) of *P. syringae* pv. tomato DC3000 in pCPP2357. Percent amino acid identity of the predicted proteins AvrE and AvrF to DspE and DspF, respectively, are indicated. Solid rectangles are transcriptional terminators (inverted repeats). Ability to restore mutations depicted in *B* are indicated, aligned as for complementation data in *C*.

in its C terminus, is physically similar to virulence factor chaperones of animal-pathogenic bacteria (36).

dspE Is Required for Fire Blight. Two in-frame deletions within *dspE* (Fig. 1) were made in Ea321 and Ea273 (low- and high-virulence strains, respectively). The first (Δ 1554) corresponds to amino acid residues G₂₀₃ to G₇₂₀ and the second (Δ 1521) to amino acid residues T₁₀₆₄ to V₁₅₇₀. Each deletion abolished the ability of both strains to generate fire blight symptoms (necrosis) and bacterial ooze when inoculated to immature pear fruit (Fig. 3). The mutants also failed to cause

FIG. 2. Expression of the full-length and the N-terminal half of DspE in recombinant *E. coli* DH5 α . Lysates of cells carrying either pCPP1259, containing the entire *dspEF* locus (lane A); pCPP50, the cloning vector (lane B); or pCPP1244, containing only the 5' half of the *dspE* gene (lane C), were subjected to SDS/PAGE (7.5% acryl-amide) followed by Coomassie staining. Bands corresponding to DspE (lane A) and the N-terminal half of DspE (lane C) are marked by arrows. Migration of molecular mass markers is indicated on the left.

fire blight when inoculated to apple and cotoneaster shoots (not shown). Populations of *dsp* mutant strains isolated from cotoneaster shoots after 5 days were equivalent to that of a *hrpL* regulatory mutant strain ("K49"; ref. 1). The Δ 1554 deletion mutants of Ea321 and Ea273 were restored to full virulence by pCPP1237, a clone carrying only the overlapping 5' half of *dspE*, further suggesting that the N terminus of the protein forms a stable domain (Figs. 1 and 3).

The dspEF Locus Contributes Quantitatively and in a Strain-Dependent Fashion to HR Elicitation by E. amylovora in Tobacco and Is Not Required for HR Elicitation by E. amylovora in Soybean. Transposon insertions in the dsp region of E. amylovora strain Ea321 reduce the ability of this strain to elicit the HR in tobacco (data not shown). Dilution series of suspensions of $dspE\Delta 1554$ mutant strains of Ea321 and Ea273 were infiltrated into tobacco leaves alongside their wild-type parents to define precisely the role of dspE in HR elicitation (Fig. 3). All strains were capable of eliciting the HR, but Ea321*dspE* Δ 1554, on a per-cell basis, was roughly one-tenth as effective as the wild type. pCPP1237 restored full HR-eliciting ability to this strain (not shown). There was no noticeable difference in HR-eliciting ability in tobacco between Ea273 and Ea273dspE Δ 1554. Ea321dspE Δ 1554, infiltrated at a standard concentration, elicited wild-type HR in Acme, Centennial, Harasoy, and Norchief soybean leaves (Fig. 3).

The *dspEF* **Locus Is Hrp-Regulated.** A promoterless *uidA* gene construct (D. W. Bauer) was cloned downstream of the

FIG. 3. The role of the *dspE* gene in pathogenicity and HR elicitation. (*A*) Immature pear fruit 4 days after inoculation with (left to right) strains Ea321, Ea321*dspE*\Delta1554, or Ea321*dspE*\Delta1554 harboring the 5' half of *dspE* on pCPP1237. (*B*) Norchief soybean leaf 24 hr after infiltration with 5×10^8 cfu/ml suspensions of (1) Ea321, (2) Ea321*dspE*\Delta1554, (3) Ea321*hrpN*::Tn5 (ref. 4), and (4) Ea321*hrpL*::Tn5 (ref. 1). (*C*) Tobacco leaf 48 hr after infiltration with parallel dilution series of suspensions of strains Ea321 (*Left*) and Ea321*dspE*\Delta1554 (*Right*). The concentrations infiltrated (top to bottom) are 1×10^{10} , 1×10^9 , 5×10^8 , 1×10^8 , and 5×10^7 cfu/ml. (*D*) As for *C*, except the more virulent strain, Ea273, and corresponding mutant Ea273*dspE*\Delta1554 were used, and concentrations ranged from 5×10^9 to 5×10^5 cfu/ml in log increments.

dspE fragment in pCPP1241 that was used to introduce the Δ 1554 mutation (Fig. 1) into wild-type strains of *E. amylovora* (this construct consists of a 3'-truncated dspE gene with the internal deletion). The resulting plasmid, pCPP1263, was mobilized into Ea321 and Ea273. Pathogenic strains, in which plasmid integration had preserved an intact copy of *dspE*, and nonpathogenic strains, in which the native copy of dspE had been mutated, were isolated. All strains were assayed for GUS activity in LB and in Hrp MM, and pathogenic strains were assayed for activity in pear fruit. High levels of activity were obtained from strains incubated in Hrp MM and pear, but not LB. The level of expression in Hrp MM was equivalent to that of a *hrcV-uidA* fusion ("G73"; ref. 1) used as a positive control. There were no significant differences in levels of expression of the dspE-uidA fusion in the wild-type and dspE mutant backgrounds (data not shown), indicating that *dspE* likely is not autoregulated. Expression of the dspE-uidA fusion in hrpL mutants of Ea321 and Ea273 in Hrp MM was two orders of magnitude lower than that in HrpL⁺ strains. Data for Ea273 and derivatives are shown in Fig. 4.

dspE and dspF Are Homologous with Genes in the avrE Locus of Pseudomonas syringae pv. Tomato. A BLAST (37) search of the genetic databases revealed similarity in the dspE gene to a partial sequence of the *avrE* locus of *P. syringae* pv. tomato (17). A cosmid library of P. syringae pv. tomato DC3000 genomic DNA was constructed, and a clone overlapping the hrp gene cluster and containing the avrE locus was isolated (pCPP2357). The complete nucleotide sequence of the avrE locus was determined, revealing homologs of dspE and dspF (Fig. 1). The dspE homolog, alone in an operon previously designated transcription unit III, encodes a 195-kDa, 1,795-aa protein 30% identical to DspE. The dspF homolog, at the end of the opposing operon previously designated transcription unit IV, encodes a 14-kDa, 129-aa protein 43% identical to DspF. We designate these genes *avrE* and *avrF*, respectively. The aligned C-terminal halves of DspE and AvrE (starting

FIG. 4. Expression of a promoterless GUS construct fused to *dspE* in *E. amylovora* Ea273. Ea273 and Ea273*dspE::uidA* (a merodiploid containing both a wild-type *dspE* and a truncated *dspE* fused to the *uidA* gene; solid bars) were grown in LB or Hrp MM, or inoculated to immature pear fruit. Ea273*dspE::uidAhrpL:*:Tn5 (darkly shaded bar) and Ea273*hrcV*::Tn5*uidA* (lightly shaded bar) were also grown in *hrp* MM. Values shown represent means of triplicate samples normalized for bacterial cell concentration. Standard deviations are represented by lines extending from each bar. The mean values for three samples of Ea273 in each assay were subtracted for mean deviations added to, the corresponding values obtained for the other strains.

from V₈₄₅ of DspE) show greater conservation (33% identity) than the N-terminal halves (26% identical). AvrE contains an ATP-/GTP-binding-site motif ("P-loop"; ref. 38) at residues A₄₅₀ to T₄₅₇ and a putative leucine zipper at residues L₁₇₇₂ to L₁₇₉₃. These features are not present in DspE, however, and their functional significance in AvrE, if any, is unclear. Amino acid identities are distributed equally throughout the DspF and AvrF alignment, and AvrF shares the predicted physical characteristics of DspF. Upstream of *avrF*, completing the operon, is a 2.5-kb gene with no similarity to sequences in the genetic databases.

The *dspEF* **Locus Functions as an Avirulence Locus.** The *dspEF* locus was cloned into pML122 (39) downstream of the *nptII* promoter, and this construct, pCPP1250, was mobilized into *P. syringae* pv. glycinea race 4 (gift of N. T. Keen, Univ. of California, Riverside). The resulting strain, but not a control strain containing pML122, elicited the HR in soybean cultivars Acme, Centennial, Harasoy, and Norchief; in Norchief plants incubated under conducive conditions, race 4 harboring pCPP1250 did not cause symptoms of disease, whereas the control strain caused necrosis and chlorosis that spread from the point of inoculation (Fig. 5).

The avrE Locus Restores Pathogenicity to dspE Mutants. Cosmids pCPP2357 (carrying the avrE locus) and pCPP2357avrE::Tn5uidA (Fig. 1) were mobilized into $dspE\Delta 1521$ mutants of Ea273 and Ea321, and the resulting transconjugants, and wild-type strains, were inoculated to immature pear fruit (Fig. 5). Ea273 $dspE\Delta$ 1521(pCPP2357) cells increased in number 10-fold over 7 days, generating ooze, water soaking, and slight necrosis in and immediately surrounding the sites of inoculation. Virulence was much lower than that of wild-type cells, which increased 5×10^3 -fold, resulting in copious ooze and necrosis throughout the fruit. Ea273dspEΔ1521(pCPP2357avrE::Tn5uidA) cells did not increase in number and generated no symptoms, indicating that the observed restoration of pathogenicity was avrE-specific. Similar results were observed for transconjugants of Ea321*dspE* Δ 1521 (Fig. 5) and Ea321*dspE* Δ 1554 (not shown).

DISCUSSION

We characterized the *dspEF* locus of *E. amylovora* and discovered that it is homologous with the *avrE* locus of *P. syringae* pv. tomato and is essential for *E. amylovora* pathogenicity. In contrast, *avrE* plays only a quantitative role in virulence in *P. syringae* pv. tomato strain PT23 and is completely dispensable in strain DC3000 (the source of the clone used here; refs. 15 and 17). We found that the *dspEF* locus and the *avrE* locus function similarly and function transgenerically: like *avrE*, the

FIG. 5. Transgeneric avirulence function of the dspEF locus and restoration of dspE mutants with the avrE locus. Norchief soybean leaves were either (A) infiltrated with 1×10^8 cfu/ml suspensions of P. syringae pv. glycinea race 4 carrying pCPP1250 (containing the dspEF locus) (Left) or pML122 (the cloning vector) and photographed after 24 hr at room temperature (*Right*), or (*B*) infiltrated with 8×10^5 cfu/ml suspensions of the same strains and photographed after 7 days at 22°C and high relative humidity. Tissue collapse is apparent on both leaves where the strain carrying pCPP1250 was infiltrated. On the leaf incubated for 7 days, chlorosis extending beyond the infiltrated area, typical of disease, is apparent on the half infiltrated with the strain carrying the vector only. The dark section on the side of the leaf infiltrated with the strain carrying pCPP1250 is a shadow caused by a buckle in the leaf. Pear halves are shown (C) 10 days after inoculation with (left to right) Ea273, Ea273dspE\Delta1521(pCPP2357, containing the avrE locus), or Ea273dspE Δ 1521(pCPP2357avrE::Tn5uidA), and (B) cross-sectioned through the well 10 days after inoculation with Ea321 $dspE\Delta$ 1521(pCPP2357) (Left) and Ea321 $dspE\Delta$ 1521-(pCPP2357avrE::Tn5uidA) (Right). Although greatly reduced relative to wild type, water soaking and necrosis are apparent around and ooze can be seen within the wells of fruit inoculated with dspE strains carrying the intact avrE locus. Fruit inoculated with dspE strains carrying a disrupted clone of *avrE* is symptomless and shows no ooze.

dspEF locus confers avirulence when expressed in *P. syringae* pv. glycinea, and the *avrE* gene can partially substitute for the *dspE* gene in mutant strains of *E. amylovora*. Our findings provide a striking example of dual functionality for Avr-like effector proteins of plant pathogenic bacteria. Further, the data indicate that the relative contribution of homologous virulence/avirulence genes to disease depends on the genetic background in which they are expressed. Our results therefore suggest that many *avr* genes for which no virulence phenotype yet has been detected have functions that can promote infection.

How can differences in genetic background evolve that lead to such dramatic differences in the virulence phenotype of *avr* gene homologs in different bacteria? Alfano and Collmer (6) proposed a model in which coevolution of pathogen and host plant(s) favors proliferation and redundancy of virulence factors through modification of preexisting factors and acquisition of others from heterologous pathogens, while conserving the virulence-factor-delivery system (the Hrp secretion system). According to this model, the more coevolved a pathogen with its host(s), the less likely is any single virulence factor to be critical for pathogenicity. The phenotypic difference between a *dspE* mutation and an *avrE* mutation may result from and reflect a difference in the extent or nature of the coevolution with plant hosts experienced by E. amylovora and by P. syringae. Evolution of corresponding R genes and modification of targets of pathogen virulence factors (that would lead to modification, substitution, and redundancy of the factors) are likely to have occurred more over time in the numerous herbaceous hosts typically infected by P. syringae pathovars than in the relatively fewer and more slowly reproducing woody hosts with which E. amylovora presumably evolved. Alternatively or additionally, E. amylovora may have acquired the dspEF locus and the linked hrp gene cluster more recently than P. syringae acquired the hrp-linked avrE locus, allowing less time for coevolution leading to modification or the development of redundant function. In support of this idea, the harpin-encoding genes of these two bacteria show a phenotypic difference similar to that of *dspE* and *avrE*. *hrpN* mutants of E. amylovora are drastically reduced in virulence or are nonpathogenic (4, 40), whereas hrpZ mutants of P. syringae show little or no difference in disease-causing ability from the wild type (41). These results suggest that E. amylovora generally has evolved fewer redundant virulence functions than P. syringae.

Localization of the *dspE* and *dspF* gene products during the plant–bacterial interaction will be important, in light of the absolute requirement for the *dspEF* locus in pathogenicity. Several reports (reviewed in ref. 42) provide indirect yet compelling evidence that a number of Avr proteins are localized to the plant cell interior via the Hrp pathway in much the same way as virulence proteins of animal pathogenic bacteria are delivered into host cells (43). It remains to be determined whether the avirulence function of the *dspEF* locus depends on secretion through the Hrp pathway. This seems likely considering the physical similarity of DspF (and AvrF) to chaperones required for type III secretion of virulence factors from animal pathogenic bacteria (36).

The *dspEF* locus is the first-described avirulence locus in *E. amylovora*. We have also found a homolog of *avrRxv* from *Xanthomonas campestris* (44) near the *dspEF* locus (5). Monogenic (*R*-gene-mediated) resistance to fire blight has not been reported, but differential virulence of *E. amylovora* strains on apple cultivars has been observed (45). Also, some strains of *E. amylovora* infect *Rubus* spp. and not pomaceous plants, and vice versa (46). Whether DspE, the AvrRxv homolog, or other similar proteins play a role in these specificities awaits determination.

Although the *dspEF* locus triggers defense responses in soybean when expressed in *P. syringae* pv. glycinea, it is not required for the HR of soybean elicited by *E. amylovora*. Nor is *hrpN* required (Fig. 3). It is possible that *E. amylovora* must have either *dspE* or *hrpN* to elicit the HR in soybean. We have observed, however, that, in contrast to its effect on many other plant species (47), infiltrated harpin (HrpN) does not elicit the HR in soybean, suggesting the alternative explanation that *E. amylovora* harbors another *avr* gene recognized by this plant. A cell-free DspE and DspF preparation also failed to elicit the HR when infiltrated into soybean leaves, raising the possibility that one or both of these proteins trigger defense responses from within the plant cell (D. W. Bauer and S.V.B., unpublished data).

Recognition of E. amylovora avirulence signals in soybean suggests the presence of one or more specific R genes. A

dspEF-specific *R* gene might be useful for engineering apple and pear for resistance to fire blight. R-gene-mediated resistance to the apple scab pathogen Venturia inaequalis (48) and successful transformation of apple with attacin E for control of fire blight (49) attest the feasibility of such an approach. *R*-gene-mediated resistance to apple scab has been overcome in the field (50), but the requirement for the dspEF locus in disease favors relative durability of a corresponding R gene (12). Avirulence screening of *dspEF* and other *E. amylovora* genes in pathogens of genetically tractable plants such as Arabidopsis could broaden the pool of candidate R genes and hasten their isolation. A similar approach could be used to isolate R genes effective against other pathogens of woody plants. Furthermore, if the *dspEF* locus is as widely conserved as is suggested by its homology with the avrE locus, a corresponding R gene could be effective against a variety of pathogens both of woody and herbaceous plants.

Note Added in Proof. Recently, Gaudriault et al. (51) characterized the dsp locus of Erwinia amylovora strain 1430. They designated the genes corresponding to dspE and dspF as dspA and dspB, respectively.

We are grateful to D. W. Bauer for plasmids and critical review, to G. M. Preston for advice on the soybean assays, to H. S. Aldwinckle and H. L. Gustafson for help with the apple assays, to J. L. Norelli for helpful discussion, to C. H. Zumoff for technical assistance, and to K. E. Loeffler for photography. This work was supported by grants from Eden Bioscience Corporation and the New York Science and Technology Foundation through the Cornell University Center for Advanced Technology in Agricultural Biotechnology (to S.V.B.), and by National Science Foundation Grant MCB 9631530 (to A.C.).

- Wei, Z.-M. & Beer, S. V. (1995) J. Bacteriol. 177, 6201-6210. 1.
- Bogdanove, A. J., Wei, Z.-M., Zhao, L. & Beer, S. V. (1996) J. 2. Bacteriol. 178, 1720-1730.
- Kim, J.-H., Wei, Z.-M. & Beer, S. V. (1997) J. Bacteriol. 179, 3. 1690-1697.
- Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., 4. Collmer, A. & Beer, S. V. (1992) Science 257, 85-88.
- 5. Kim, J. F. (1997) Ph.D. dissertation (Cornell University, Ithaca, NY).
- Alfano, J. R. & Collmer, A. (1996) Plant Cell 8, 1683-1698. 6.
- Dangl, J. L. (1994) in Bacterial Pathogenesis of Plants and Animals: Molecular and Cellular Mechanisms (Curr. Topics Microbiol. Immunol.), ed. Dangl, J. L. (Springer, Berlin), Vol. 192, pp. 99–118.
- Kobayashi, D. Y., Tamaki, S. J. & Keen, N. T. (1989) Proc. Natl. 8. Acad. Sci. USA 86, 157-161.
- Whalen, M. C., Stall, R. E. & Staskawicz, B. J. (1988) Proc. Natl. 9. Acad. Sci. USA 85, 6743-6747.
- Swarup, S., Yang, Y., Kingsley, M. T. & Gabriel, D. W. (1992) 10. Mol. Plant-Microbe Interact. 5, 204-213.
- Mansfield, J., Jenner, C., Hockenhull, R., Bennett, M. A. & 11. Stewart, R. (1994) Mol. Plant-Microbe Interact. 7, 726-739.
- Kearney, B. & Staskawicz, B. J. (1990) Nature (London) 346, 12. 385-386.
- 13. Swarup, S., De Feyter, R., Brlansky, R. H. & Gabriel, D. N. (1991) Phytopathology 81, 802-808.
- De Feyter, R. D., Yang, Y. & Gabriel, D. W. (1993) Mol. Plant-Microbe Interact. 6, 225-237. 14.
- 15. Lorang, J. M., Shen, H., Kobayashi, D., Cooksey, D. & Keen, N. T. (1994) Mol. Plant-Microbe Interact. 7, 508-515.
- Ritter, C. & Dangl, J. L. (1995) Mol. Plant-Microbe Interact. 8, 16. 444 - 453. Lorang, J. M. & Keen, N. T. (1995) Mol. Plant-Microbe Interact.
- 17. 8, 49–57.
- Xiao, Y. & Hutcheson, S. W. (1994) J. Bacteriol. 176, 3089-3091. 18.
- Barny, A. M., Guinebretiere, M. H., Marcais, B., Coissac, E., 19. Paulin, J. P. & Laurent, J. (1990) Mol. Microbiol. 4, 777-786.

- 20.Sambrook, J., Fritsch, E. F. & Maniatis, T. E. (1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY). Bauer, D. W. & Collmer, A. (1997) *Mol. Plant–Microbe Interact.*
- 21. 10, 369-379.
- Bauer, D. W. (1990) Ph.D. dissertation (Cornell University, 22 Ithaca, NY).
- 23. Figurski, D. & Helinski, D. R. (1979) Proc. Natl. Acad. Sci. USA 76, 1648-1652.
- Beer, S. V., Bauer, D. W., Jiang, X. H., Laby, R. J., Sneath, B. J., 24. Wei, Z. M., Wilcox, D. A. & Zumoff, C. H. (1991) in Advances in Molecular Genetics of Plant-Microbe Interactions, eds. Hennecke, H. & Verma, D. P. S. (Kluwer, Dordrecht, The Netherlands), pp. 53-60.
- Altschul, S. F. & Lipman, D. J. (1990) Proc. Nat. Acad. Sci. USA 25. 87, 5509-5513.
- 26. Duffaud, G. D., March, P. E. & Inouye, M. (1987) in Methods Enzymol. 153, 492-507.
- 27. Kaniga, K., Delor, I. & Cornelis, G. R. (1991) Gene 109, 137-142.
- Beer, S. V. (1990) in Methods in Phytobacteriology, eds. Klement, 28. Z., Rudolph, K. & Sands, D. C. (Akadémiai Kiadó, Budapest), pp. 373–374.
- 29. Aldwinckle, H. S. & Preczewski, J. L. (1976) Phytopathology 66, 1439-1444.
- 30. Bauer, D. W. & Beer, S. V. (1991) Mol. Plant-Microbe Interact. 4, 493–499
- Huynh, T. V., Dahlbeck, D. & Staskawicz, B. J. (1989) Science 31. 345, 1374-1377.
- Jefferson, R. A. (1987) Plant Mol. Biol. Rep. 5, 387-405. 32.
- 33. Miller, J. H. (1992) A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Lab. Press, Plainview, NY).
- 34. Steinberger, E. M. & Beer, S. V. (1988) Mol. Plant-Microbe Interact. 1, 135-144.
- Caldwell, A. L. & Gulig, P. A. (1991) J. Bacteriol. 173, 7176-7185. 35.
- Wattiau, P., Woestyn, S. & Cornelis, G. R. (1996) Mol. Microbiol. 36. 20, 255-262.
- 37. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) J. Mol. Biol. 215, 403-410.
- 38. Saraste, M., Sibbald, P. R. & Wittinghofer, A. (1990) Trends Biochem. Sci. 15, 430–434.
- Labes, M., Puehler, A. & Simon, R. (1990) Gene 89, 37-46. 39
- 40. Barny, M. A. (1995) Eur. J. Plant Pathol. 101, 333-340.
- Collmer, A., Alfano, J. R., Bauer, D. W., Preston, G. M., 41 Loniello, A. O., Conlin, A., Ham, J. H., Huang, H.-C., Gopalan, S. & He, S. Y. (1996) in Advances in Molecular Genetics of Plant-Microbe Interactions, eds. Stacey, G., Mullin, B. & Gresshoff, P. M. (APS Press, St. Paul), Vol. 4, pp. 159-164.
- 42. Van den Ackerveken, G. & Bonas, U. (1997) Trends Microbiol. 5, 394-398.
- Galán, J. E. & Bliska, J. B. (1996) Annu. Rev. Cell Dev. Biol. 12, 43. 221-255.
- Whalen, M. C., Wang, J. F., Carland, F. M., Heiskell, M. E., Dahlbeck, D., Minsavage, G. V., Jones, J. B., Scott, J. W., Stall, 44. R. E. & Staskawicz, B. J. (1993) Mol. Plant-Microbe Interact. 6, 616-627
- Norelli, J. L., Aldwinckle, H. S. & Beer, S. V. (1984) Phytopa-45. thology 74, 136-139.
- Starr, M. P., Cardona, C. & Folsom, D. (1951) Phytopathology 41, 46. 915-919.
- 47. Beer, S. V., Wei, Z. M., Laby, R. J., He, S. Y., Bauer, D. W., Collmer, A. & Zumoff, C. (1993) in Advances in Molecular Genetics of Plant-Microbe Interactions, eds. Nester, E. W. & Verma, D. P. S. (Kluwer, Dordrecht, The Netherlands), pp. 281-286.
- Williams, E. B. & Kuc, J. (1969) Annu. Rev. Phytopathol. 7, 48. 223-246.
- 49. Norelli, J. L., Aldwinckle, H. S., Destéfano Beltrán, L. & Jaynes, J. M. (1994) Euphytica 77, 123-128.
- 50. Parisi, L., Lespinasse, Y., Guillaumes, J. & Krueger, J. (1993) Phytopathology 83, 533-537.
- Gaudriault, S., Malandrin, L., Paulin, J.-P. & Barny, M.-A. (1997) 51. Mol. Microbiol. 26, 1057–1069.