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The development of statistical methodologies for quantitative trait locus (QTL) mapping in polyploids is
complicated by complex polysomic inheritance. In this article, we propose a statistical method for mapping QTL
in tetraploids undergoing bivalent formation at meiosis by using single-dose restriction fragments. Our method
is based on a unified framework, one that uses chromosome bivalent pairing configuration and gametic
recombination to discern different mechanisms of gamete formation. Our bivalent polyploid model can not
only provide a simultaneous estimation of the linkage and chromosome pairing configuration—a cytological
parameter of evolutionary and systematic interest—but also enhances the precision of estimating QTL effects
and position by correctly characterizing gene segregation during polyploid meiosis. By using our method and a
linkage map constructed in a previous study, we successfully identify several QTL affecting winter hardiness in
bivalent tetraploid alfalfa. Moreover, our results reveal significant preferential chromosome pairing at meiosis in
an F1 hybrid population, which indicates the importance of reassessing the traditional view of random
chromosome segregation in alfalfa.

Statistical strategies and techniques for genomic mapping are
well developed for diploid species (Lander and Botstein 1989;
Wu 1999) but are lagging in the more complex polyploids.
Polyploids include many important agricultural crops such as
alfalfa, potato, and sugarcane (Zeven 1979; Averett 1980; Hilu
1993) and are recognized to play a pivotal role in the evolu-
tion of flowering plants (Ramsey and Schemske 1998; Ronfort
et al. 1998; Otto and Whitton 2000; Soltis and Soltis 2000).
The genomic mapping of polyploids, in which the genome
number is higher than two, is complicated for many factors,
such as: (1) uncertainty about the genotype-phenotype corre-
spondence owing to unknown ploidy level, unknown num-
ber of gene copies (known as the dosage; Burner 1997), and
unknown allelic configuration (Luo et al. 2001); (2) complex
pairing behaviors undergoing gamete formation during meio-
sis (Bever and Felber 1992); (3) heterozygous genome struc-
tures resulting from predominantly outcrossing mating sys-
tems (Soltis and Soltis 2000); and (4) increased allelic and
nonallelic combinations because of the increased number of
chromosomes in the homologous set (Kempthorne 1957).
The first three factors make it difficult to predict the pattern of
gene segregation in a progeny family from its parental geno-
types (Grivet et al. 1996; Ming et al. 1998; 2001), whereas the
fourth factor leads to an exponential increase of unknown
parameters, thus reducing the efficacy of the underlying
model. All of them must influence the estimation of genetic
parameters, including the recombination fraction and gene
effects of quantitative trait loci (QTLs) on phenotypes, which
thus deserve an in-depth exploration and should be incorpo-
rated into the framework of polyploid genome mapping.

We will first formulate statistical models for QTL map-

ping in polyploids by specifically considering different ga-
mete formation mechanisms (factor 2). Models for incorpo-
rating the other factors will be proposed subsequently. Unlike
the other factors, gamete formation mechanisms are poly-
ploid dependent. Polyploids are traditionally classified either
as allopolyploids derived from distinct genomes or as auto-
polyploids from genetically similar genomes (Bever and Fel-
ber 1992). But from a viewpoint of meiotic configurations, the
nature of polyploids can be better described by bivalent poly-
ploids and multivalent polyploids (R. Wu et al. 2001; S. Wu et
al. 2001). In bivalent polyploids, only two chromosomes pair
during meiosis at a time so that each bivalent pair contributes
one chromosome to the chromosomal set in each gamete. In
contrast, in multivalent polyploids, multiple chromosomes
pair simultaneously, during which a gamete is formed owing
to a free combination of all chromosomes in the set. Different
chromosome pairing mechanisms make these two groups of
polyploids different from one another in gene segregation (R.
Wu et al. 2001).

In this article, we propose a new statistical method for
mapping QTL in bivalent polyploids. Currently, there are
only three papers that address QTL mapping methodologies
for bivalent polyploids (Doerge and Craig 2000; Xie and Xu
2000; Hackett et al. 2001). As noted by Hackett (2001), the
statistical model of Xie and Xu (2000) was not based on a
proper biological model of polyploid meiosis. The other two
papers also have limits in theory and applications. Doerge and
Craig (2000) assumed preferential pairings; that is, pairings
occur strictly between the same chromosomes in the set. In
the paper by Hackett et al. (2001), random chromosome pair-
ings are assumed; that is, all chromosomes have an equal
opportunity to pair with one another. These two assumptions
help to simplify the model derivations but may not reflect
biological reality. In real life, there are a number of interme-
diate types between these two assumptions (Allendorf and
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Danzmann 1997; Fjellstrom et al. 2001), in which the prob-
ability of pairings may be higher between more similar chro-
mosomes than between less similar chromosomes. Such a dif-
ference of pairing probability is described by the preferential
pairing factor (Sygenba 1994, 1995).

In our statistical model for QTL mapping in bivalent
polyploids, the preferential pairing factor specifying bivalent
pairing behaviors is incorporated. To facilitate our analysis,
we focus on the performance and robustness of the bivalent
polyploid model built on single-dose restriction fragments
(simplex). Simplex markers, as used for QTL mapping, have
two major advantages: (1) they are economically cheap and
readily characterized, and (2) they are abundant in many
polyploids. For example, simplex markers represent 70% of
the detectable polymorphic loci resulting from the segrega-
tion of alleles of different dosages (Da Silva 1993). The statis-
tical aspects of linkage analysis in polyploids based on sim-
plex markers have been discussed byWu et al. (1992), Hackett
et al. (1998), Ripol et al. (1999), and Skinner et al. (2000).
Here, we explore the influences of gamete formation mecha-
nisms on polyploid linkage mapping by using the simplex
markers. Our new mapping model incorporating preferential
chromosome pairings will be validated by a case study in au-
totetraploid alfalfa.

Alfalfa, as one of the most important perennial forage
crops in the world, offers an excellent model system for test-
ing our theoretical model for QTL mapping in bivalent poly-
ploids. First, chromosomes in alfalfa predominantly pair as
bivalents, but display polysomic inheritance owing to its au-
topolyploid nature (Bingham and McCoy 1988). Earlier stud-
ies all assume that chromosome segregation in alfalfa is ran-
dom (Yu and Pauls 1993). This assumption is likely violated
when a genome analysis is based on an F1 hybrid progeny
derived from two different species or populations. Second,
alfalfa has diploid relatives; thus, results between polyploid
alfalfa and its diploid relatives can be compared. Third, a few
genetic linkage maps of molecular markers have been con-
structed in alfalfa (Yu and Pauls 1993; Brouwer and Osborn
1999; Diwan et al. 2000), providing a foundation for the ge-
netic analysis of complex traits and marker-assisted selection.

RESULTS
We derive theoretical models for mapping QTLs in bivalent
tetraploids using single-dose restriction fragments (simplex)
by incorporating the preferential pairing factor defined to de-
scribe bivalent chromosome behavior (Sybenga 1994, 1995,
1996). These models are then applied to map QTLs affecting
winter hardiness traits in alfalfa. The statistical methods for
estimating the linkage, preferential pairing factor and QTL
effects are presented in the Methods section.

The statistical model proposed in this article is used to
map QTLs affecting winter hardiness based on simplex mark-
ers in a published data set of tetraploid alfalfa (Brouwer and
Osborn 1999). Alfalfa is regarded as an autotetraploid, in
which bivalent pairings are a predominate process during
meiosis (Bingham and McCoy 1988). Earlier linkage analyses
assumed random chromosome segregations, although this
may deviate from biological reality (Yu and Pauls 1993; Brou-
wer and Osborn 1999). This assumption will be relaxed in our
analysis by providing a direct estimate of the preferential pair-
ing factor denoted as p. According to Sybenga (1994), p is
defined as two-thirds of the difference between the pairing
frequencies of more similar chromosomes and of less similar

chromosomes, plus a constant one-third. Thus, when p = 2

3
,

less similar chromosomes do not pair; that is, chromosomal
pairings happen strictly between the homologs. When p = 0,
all the four chromosomes are homologous, and they will pair
randomly. The value of p theoretically ranges from 0 to 2

3
.

Two contrasting tetraploid plants, winter-hardy Blazer
XL (B17) and winter-sensitive Peruvian 13 (P13), were crossed
to generate an F1 hybrid population, which was then back-
crossed to each parent (Brouwer and Osborn 1999). Each
backcross obtains 101 progenies used for mapping. Two har-
diness traits, freezing injury measured by electrical conduc-
tivity and winter injury, were measured in two successive
years (Brouwer et al. 2000). Because the two original parents
are not pure inbred lines, the two-way backcrosses virtually
present a full-sib family in which many different marker types
may be segregating (Wu et al. 2002). Brouwer and Osborn
(1999) used 82 testcross (pseudo-test backcross) markers de-
rived from single-dose restriction fragment length polymor-
phisms to construct two genetic linkage maps for each back-
cross population. In total, four homologous coupling-phase
cosegregation groups, of which two were derived from the
backcross to B17 (A and B) and the other two from the back-
cross to P13 (C and D), were detected for seven of the eight
linkage groups. In a previous regression analysis, Brouwer et
al. (2000) found that there was a higher probability of detect-
ing significant QTLs for winter hardiness on cosegregation
groups A and B than on C and D. Thus, groups A and B are
used as an example to test and validate our statistical method
for mapping QTLs affecting complex traits in alfalfa. The
QTLs mapped are statistically tested on the basis of a critical
threshold value at the significance level 5% calculated from
200 permutation tests (Churchill and Doerge 1994).

By using our newly developed method, we successfully
detect five and four significant QTLs responsible for freezing
injury and winter injury, respectively, in the backcross to B17.
The detection of these QTLs was based on a largest likelihood
value at a particular preferential pairing factor under a most
likely marker-QTL linkage phase. Tables 1 and 2 give the es-
timates of the QTL chromosomal locations and allelic effects
on the two injury traits. We present an example of the detec-
tion of the QTL for each trait, in which the peaks of the
profiles of the log-likelihood ratio test statistics correspond to
a likely position of the QTL detected (Fig. 1).

Of the five QTLs detected for freezing injury, four
mapped to F1-specific linkage groups 4A, 5A, 6A and 8A,
whereas only one mapped to B17-specific linkage group 5B.
For linkage group A, the positive allelic effect of a QTL indi-
cates that parent P13 contributes an increasing allele for in-
jury trait values. Our estimates of positive allelic effects (Table
1) indicate that parents B17 and P13 contribute cold-tolerant
and cold-sensitive alleles to their F1 hybrids, respectively,
conforming to the biological attributes of these two parents.
But the positive allelic effect of a QTL on 5B implies that
parent B17 may also contribute cold-sensitive alleles.

According to our estimate, the marker-QTL linkage phase
with the largest probability is one for which the presence of
the simplex markers (P13 alleles) is in repulsion phase with
the QTL allele, leading to smaller trait values and therefore
larger hardiness. We found strong evidence for the change of
QTL activity over different ages. More significant QTLs were
detected in the second year than in first year (Table 1). A same
marker interval on linkage group 8A carries a QTL responsible
for freezing injury in both years, with an increased LR value
for the second year than for first year.

QTL Mapping in Bivalent Polyploids
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Similar patterns of QTL expression were also observed for
winter injury in alfalfa (Table 2). But most of the QTLs de-
tected are different between freezing and winter injuries. Two
chromosomal segments on 5A and 8A detected to affect both
freezing and winter injuries may contribute to their moderate
correlation (Brouwer et al. 2000).

One of the major advantages of our method is that it can
estimate the preferential pairing factor during polyploid
meiosis. The estimated preferential pairing factor, p̂ = 0.6
(0 � p �

2

3
), consistently obtained from most marker intervals

regardless of the significance of their association with a QTL
(Tables 1, 2), indicates that chromosome pairings of tetraploid
alfalfa are actually not random.

A Simulation Study
We performed a simulation study to test the performance and
robustness of our bivalent poly-
ploid model incorporating the pref-
erential pairing factor. Our interest
was to investigate the effects of two
major assumptions, completely
preferential pairing, as assumed in
Doerge and Craig (2000), and ran-
dom segregation, as assumed in
Hackett et al. (2001), on the preci-
sion of parameter estimation. We
simulated two interval markers and
one QTL, determining a normally
distributed trait for a pseudo-test
backcross population of 200 off-
spring. The two markers and the
QTL are assumed in coupling
phase. The two markers are sepa-
rated 20 cM from each other, be-
tween which the QTL is located at 5
cM from the left marker. The
Kosambi map function is used to
convert the map distance in the

corresponding recombination frac-
tion. The QTL is hypothesized to
have the additive effect of 0.5 and
to explain 20% of the total pheno-
typic variance. Based on these con-
ditions, a data set of markers and
phenotypes are simulated under
the assumption of p = 0.33 using
the genotype frequencies given in
Table 3.

Three methods are used to
analyze the simulated data set, the
first being Doerge and Craig’s
method of assuming completely
preferential pairings, the second be-
ing Hackett et al.’s method of as-
suming random segregation, and
the third being our method as pro-
posed in this article. Our method
takes into account all possible cases
of chromosome bivalent pairings
by estimating the preferential pair-
ing factor p. The results from our
analyses are summarized as follows:
(1) Doerge and Criag’s method gave
the most biased estimates for all

QTL and model parameters, although it is computationally
fast; (2) Hackett et al.’s method also had significant biases for
QTL position and effect estimates (biased by 10% to 20%);
and (3) as expected, our method displayed reasonable estima-
tion accuracy and precision for all parameters. An additional
important advantage of our method is that it provides a direct
estimate of the preferential pairing factor that is of typical
interest to evolutionary and systematic biologists.

DISCUSSION
We have for the first time devised a statistical method for
mapping QTLs in recalcitrant polyploids by considering the
chromosome pairing mechanism of polyploid meiosis. The
pairing mechanisms in polyploids include two types, biva-

Table 2. The Locations and Effects of QTL Affecting Winter Injuries in Two Successive
Years (1996 and 1997) for Bivalent Tetraploid Alfalfa

Linkage
groupa Marker interval Year LRb Threshold

Additive
effect R2c

Marker-
QTL

Phase p̂d

1B vg2b9p1–vg2g1p1 1996 6.31 12.74 0.4
1997 15.25 12.62 4.50 8.4 A3 0.1

5A hg2b12p1–vg2a2p1 1996 10.01 10.25 0.6
1997 16.68 16.58 �1.37 8.9 A1/A2 0.2

8A ugac235p1–ugac291p1 1996 29.74 8.96 1.10 10.4 A2 0.6
1997 15.45 12.72 0.77 10.2 A2 0.6

8B ugac109p1–vg1b10p1 1996 20.20 21.15 0.6
1997 34.33 26.64 1.63 12.8 A2 0.6

Significant QTL, as evidenced by larger log-likelihood ratios (LRs) than the thresholds calculated
from 200 permutation tests, are indicated in boldface.
aLinkage groups refer to Brouwer and Osborn (1999).
bThe LR between the full model (there is a QTL) and the reduced model (there is no QTL).
cThe proportion of the total phenotypic variance explained by the QTL detected.
dThe preferential pairing factor (p) is estimated by a grid approach within its space. The estimates
of p are also given for nonsignificant QTL.

Table 1. The Locations and Effects of QTL Affecting Freezing Injuries Measured
by Electrical Conductivity in Two Successive Years (1995 and 1996) for Bivalent
Tetraploida Alfalfa

Linkage
groupa Marker interval Year LRb Threshold

Additive
effect R2c

Marker-
QTL

Phase p̂d

4A ugac118pl–vgle9p1 1995 4.63 9.60 0.5
1996 14.91 9.66 33.56 12.5 A2 0.4

5A vg2a2p1–vg2e5p1 1995 2.08 9.85 0.6
1996 15.91 10.03 17.93 8.6 A2 0.6

5B vg2a11p1–vg1h10p1 1995 13.11 7.84 15.69 8.7 A2 0.6
1996 3.85 8.47 0.6

6A ugac281p1–vg2c2p1 1995 5.53 8.78 0.6
1996 14.12 8.81 17.53 9.2 A2 0.6

8A ugac235p1–ugac291p1 1995 14.20 8.40 19.48 8.5 A2 0.6
1996 22.72 8.46 21.56 13.7 A2 0.6

Significant QTL, as evidenced by larger log-likelihood ratios (LRs) than the thresholds calculated
from 200 permutation tests, are indicated in boldface.
aLinkage groups refer to Brouwer and Osborn (1999).
bThe LR between the full model (there is a QTL) and the reduced model (there is no QTL).
cThe proportion of the total phenotypic variance explained by the QTL detected.
dThe preferential pairing factor (p) is estimated by a grid approach within its space. The estimates
of p are also given for nonsignificant QTL.
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lent and multivalent configurations. In this article, bivalent
chromosome pairings are considered. Our bivalent polyploid
model based on maximum-likelihood methods can provide
not only the estimates of the map position of QTL, its effect,
and inheritance mode but also the estimate of the preferential
pairing factor (p), a cytological parameter of evolutionary and
systematic importance. In addition, our model incorporating

bivalent pairing mechanisms can
enhance the estimation precision
of QTL parameters in polyploids. As
demonstrated by a simulation
study, greater-bias parameter esti-
mates will be obtained if the prefer-
ential pairing factor is not consid-
ered, as assumed by Doerge and
Craig (2000) and Hackett et al.
(2001).

In earlier analyses of alfalfa by
Brouwer and Osborn (1999) and
Brouwer et al. (2000), random chro-
mosome pairing was assumed. But
our current result reveals significant
preferential pairings at meiosis in
the samematerial (p̂ = 0.60). Our re-
sult can be regarded as being closer
to biological reality for three rea-
sons. First, the assumption of ran-
dom chromosome pairings is ob-
tained from more traditional cyto-
logical approaches that may not be
accurate enough to make exclusive
conclusions (Sybenga 1994). Mo-
lecular markers specifying a small
chromosomal segment are indi-
cated to have more power of detect-
ing chromosome pairing behaviors
at meiosis. Second, our model takes
into account the general meiotic
property of a polyploid, which can
cover random chromosome pair-
ings. As long as a polyploid under-
goes random bivalent pairings, they
can be diagnosed by our model.

Third and most important, our
model has been validated by a real-
world example. North American al-
falfa cultivars have been bred from
nine sources, most of which are cat-
egorized as Medicago sativa spp. sa-
tiva; however, one is considered a
distinct subspecies, M. sativa spp.
falcata (Barnes et al. 1988). Al-
though these germ plasm sources
have been intermated and selected
to derive alfalfa cultivars, the nine
original sources have been main-
tained separately. A previous analy-
sis showed that seven of the nine
germ plasm sources were geneti-
cally very similar, oneM. sativa spp.
sativa source (Peruvian) was some-
what distinct, and theM. sativa spp.
falcata source was very distinct
(Kidwell et al. 1994). Two tetraploid

plants, Blazer XL 17 and Peruvian 13, derived from these dif-
ferent sources (Peruvian and Falcata) likely display preferen-
tial chromosome segregation behavior because they are ge-
netically distinct from each other.

Because no statistically powerful and biologically rel-
evant approach is available in the current literature, QTL
mapping in polyploids was performed by using a regression-

Figure 1 The profiles of the likelihood ratio test statistics across linkage group 8A in bivalent tetra-
ploid alfalfa. Two horizonal lines indicate the thresholds at the significance level 5% calculated from
200 permutation tests (Churchill and Doerge 1994). QTL for freezing injuries (A) measured in 1995
(blue) and 1996 (pink); QTL for winter injuries (B) measured in 1996 (blue) and 1996 (pink).
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based analysis of variance (Brouwer et al. 2000; Ming et al.
2001). Based on the alfalfa mapping material used by Brouwer
et al. (2000), we detected several significant QTLs affecting
winter hardiness. But only one of the QTLs detected from our
newly developed model is consistent with the result from the
analysis of variance approach. This is not surprising given
that this concordant QTL, located on linkage group A, exhib-
its a large additive effect. Theoretically, a large QTL can be
relatively easily monitored, even by a less powerful approach.
Although we should be cautious with the inconsistency of
most of the QTLs detected by our method and by analysis of
variance, the inherited limits of analysis of variance may give
us good reasons to favor our findings. Basically, the marker-
associated analysis of variance cannot clearly distinguish be-
tween large-sized but distantly localized QTLs and small-sized
but closely localized QTLs. Also, it is not easy to incorporate
meiotic mechanisms into analysis of variance, another reason
that the results from analysis of variance may not well reflect
biological reality.

We have devised a powerful statistical method for QTL
mapping in tetraploids by using single-dose restriction frag-
ments, but it is crucial to modify this method to other differ-
ent situations. In this article, we assumed the meiotic mecha-
nism of bivalent pairings. Many species also undergo multi-
valent formation, from which a particular genetic
phenomenon called double reduction results (Darlington
1929; Butruille and Boiteux 2000). Our method can be modi-
fied to consider the mechanism of multivalent formation. In
addition, the model should be extended to consider double-
(duplex) or multiple-dose restriction fragments that are often
used in several polyploid studies (Ming et al. 1998, 2001). For
dominant duplex markers, at which there are two genotypes
segregating 5:1 in a tetraploid pseudo-test backcross, we will
need to derive new conditional probabilities of the QTL geno-
types to fit segregation patterns of the duplex marker interval.
For codominant duplex markers that segregate a 1:4:1 ratio,
we will need one more parameter to model the dominant
effect of a QTL. We assumed that the markers and the QTL
have the same dosage level. But it is possible that simplex
markers are linked with a duplex QTL or that a simplex QTL
is bracketed by two duplex markers (Skinner et al. 2000). Our
analysis is based on the simplest pseudo-test backcross design
(Grattapagalia and Sederoff 1994) and should be extended to
consider a full-sib polyploid family, in which there may be
many more complicated cross types, as shown in Wu et al.
(2002). A general model for simultaneously using all different
marker types to map QTLs should be developed. Our model
integrates the linkage and linkage phase estimation into a
unified framework, displaying an advantage that it overcomes
the problem owing to poor estimation for the linkage be-
tween different markers and QTL in a repulsion phase (see
Hackett et al. 1998). Yet, this integration requires more pow-
erful computational algorithms. We are now implementing
new algorithms, such as genetic algorithms (Gaspin and
Schier 1998), in our linkage analysis model of polyploids. Af-
ter all of these extensions are developed, we will have more
power to tackle complicated problems of QTL mapping result-
ing from the polysomic inheritance of polyploids.

METHODS

The Mixture Model
A fundamental model for QTL mapping is the statistical mix-
ture model (McLachlan and Peel 2000). In this mixture

model, each observation yi is assumed to have arisen from one
of n (n possibly unknown but finite) components, each com-
ponent being modelled by a density from the parametric fam-
ily f:

p�yi|�, �, �� = �1f �yi; �1, �� + . . . + �nf �yi; �n, �� ( 1 )

where � = (�1,…,�n) are the mixture proportions that are con-
strained to be nonnegative and sum to unity; � = (�1,…,�n)
are the component specific parameters, with �j being specific
to component j; and � is a common parameter which is com-
mon to all components.

For the mixture model used in genetic mapping (Lander
and Botstein 1989), each component represents a class of QTL
genotypes, and thus, the mixture model provides a framework
by which observations may be clustered together into differ-
ent classes of QTL genotypes. The mixture proportions repre-
sent the relative frequency of occurrence of each QTL geno-
type in the population. Within a particular marker genotype,
the relative frequency of each QTL genotype is its conditional
probability on the marker genotype.

For a pseudo-test backcross tetraploid population, there
are two groups of genotypes at a single gene. Thus, the mix-
ture model of polyploids contains two components of QTL
genotypes that are predicted by four marker genotypes at a
marker interval. The proportions of mixtures �k present the
probabilities of QTL genotypes conditional on marker geno-
types, which have been derived in Table 1. As seen from the
table, the conditional probabilities contain the information
of QTL position. Each mixture is assumed to follow a normal
distribution fk(yi), with the expected mean specified by the
genotypic value of the corresponding QTL genotype and the
common residual variance �2. The genotypic values of the
two QTL genotypes are expressed as µ1 = µ + 1

2
a for Qqqq and

µ1 = µ �
1

2
a for qqqq. In quantitative genetics, µ is the overall

mean, and a is the additive effect of allele Q, which is the
effect of substituting q by Q.

Conditional Probabilities
For species like polyploids, in which it is difficult to generate
classical pure inbred lines, we generally use a pseudo-test
backcross design, derived from two outcrossing parents, for
linkage mapping (Grattapaglia and Sederoff 1994). We are
interested in those markers that are heterozygous in one par-
ent but homozygous in the second. For a simplex marker, a
1:1 segregation ratio is expected in an F1 tetraploid hybrid
family if one parent is heterozygous (1000), whereas the other
is null (0000). Consider two simplex markers for a heterozy-
gous bivalent tetraploid with four chromosomes—labeled by
1, 2, 3, and 4—in a set. If these four chromosomes are com-
pletely identical, the allelic configurations of the two simplex
markers can be described by a coupling phase or repulsion
phase (Hackett et al. 1998). But if these four chromosomes are
different, as considered in this article, with chromosome pairs
1 and 2, and 3 and 4 (homologous) being more similar than
chromosomes pairs 1 and 3, 2 and 4, 1 and 4, and 2 and 3
(homoeologous), then the repulsion phase of the two simplex
markers have two types: (1) homologous repulsion and (2)
homoeologous repulsion.

Now, consider a putative QTL for a quantitative trait that
is bracketed by the two simplex markers. Two alternative al-
leles of this QTL, denoted by Q and q, form a genotype Qqqq
in the heterozygous parent and qqqq in the homozygous par-
ent. When the two markers are in a coupling phase, we have
three different phases between the QTL and markers:

A1

1 0 0 0
Q q q q

1 0 0 0

A2

1 0 0 0
q Q q q

1 0 0 0

A3

1 0 0 0
q q Q q

1 0 0 0

( 2 )

QTL Mapping in Bivalent Polyploids

Genome Research 1979
www.genome.org



where the lines denote chromosomes 1, 2, 3, and 4 in order.
In Equation 2A1, the QTL and markers are in a coupling
phase, whereas in Equations 2A2 and 2A3, the QTL is in a
homologous and homoeologous repulsion phase with the
markers, respectively. Similar QTL-marker phase types can be
detected as

B1
1 0 0 0
Q q q q

0 1 0 0

B2
1 0 0 0
q Q q q

0 1 0 0

B3
1 0 0 0
q q Q q

0 1 0 0

( 3 )

for the marker homologous repulsion phase, and as

C1

1 0 0 0
Q q q q

0 0 1 0

C2

1 0 0 0
q Q q q

0 0 1 0

C3

1 0 0 0
q q Q q

0 0 1 0

C4

1 0 0 0
q q q Q

0 0 1 0

( 4 )

for the marker homoeologous repulsion phase.
Wu et al. (2002) have given a 6 � 6 gametic probability

matrix of two fully informative markers generated by a tetra-
ploid undergoing bivalent pairings. The gametic probabilities
are a function of not only the recombination fraction r (as is
the case in a diploid population, or has been assumed in pre-
vious polyploid mapping studies) but also the preferential
pairing factor p. The gamete probability matrix of fully infor-
mative markers can be collapsed into a 2 � 2 matrix if both of
the markers are simplex. Such a collapsed matrix, however,
will have different structures, when different marker linkage
phases (Equations 2–4) are considered. When a QTL is tested
on the interval of the two fully informative markers, we will
have a 36 � 6 matrix for the conditional probabilities of six
QTL gamete genotypes on 36 marker gamete genotypes
formed by a bivalent tetraploid. Similarly, this full condi-
tional probability can be collapsed into a 4 � 2 matrix when
two simplex markers are used to predict a biallelic QTL (Table
3). The structures of the collapsed matrix differ depending on
different marker-QTL linkage phases (Equations 2–4; Table 3).

Generally, the linkage phase between two flanking mark-
ers is known before they are used to estimate QTL effects and
position. Thus, our question for QTL mapping will be reduced
to detect a most likely QTL-marker linkage phase from Equa-
tion 2 when the two markers are in a coupling phase, from
Equation 3 when the two markers are in a homologous repul-
sion phase, or from Equation 4 when the two markers are in
a homoeologous repulsion phase. S. Wu et al. (2001) used
Bayes’ theorem to characterize the most likely linkage phase
based on a separate likelihood analysis of all possible phases.
The estimation of the recombination fraction is then based on
the most likely linkage phase detected. Using this approach,
however, we cannot simultaneously use the information of all
linkage phases. Here, all possible linkage phases will be incor-
porated within an integrated framework of the mixture QTL
mapping model.

Assume that the probabilities of the three phases in
Equation 2 are denoted by �1 (A1), �2 (A2), and �3 (A3)
(�1 + �2 + �3 = 1). Thus, a simple mixture model (Equation 1),
as used for regular QTL mapping (Lander and Botestein 1989),
is changed into a two-stage hierarchical mixture model that
combines the phase probabilities and conditional probabili-
ties of QTL genotypes

p�yi|�,�,�,�� = �1��11f1�yi� + �12f2�yi�� + �2��21f1�yi� + �22f2�yi��
+ �3��31f1�yi� + �32f2�yi��

= ��1�11 + �2�21 + �3�31�f1�yi�
+ ��1�12 + �2�22 + �3�32�f2�yi�

= �1f1�yi� + �2f2�yi� ( 5 )

where �jk is the conditional probability of the kth QTL geno-
type under linkage phase j (Table 3), k = 1 for QTL genotype

Qqqq and k = 2 for QTL genotype qqqq; j = 1,2,3. From Equa-
tion 5, the proportions (�k = �1�1k + �2�2k + �3�3k) of two
QTL genotypes are the combinations of the conditional prob-
abilities weighted by the phase probabilities �1 � �3.

Computational Algorithm
We formulate the EM algorithm (Dempster et al. 1977; Meng
and Rubin 1993) to estimate the preferential pairing factor,
QTL effects, and position in a full-sib family derived from two
outcrossing tetraploids. The likelihood of the phenotypes (y)
for N offspring in the full-sib family is expressed as

L��� = �
i = 1

N

��1f1�yi� + �2f2�yi��, ( 6 )

where � = (µ, a, r1 or r2, �2, p, �1, �2) is the vector of unknown
parameters containing the overall mean, QTL effects, QTL po-
sition, residual variance, the preferential pairing factor and
the phase probabilities. The log-likelihood is given by

log L��� = �
i = 1

N

log��1f1�yi� + �2f2�yi��, ( 7 )

with derivatives for each unknown �m:

	

	�m
log L��� = �

i = 1

N � �1

	

	�m
f1�yi�

�1f1�yi� + �2f2�yi�
+

�2

	

	�m
f2�yi�

�1f1�yi� + �2f2�yi�
�

= �
i = 1

N � �1f1�yi�
�1f1�yi� + �2f2�yi�

	

	�m
log f1�yi�

+
�2f2�yi�

�1f1�yi� + �2f2�yi�
	

	�m
log f2�yi��

= �
i = 1

N �
1i

	

	�m
log f1�yi� + 
2i

	

	�m
log f2�yi��

where we define


ki =
�kfk�yi�

�1f1�yi� + �2f2�yi�
, ( 8 )

which could be thought of as a posterior probability that
progeny i have QTL genotype k. We then implement the EM
algorithm with the expanded parameter set {�, 
}, where

 = {
k, k = 1, 2}. Conditional on 
, we solve for the zeros of
(	/	�m) log L(�) to get our estimates of � (the M step). The
estimates are then used to update 
 (the E step), and the
process is repeated until convergence. The values at conver-
gence are the MLEs.

Unlike the treatment of characterizing a most likely link-
age phase by Wu et al. (2002), we implement additional pa-
rameters, phase probabilities, within our estimation model.
Because it is difficult to derive the maximum likelihood esti-
mators from the mixture model (5) of the phase probabilities
�’s, preferential pairing factor p and recombination fraction r1
or r2, a grid approach is used to obtain their MLEs by taking all
of their possible values. For �’s, we increase them by every 0.1
from the range 0–1 under the constraint �1 + �2 + �3 = 1. The
values of �’s that lead to a maximum likelihood are regarded
as their MLEs. Similarly, the MLE of p is estimated by increas-
ing it by every 0.05 in the range from 0 to 2

3
. By moving the

assumed position of the QTL every 0.05 cM within a marker
interval, the MLE of QTL position is estimated. The program
that implements the proposed method can be obtained from
http: //www.ifasstat.ufl.edu/genetics/alfalfa.html.
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