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El Niño events typically lead to delayed rainfall and decreased rice
planting in Indonesia’s main rice-growing regions, thus prolonging
the hungry season and increasing the risk of annual rice deficits.
Here we use a risk assessment framework to examine the potential
impact of El Niño events and natural variability on rice agriculture
in 2050 under conditions of climate change, with a focus on two
main rice-producing areas: Java and Bali. We select a 30-day delay
in monsoon onset as a threshold beyond which significant impact
on the country’s rice economy is likely to occur. To project the
future probability of monsoon delay and changes in the annual
cycle of rainfall, we use output from the Intergovernmental Panel
on Climate Change AR4 suite of climate models, forced by increas-
ing greenhouse gases, and scale it to the regional level by using
empirical downscaling models. Our results reveal a marked in-
crease in the probability of a 30-day delay in monsoon onset in
2050, as a result of changes in the mean climate, from 9–18% today
(depending on the region) to 30–40% at the upper tail of the
distribution. Predictions of the annual cycle of precipitation sug-
gest an increase in precipitation later in the crop year (April–June)
of �10% but a substantial decrease (up to 75% at the tail) in
precipitation later in the dry season (July–September). These re-
sults indicate a need for adaptation strategies in Indonesian rice
agriculture, including increased investments in water storage,
drought-tolerant crops, crop diversification, and early warning
systems.

empirical downscaling models � risk assessment

Agricultural production in Indonesia is strongly influenced by
annual and interannual variations in precipitation, caused by

the Austral–Asia monsoon and El Niño–Southern Oscillation
(ENSO) dynamics. Indonesia consistently experiences dry climatic
conditions and droughts during the warm phase of the ENSO cycle
(El Niño), with significant consequences for agricultural output,
rural incomes, and staple food prices (1, 2). The year-to-year
dynamics of ENSO and precipitation over the archipelago have
been well studied (3–6), as have various links between ENSO, crop
production, and famines in different parts of the country (7–10).
Over the longer run, rising concentrations of greenhouse gases will
likely create additional climate impacts on Indonesian agriculture.
The combined forces of climate variability and climate change
could have a dramatic effect on agricultural production in Indo-
nesia and other tropical countries.

Here, we present a framework for assessing the risks of climate
change for Indonesian rice agriculture, drawing on the obser-
vational record of interannual variability in precipitation and
production and on projections of climate change. We focus on
precipitation, rather than temperature, because the links be-
tween precipitation and production in Indonesia are significant
and well documented. Our earlier work (1) showed that ENSO
has been the primary determinant of year-to-year variation in
Indonesian rice output over the past three decades, accounting
for almost two-thirds of the total variation. During El Niño
events, Indonesia’s production of rice, the country’s primary
food staple, is affected in two important ways: (i) delayed rainfall

causes the rice crop to be planted later in the monsoon season,
thus extending the ‘‘hungry season’’ (paceklik, the season of
scarcity) before the main rice harvest; and (ii) delayed planting
of the main wet-season crop may not be compensated by
increased planting later in the crop year, leaving Indonesia with
reduced rice area and a larger than normal annual rice deficit.
This pattern highlights the importance of timing, as well as total
production of rice, for food security, which is defined here as the
availability and access to staple food commodities for all con-
sumers throughout the year.

A key question for our study is whether natural climate
variability (including ENSO) will exert a greater impact on
Indonesian rice agriculture and food security in 2050 with
changes in the mean climate. To answer this question, we
compare the present vs. future likelihood of exceeding a seasonal
climate threshold, delayed monsoon onset, which has been
shown empirically to be important for rice production and food
security during El Niño events in recent decades. We also
explore how the annual cycle of rainfall over the archipelago is
likely to change, in terms of both the total amount of rainfall over
the year and the distribution of rainfall throughout the year.
Examining potential changes in the annual cycle of precipitation
provides insight into future impacts of ENSO on both wet
(monsoon)-season and dry-season rice crops and suggests
thresholds that are likely to emerge by 2050. Our analysis covers
two regions: (i) West and Central Java and (ii) East Java and Bali
(Fig. 1). These areas account for �55% of the country’s total rice
production and are thus watched most carefully from a food
policy perspective. Agricultural data series for these regions are
also longer and more complete than for other provinces in
Indonesia, and rainfall–rice relationships on Java and Bali have
been well established in our earlier work (1, 2).

Selecting a Threshold. Climate impact studies apply a variety of
threshold concepts, including biophysical, behavioral, and user-
designed thresholds (11). Each concept indicates a point beyond
which the biophysical, socioeconomic, or institutional system in
question is significantly affected by, or fundamentally changes in
response to, climate change. The selection of meaningful and
operational climate thresholds for risk assessment is not a trivial
task. For example, without knowing how markets, preferences,
and technology will change in the distant future, it is difficult to
know how the relative profitability of crops, and hence farmers’
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choice of crops, will be altered by climate change. Similarly,
predicting the point at which a biophysical system will be
transformed as a result of climate change is difficult without
having experienced prior episodes that are similar to the pro-
jected climate.

In this analysis, we rely on our earlier studies of ENSO-based
variability to select a climate threshold for Indonesian rice
agriculture (1, 2). Understanding the seasonality of rainfall and
production is key to this process, because rice plantings follow
the rains in the ‘‘run-of-the-river’’ irrigated systems and rain-fed
systems that are typical on Java and Bali. Fig. 1 illustrates the
regional pattern in monsoon movement, with onset beginning in
the northwest, progressing toward the southeast, and terminat-
ing initially in the east. The peak of the wet season typically
occurs in December–January when the northwest monsoon
(which extends from the western Indian Ocean to the date line)
sweeps across Java and Bali toward Australia (5, 12). The largest
absolute variation in rainfall occurs at the end of the dry season
during monsoon onset (September–November) (5).

In neutral ENSO years, the main wet-season rice crop in Java
is planted between late October and early December, when there
is sufficient moisture to prepare the land for cultivation and to
facilitate the early rooting of transplanted seedlings. The main
planting season occurs before the peak of the winter monsoon
(December–January) because excessive water at the vegetative
growth stage hampers rooting and decreases tiller production
(13). During the 90- to 120-day grow-out period from trans-
planting to harvest, �20 cm of cumulative rainfall is needed to
moisten the ground sufficiently for planting, and �100 cm of
rainfall is needed throughout the season for cultivation (14). A
smaller dry-season planting takes place in April–May after the
wet-season crop is harvested.

Unfortunately, this pattern can be disrupted by variations in
climate, as in El Niño years. El Niño events cause a delay in
monsoon onset by as much as 2 months, postponing the main rice
harvest and often driving up prices in domestic and international
markets, with a disproportionate impact on poor net consumers
of rice (2). Given the observed consequences of a monsoon delay
for the Indonesian rice economy in El Niño years, we select a

30-day delay in monsoon onset as the critical threshold for our
risk assessment. ‘‘Onset’’ is defined as the number of days after
August 1 when cumulative rainfall reaches 20 cm, and ‘‘delay’’ is
defined as the number of days past the mean onset date
(averaged over the period 1979–2004). Statistical analysis of the
observational record shows a correlation between onset delay
and total rainfall in September–December (when the main rice
crop is planted) of �0.94 for West/Central Java and �0.95 for
East Java/Bali, indicating that delayed monsoon onset is asso-
ciated strongly with decreased total rainfall in this period.

For the period in which rice production data are available for
Java and Bali (1983–2004), the probability of a 30-day delay in
monsoon onset was 18.2% for West/Central Java and 9.1% for
East Java/Bali [see supporting information (SI) Fig. 4]. Although
the probability of a 30-day monsoon delay was lower in East
Java/Bali than in West/Central Java, the impacts on rice pro-
duction were higher. A 30-day delay caused rice production to
fall by 11%, on average, in East Java/Bali during the main rice
harvest season between January and April, as compared with
6.5% in West/Central Java. When we apply these percentage
declines to average production for the two regions, we find a
comparable drop in rice output of �580,000 metric tons in
West/Central Java and 540,000 metric tons in East Java/Bali in
the January–April period. [Average production in this season
was �9 million metric tons (mmt) in West/Central Java and 5
mmt in East Java/Bali.] Production declines of these magnitudes,
when scaled up to the country as a whole, are at the upper end
of what is typically experienced during major El Niño events,
such as in 1997/1998 when Indonesia imported 5.8 mmt of rice:
20% of the total world rice trade that year (15).

From the observational record, there is only a weak empirical
basis for linking variation in late-season rainfall to dry-season
crop production. Econometric analysis shows that a 20% drop in
rainfall in April–June reduces the corresponding planting area
for Java and Bali by only 2%. Currently, little rice is planted in
the subsequent dry season from July to September, but late-
season planting patterns could change if precipitation during this
period increases or decreases significantly in the future.

If climate change alters the annual cycle of precipitation over
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Fig. 1. Regions analyzed, with corresponding monsoon onset and termination dates, as well as percentage of total Indonesian rice production (2004) (white
numerals). Onset date is the date past August 1 when accumulated rainfall equals 20 cm, averaged over reporting rainfall stations in the region for the years
1979–2004; termination date is the date on which 90% of that year’s rainfall has accumulated.
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the archipelago, it may be necessary to reexamine the relevance
of our current monsoon delay threshold and to explore new
thresholds that have not yet been evident in Indonesian rice
agriculture. Global climate models (GCMs, also referred to as
general circulation models) generally predict warmer and mois-
ter atmospheric conditions in the global tropics, because of
increased greenhouse gas concentrations, but show much less
agreement with respect to the regional and seasonal distribution
of rainfall in the tropics (16, 17). Furthermore, the Indonesian
archipelago is situated in an especially sensitive region, given that
the annual cycle of precipitation will likely be influenced by
changes in both the mean temperature and the large-scale
dynamical circulation in the tropics. (Indonesia sits under an
ascending, and hence rainy, branch of the tropical Walker
circulation.) Will warmer atmospheric conditions cause precip-
itation over the entire annual cycle to increase, or will changes
in the dynamical circulation inhibit precipitation in the future?
Will precipitation changes be distributed uniformly over the
annual cycle or concentrated more tightly around the monsoon,
leading to a wetter wet season and a drier dry season? Answers
to these hypothetical questions are important for gauging future
impacts on both wet- and dry-season rice crops.

Projecting Future Precipitation. Our goal is to understand how the
probability of exceeding our climate threshold will change
between now and 2050. We use GCMs from the Intergovern-
mental Panel on Climate Change AR4 report to represent a
range of plausible climate scenarios for 2050. Our approach
follows the bottom-up approach described by Hulme and Brown
(18), in which the focus is on the vulnerability of Indonesia’s rice
agriculture given a wide range of potential climate outcomes,
rather than on a specific climate forecast. Projections of large-
scale atmospheric fields (e.g., winds, sea-level pressure, humid-
ity) that feed the annual cycle (monsoon) in Indonesia’s climate
are available from some 20 different GCMs (the number varies
depending on which circulation fields and emissions scenarios
are selected) through the Coupled Model Intercomparison
Project (19, 20). Although these GCMs simulate the large-scale
atmospheric circulation relatively well, the regional hydrological
cycle is often poorly reproduced (see SI Fig. 5). Moreover, the
coarse grid sizes (typically 200 � 200 km2) of GCMs do not
resolve the regional-scale (e.g., 50 � 50 km2) interactions
between the large-scale atmospheric circulation and the very
complex and mountainous topography of the archipelago; these
interactions are important contributors to the hydrological cycle
over Indonesia. The islands of Java and Bali are not even
represented as land in many GCMs.

As a result of these constraints, we developed empirical
downscaling models (EDMs) that map the observed large-scale
circulation patterns and humidity distributions to the observed
regional-scale precipitation for Indonesia over the past 50 years
(i.e., the EDMs are developed solely on the basis of observations,
without reference to the GCMs). The EDMs are then fed into
the present-day, large-scale circulation simulated by each GCM
to obtain an estimate of regional, present-day precipitation.
Hence, to the extent that the models reproduce the observed
large-scale circulation with fidelity, the EDMs also act to debias
regional precipitation estimates. We find that all of the EDMs do
an excellent job of simulating the observed regional precipita-
tion, which indicates that the large-scale circulation is reliably
simulated by each of the GCMs (SI Fig. 5). We then apply the
EDMs to projected changes in the large-scale circulation forced
by increasing greenhouse gas concentrations to produce esti-
mates of future precipitation changes in 2050. Precipitation
variations (including those caused by ENSO) derived from the
historical record are superimposed on the annual cycle of
precipitation in these model projections. EDMs serve as a useful
tool for projecting regional climate by using output from GCMs,

for cases in which (i) there is a robust relationship between local
subgrid-scale precipitation and large-scale atmospheric variables
that are simulated reliably by the GCMs, (ii) topographical
features potentially play an important role in spatial distributions
of precipitation, and (iii) the observational records are of
sufficient duration and quality to determine accurate empirical
relationships (21). Indonesia satisfies these minimal criteria.

Capturing uncertainty is a key element in risk assessment.
Long-run climate projections entail uncertainty in future emis-
sions of greenhouse gases and aerosols; in climate sensitivity to
these emissions; and in regional climate responses to changes in
atmospheric and ocean conditions (11). In our framework, we
use three EDMs, each of which attributes reasonable but dif-
ferent physically based weights to large-scale circulation vari-
ables (see Data and Methods), to estimate regional precipitation.
We then apply these EDMs to GCMs in the Intergovernmental
Panel on Climate Change AR4 report, using the ‘‘market-driven
growth’’ (A2) and ‘‘environmentally sustainable growth’’ (B1)
scenarios defined in the Special Report on Emissions Scenarios
(22). We chose these two scenarios because they represent a
realistic range of future emissions and they have been run by a
large number of GCMs. We assume that all EDMs and GCMs
are equally likely; that is, they all receive the same weight in our
assessment of model results for each emissions scenario. This
approach enables us to build a probability distribution of possible
future outcomes for the annual cycle of precipitation over
West/Central Java and East Java/Bali for 2050. From this
distribution, we can determine the likelihood of exceeding
climate thresholds for rice agriculture (see Data and Methods).
Use of multimodel ensembles in probabilistic climate projections
has been accepted broadly by the Intergovernmental Panel on
Climate Change (20, 23).

Results and Discussion
With ENSO variability superimposed on the projected annual
cycle of precipitation for 2050, the likelihood of exceeding the
30-day monsoon onset delay threshold increases significantly
relative to the current period. Fig. 2 shows the probability
distributions of exceeding the threshold in 2050 by region, EDM,
and emissions scenario. Each distribution reflects the combined
output from 15 to 20 GCMs that have been downscaled to the
regional level for Java and Bali. In most cases, with the exception
of EDM3 in West/Central Java, the mean likelihood of exceeding
the threshold in 2050 is higher than it is today. More importantly,
the distribution indicates a substantially greater likelihood of
exceeding the threshold for many models included in our anal-
ysis. With the A2 scenario for the West/Central Java region as
an example, one third of the GCMs downscaled with EDM1
show that the probability of threshold exceedance in 2050 ranges
from 23% to almost 33%: notably higher than the current
probability of 18.2%. The results are even more striking for the
East Java/Bali region. For the A2 scenario, all models project an
increase in the probability of threshold exceedance above the
current level of 9.1%. One-third of the GCMs downscaled with
EDM1 demonstrate a probability of threshold exceedance in
2050 ranging from 19.8% to 40%. Although the probability
distributions for both regions and emissions scenarios generally
show a greater likelihood of exceeding the monsoon onset delay
threshold in 2050, some models show a reduced probability of
threshold exceedance.

The results in Fig. 2 provide insight into the nature of
uncertainty in the model projections. Uncertainty in the future
path of greenhouse gas emissions and their impact caused by
climate forcing, as illustrated by the differences between the A2
and B1 scenarios, is relatively insignificant. Less than half a
century (2050) is too soon to see the broad climate effects of
alternative technology and management approaches (20). On the
other hand, uncertainty in the response of large-scale circulation
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fields to increased concentrations of greenhouse gases, and the
effect of this response on regional precipitation, are important.
The wide range of results among GCMs for a given EDM, and
among EDMs, illustrates this uncertainty. Even with these areas
of uncertainty, however, the bottom line is clear. A 30-day delay
in monsoon onset, with all of its ramifications for Indonesian rice
agriculture and food security, is very likely to occur more
frequently in 2050 than it does today.

Thresholds on the Horizon. Given that most models project an
increasing likelihood of a delayed monsoon onset that exceeds
the threshold for significant impact on rice production, the
question then becomes: How is the annual cycle in precipitation
expected to change in response to climate change? If more rain
arrived later in the season, and lasted well into the dry season,
then perhaps the delay in monsoon onset in September–
November would not pose a significant risk to Indonesian rice
agriculture and food security. Alternatively, if less rain fell late
in crop season (July–August), it is quite possible that the soil
would be drier on August 1, causing our climate threshold to be
exceeded more frequently in the future.

Our results indicate that projected changes in the amplitude of
the seasonal cycle are more pronounced than projected changes
in the timing of rainfall (SI Fig. 5); as a result, our existing
threshold remains relevant, if not conservative, in 2050. Fig. 3
shows the predicted change in total rainfall over Java and Bali
for the periods April–May–June (AMJ, when dry-season plant-
ing typically occurs) and July–August–September (JAS, the later
period of the dry season when little rice is currently planted) for
the A2 scenario. We chose to analyze only one scenario because
the difference between A2 and B1 in model projections is not
substantial until after 2050, as discussed above. The combination
of all GCMs and EDMs used in our analysis presents a clear
picture: total rainfall is expected to increase in AMJ relative to
the current pattern, but decrease in JAS. In AMJ, total rainfall
is projected to increase by �10% in the study regions. In JAS,
however, nearly all models project a decline in rainfall. Total
rainfall is projected to decline by 10–25% on average and by as
much as 50% in West/Central Java and 75% in East Java/Bali at
the tail end of the distributions. In East Java/Bali, some models

project that total rainfall will drop close to zero for the JAS
season.

Three conclusions can be drawn from these results. First, the
expected increase in AMJ rainfall would not compensate for
reduced rainfall later in the crop year, particularly if water
storage for agriculture was inadequate. Second, the extraordi-
narily dry conditions in JAS could preclude the planting of rice
and all other crops without irrigation during these months by
2050. Finally, with reduced rainfall in JAS, the starting point for
measuring monsoon onset (August 1) will likely be even drier in
the future, suggesting that our monsoon delay threshold could
become quite conservative for measuring the impact of climate
variability in 2050. An additional threshold of dry-season total
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rainfall might, therefore, become important for future climate
impact studies of Indonesian agriculture.

Our study focuses on changes in precipitation over Java and
Bali and should be considered as a starting point for assessing
risks of climate change in regard to rice and other agricultural
systems in Indonesia. Increased temperatures and CO2 concen-
trations also will affect rice yields in 2050. Results from exper-
imental rice plots at the International Rice Research Institute in
the Philippines suggest that rice yields are closely linked to mean
minimum temperatures during the dry season; for every 1°C
increase in the minimum temperature, rice yields decrease by
10% (24). At a global scale, increased CO2 concentrations could
partially offset expected yield declines caused by lower soil
moisture and higher temperature, but recent models suggest a
significantly smaller fertilization effect from CO2 than previously
predicted (25). Global models that combine precipitation, tem-
perature, and CO2 effects for the A2 scenario generally show
reduced yields in the tropics and increased yields in temperate
zones (26). Further research and modeling of all of these
variables could uncover additional climate thresholds that could
be used in analyzing risks of climate change in regard to tropical
agriculture in the future.

Adaptation. For food-security purposes, several adaptation mea-
sures deserve careful consideration, based on the results shown
above. First, the development of a rice policy that relies on
imports and stock adjustments will become increasingly impor-
tant in the future for bridging more frequent wet-season delays
in rice plantings and harvests and thus for keeping rice prices low
for poor consumers. Second, the development of water storage
and irrigation infrastructure will be important for balancing
increased rainfall in AMJ with decreased rainfall in JAS. Greater
storage capacity could help extend the rice production cycle into
the JAS period and thus alleviate pressure on poor consumers
later in the year. Investing in drought-tolerant rice varieties is
another option for securing rice availability and enhancing
agricultural incomes and access in dry periods. Finally, a strategy
of crop diversification for Java and Bali that focuses on crops
suitable for the expected alterations in the annual cycle of
rainfall, and that is also responsive to changes in consumer
demand with increased urbanization, incomes, and retail chain
distribution, should be a priority for food policy planners in
Indonesia.

Data and Methods
Calculating Threshold Variables. Our risk assessment model was
developed by (i) identifying a climate variable with clear effects
on rice productivity in Java and Bali, based on the observational
record; (ii) selecting a threshold for this variable beyond which
the loss in productivity was significant; and (iii) determining the
probability of exceeding this threshold under current and future
(2050) climate conditions. Selection of the appropriate climate
variable and threshold was facilitated by Indonesia’s long expe-
rience with ENSO events and our earlier analysis of ENSO-
based rainfall variability, rice production, and food security in
Indonesia (1, 2). To identify specific threshold indicators for this
study, we used least-squares regression models that relate crop
production variables (i.e., yield, area, total production by season,
and timing of planting and harvest) to observed precipitation for
1979 to 2004. Rice planting and harvesting data for West,
Central, and East Java and Bali were available from the Central
Bureau of Statistics in Indonesia (27) on a trimester basis
(January–April, May–August, September–December). Rice pro-
duction data were available from 1982/1983 to 2003/2004. Cal-
endar year data were retabulated on a September–August
crop-year basis for our analysis.

The precipitation variables were derived from daily rainfall
data collected at regional rainfall stations throughout Java and

Bali and reported in the National Oceanic and Atmospheric
Administration Climate Prediction Center’s Global Summary of
the Day archive (28). For each province, we took simple averages
of reported values for all stations on a given day to obtain daily
average rainfall. Monsoon onset was defined as the number of
days past August 1 when accumulated rainfall equals 20 cm: the
amount of moisture needed for crop establishment (14). August
was chosen as the start date because it is typically the driest
month across the archipelago. The effect of onset delay was
determined by least-squares regression of detrended rice pro-
duction for a given trimester as a quadratic function of the
monsoon delay (SI Fig. 4). The coefficient on the onset variable
reflects the effect on production of delaying onset by 1 day
(relative to the average onset date). To obtain the percentage
effect on production of a 30-day onset delay, we multiplied the
coefficient by 30 and divided the total by the average production
for the region over the entire period. The statistical analysis was
conducted using the Stata 9 statistical package (StataCorp,
College Station, TX).

Developing the EDMs. The GCMs used to project the impact of
increasing greenhouse gases on climate are fraught with biases and
have a spatial resolution that is too crude to simulate regional
precipitation in Indonesia. Therefore, we constructed EDMs to
project future patterns of precipitation over Java and Bali for 2050.
The EDMs were constructed by applying maximum covariance
analysis to the (predictor) annual cycle of observed large-scale
circulation fields and the (predictand) annual cycle of observed
regional precipitation. The predictor comprises the monthly aver-
aged circulation variables spanning 60°E to 80°W, 30°S to 30°N; the
predictand is the monthly averaged rainfall for all 24 provinces in
Indonesia. In using the EDM/GCM models to estimate the annual
cycle in precipitation over Indonesia in 2050, we are assuming that
changes in the large-scale circulation and humidity fields due to
increasing greenhouse gases strongly project onto three predictor
modes that currently account for the dominant annual cycle in
observed regional precipitation. The predictor fields are sea-level
pressure, the 850-mb and 200-mb zonal winds, and the specific
humidity at 850 mb. The first three fields define the large-scale
winds at their respective levels in the troposphere and are typically
used to reflect the monsoon circulations. Humidity was chosen
because it is related to the overall strength of the hydrologic cycle
in the tropics, which is expected to change with increasing green-
house gases. We have no a priori way to judge which combination
of humidity and circulation fields will best capture the changes in
regional precipitation due to increased greenhouse gases. As a
result, we constructed three EDMs, using various combinations of
the observed large-scale fields as predictors:

Y EDM1 (850-mb specific humidity). This variable represents
possible changes in the hydrological cycle that arise as a result
of mean warming; a warmer climate is expected to have a more
vigorous hydrological cycle because of the expected increase
in humidity in the atmosphere. However, specific humidity
may not adequately capture changes in dynamical processes,
such as changes to the Walker circulation.

Y EDM2 (850-mb specific humidity and sea-level pressure). Sea-
level pressure variations are strongly related to the dynamical
circulation in the tropics (e.g., ENSO and the Walker circu-
lation) and the seasonal cycle, but alone this variable may not
capture the mean moistening of the atmosphere that is
expected with warmer temperatures. We therefore combined
the physical process of sea-level pressure with the hydrologic
process of humidity generated by warming.

Y EDM3 [850-mb specific humidity, upper (200-mb)- and lower
(850-mb)-level zonal winds]. Zonal winds represent the mon-
soon shear line (29) and therefore correspond very strongly to
variations in monsoon onset date. As the monsoon sets in, the
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surface winds shift from easterly to westerly, and winds aloft
shift from westerly to easterly. Thus, upper- and lower-level
winds may capture changes in monsoon onset and retreat.
Again, because this field does not adequately capture the
hydrological cycle, we added 850-mb specific humidity.

For EDM2 or EDM3, we weighted the effects of dynamical
processes and hydrological processes equally. If future hydro-
logical processes are more important, and there is no change in
the dynamical processes (monsoon and ENSO), then the signal
from the hydrological processes may be slightly muted by these
two EDMs.

For all three EDMs, the predictor modes captured the annual
cycle of regional precipitation for most of the provinces in
Indonesia remarkably well and were especially skillful for Java
and Bali. SI Fig. 5 shows the raw and reconstructed annual cycle
of precipitation for West/Central Java for the present-day AR4
simulations, as well as the projected annual cycle of precipitation
for the Special Report on Emissions Scenarios A2 and B1. The
figure demonstrates that the EDMs are an effective means of
removing the very large bias in simulated precipitation over Java.

The large-scale predictor data were taken from the reanalysis
project of the National Center for Environmental Prediction and
the National Center for Atmospheric Research (30). The ob-
served climatologically and provincially averaged precipitation
was taken from the University of Delaware’s Climatologically
Aided Interpolation (31), which is a 50 � 50-km grid precipi-
tation product. These data are available for 1950–1999, which
covered a sufficient period of time to determine the skill of the
EDM. We compared this precipitation product with a station-
based precipitation product used in the threshold analysis and
found excellent agreement over the seasons of interest for this
study (e.g., average correlations between the two sets were 0.90
for May–November and 0.96 for August–October, the key period
of monsoon onset).

To simulate the climatological annual cycle in regional rainfall
in 2050, we fed the output from the AR4 GCM large-scale fields

for the period 2000–2050 into each EDM to obtain the down-
scaled regional precipitation. The time series for each individual
month (e.g., January 2001, January 2002, . . ., January 2050)
showed a nearly linear trend in precipitation. As a result, we
linearly interpolated the downscaled precipitation for each cal-
endar month to obtain the annual cycle in regional precipitation
for 2050. Finally, for each month, we linearly interpolated from
monthly to daily resolution to obtain the new climatological
onset day.

To estimate the natural variability in onset date, we assumed
that the natural (unforced) variability in precipitation is invariant
in time and is well represented by the observed 1950–2000
anomalies about the observed (1950–2000) climatological an-
nual cycle. In principle, the EDMs can also be used to simulate
the change in natural variability associated with this climatolog-
ical mean state; although the EDMs were developed by using the
climatological annual cycle, when fed the observed anomalies in
the large-scale fields they also do a fairly good job of simulating
the observed rainfall anomalies. Unfortunately, only one of the
AR4 models used to project future climate has realistic ENSO
variability. Because ENSO is responsible for nearly half the
variance in the precipitation in Indonesia, applying the EDMs to
the output of the AR4 models would thus grossly underrepresent
the natural variability in Indonesia precipitation, both in today’s
climate and in the future climate. To sidestep this problem, we
made a first-order assumption in this study that the natural
variability is invariant in time. Hence, the cumulative probability
distribution for precipitation in 2050 was constructed by adding
the observed (1950–2000) regional precipitation anomalies to
the 2050 climatological mean precipitation.
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