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ABSTRACT We performed in silico modeling of the regulatory network of mitochondrial apoptosis through which we examined
the role of a Bax-activation switch in governing the mitochondrial apoptosis decision. Two distinct modeling methods were used
in this article. One is continuous and deterministic, comprised of a set of ordinary differential equations. The other, carried out in
a discrete manner, is based on a cellular automaton, which takes stochastic fluctuations into consideration. We focused on dynamic
properties of the mitochondrial apoptosis regulatory network. The roles of Bcl-2 family proteins in cellular responses to apoptotic
stimuli were examined. In our simulations, a self-amplification process of Bax-activation is indicated. Further analysis suggests
that the core module of Bax-activation is bistable in both deterministic and stochastic models, and this feature is robust to noise
and wide ranges of parameter variation. When coupling with Bax-polymerization, it forms a one-way-switch, which governs ir-
reversible behaviors of Bax-activation even with attenuation of apoptotic stimulus. Together with the growing biochemical
evidence, we propose a novel molecular switch mechanism embedded in the mitochondrial apoptosis regulatory network and
give a plausible explanation for the all-or-none, irreversible character of mitochondrial apoptosis.

INTRODUCTION

Systems biology is a hybrid experimental-computational ap-

proach. It takes a systemic view of cellular transactions caused

by the interaction of the basic components of the cell. As an

integral part of systems biology, mathematical modeling

provides a unique opportunity for interweaving the individ-

ual molecules into an in silico fabric and dissecting complex

networks into small elementary modules, thus helping to un-

cover the kinetic essences of different cellular transactions

such as adaptations, oscillations, and switchlike phenomena

(1–3). Various modeling methods have been implemented in

recent years, including continuous ones employing numer-

ical treatment of cellular information processing and discrete

ones with excellent simplicity as well as scalability. Some of

these methods are fully deterministic (4–6), while others have

introduced noise (7–10).

Apoptosis is an all-or-none, irreversible physiological pro-

cess through which the cell commits suicide when respond-

ing to various apoptotic stimuli (11,12). Once a cell has

passed a certain checkpoint, it is fated to undergo apoptosis

even after the stimulus has been withdrawn (13). These char-

acteristics are believed to arise out of the apoptosis regula-

tory network.

Various models have focused on the mechanisms of apo-

ptosis induction and have provided some elegant explana-

tions. Bentele et al. (14) developed a model to explore the

threshold mechanism for the regulation of CD95-induced

apoptosis while Eissing et al. (15) modeled the process of

receptor-induced apoptosis to show that interference of in-

hibitor of apoptosis (IAP and BAR) constitutes a bistable

module. Another model raised by Bagci et al. (16) has dem-

onstrated bistability caused by kinetic cooperativity in the

formation of the apoptosome complex during mitochondria-

dependent pathways. These models mainly focus on mito-

chondria-independent apoptosis, or concentrate on caspases

which act downstream of mitochondria. However, little at-

tention has been paid to mitochondrial regulatory events. It is

widely recognized that mitochondrial regulatory events have

priority in the cell fate decision. Mitochondrial outer mem-

brane permeabilization (MOMP), which represents the ‘‘point

of no return’’ of cell death, can commit a cell to die even

when caspases are not activated (17). This raises the impor-

tance of uncovering the mechanism of mitochondrial reg-

ulatory events that play the crucial role in the apoptotic

decision process. Another problem concerns the modeling

methods. Models mentioned above are mostly based on or-

dinary differential equations (ODEs), which are deterministic

descriptions in terms of concentrations and can only describe

the average behavior of a system based on large populations.

Also, the mass action law that underlies kinetic formulae is

an approximation in which concentrations are assumed low

enough to ignore the size of the molecules. It is now widely

recognized that low copy numbers of molecules and mac-

romolecular crowding effects in physiological conditions have

to be taken into account in more realistic models (8,18).

Recently, there has been an accelerating interest in the in-

vestigation of these effects in biological regulation through

various kinds of stochastic modeling methods (10,19). Siehs

et al. (20) did a pioneering job to simulate the apoptosis

reaction network at mesoscale. They presented a cellular

automaton (CA)-based simulation framework named Lattice

Molecular Automaton (LMA), and successfully performed
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discrete modeling of the role of interactions of Bcl-2 family

proteins in governing the apoptosis decision. As they sug-

gested, growing experimental knowledge about the apoptosis-

relevant proteins would help to improve the model and further

elucidate the regulatory mechanisms of apoptosis induction.

In this article, we translate acquired biological knowledge

of the mitochondrial apoptosis regulatory network into math-

ematical models, in particular focusing on the regulatory

events at the mitochondrial level. Two distinct modeling ap-

proaches were used for different purposes. Modeling by de-

terministic ODEs is convenient for bifurcation analysis and

parameter discussion, while stochastic fluctuations and mac-

romolecular crowding effects in cellular conditions are taken

into account by stochastic CA modeling. Simulation results

of these two methods support each other and reveal that a

core module of Bax-activation is capable of displaying

bistable behavior and forms a toggle-switch (bidirectional

switch). With cooperation of Bax-polymerization, it changes

to a one-way switch, strongly improving its robustness against

stochastic fluctuations. Our simulation results, together with

growing biochemical evidence, indicate that the bistable

module of Bax-activation coupling with Bax-polymerization

can form a bioswitch robust enough to govern the decision of

mitochondrial apoptosis under noisy physiological conditions.

BIOLOGICAL BACKGROUND

Apoptosis is a well-regulated process, which is essential for

tissue remodeling and homeostasis of multicellular orga-

nisms (21). Mitochondria play a crucial role in apoptosis by

sensing incoming apoptotic signals and respond by mito-

chondrial outer membrane (MOM) permeabilization. Then,

apoptogenic factors such as cytochrome c, Smac/DIABLO,

and Omi/Htra 2 are released from the mitochondrial inter-

membrane space into the cytosol and nucleus, where they

trigger caspase activation cascades and other cell-death events

(22).

Although the exact molecular mechanism of MOMP is not

elucidated, most experimental evidence indicates that MOMP

is mainly governed by intricate interactions among Bcl-2

family proteins that possess either pro- or anti-apoptotic

activities (23). The pro-apoptotic members are divided into

two groups: the Bax group (Bax, Bak, and Bok) possesses

BH1-3 domains, whereas the BH3-only proteins (Bid, Bad,

Bim, Bik, Bmf, Puma, Noxa, and Hrk) share only the BH3

domain. The anti-apoptotic members as Bcl-2 and Bcl-xL

contain all BH domains. In resting cells, some Bcl-2 family

proteins (Bcl-2, Bcl-xL, and Bak) are targeted to MOM and

other intracellular membranes, while others (BH3 only proteins,

Bax) predominantly exist as soluble monomers or are seques-

tered by a number of non-Bcl-2 proteins in the cytosol (24).

Here we present a picture of the regulatory network of

mitochondrial apoptosis (Fig. 1), which is mainly based on a

switched rheostat model for the roles of Bcl-2 family pro-

teins in regulating MOMP (25). Although it is reported that

the occurrence of MOMP is sometimes independent of Bax,

this is beyond the scope of our discussion in this article. Key

events of our model were described as follows.

Translocation of Bcl-2 family proteins from
cytosol to MOM

In response to apoptotic stimuli, Bax monomers as well as

BH3-only proteins translocate from the cytosol to MOM

(24,26). Although the molecular mechanisms underlying these

events remain incompletely understood, relocation of Bcl-2

family proteins from the cytosol to MOM can be regarded as

the initial event of MOMP and apoptosis induction.

Activation of Bax and/or Bak

Recent evidence supports that select BH3-only proteins (Bid,

Bim), which can be designated as ‘‘Activator,’’ are sufficient

to enable a conformational change and pore formation of

Bax/Bak (for general designation we use ‘‘Bax’’) through

direct interaction with them (23,27,28). Anti-apoptotic family

members (described as ‘‘Bcl2’’ for a general designation)

can act as inhibitors by interacting with Activator and acti-

vated Bax (25,29–31). Other BH3-only proteins (Bad, Bik,

Bmf, PUMA, Noxa, and Hrk) can act as ‘‘Enabler’’ by bind-

ing competitively to the anti-apoptotic family members, thus

liberating the Activator and activated Bax (23,32). Activated

Bax can spontaneously fall back to the inactive form, and

perhaps relocate from MOM to the cytosol (13,33).

Pore formation and release of apoptogenic factors

The formation of mitochondrial apoptosis-induced channels

(MAC) is thought to be the endpoint of the MOMP regu-

latory network (34). According to a report of Saito et al (35),

activated Bax monomers can aggregate into tetramers to form

FIGURE 1 Outline of mitochondrial apoptosis regulatory network. We

mainly focus on the roles of Bcl2 family proteins in regulating MOMP.

Abbreviations of molecule names listed in Table 2 are used for clarity (e.g.,

Enabler (Ena), Activator (Act), inactive Bax (InBax), activated Bax (AcBax),

etc.). Solid arrows denote reactions; dotted arrows describe subcellular trans-

location or upregulation; and those terminated by a bar denote interaction

and inhibition. The dashed region indicates the core module of Bax activation.
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the protein-conducting channels. Furthermore, apoptosis-

induced Bax/Bak clusters localized to MOM can be visu-

alized by immunoelectron microscopy and they are tested to

be responsible for MOMP (36). It is now widely accepted

that Bax clusters consisting of four or more Bax monomers is

responsible for conducting apoptotic factors such as cyto-

chrome c. Moreover, the permeability of some constitutive

channels (CC) on MOM, e.g., the voltage-dependent anion-

selective channel (VDAC), can be regulated by Bcl-2 family

members (37,38). Bax may trigger its conformational change

resulting in VDAC opening for apoptogenic factors, while

Bcl2 may have the opposite function.

MODEL AND METHODS

ODEs modeling

We developed a reduced model realizing mass action kinetics implemented

as a set of ODEs, which is based on a simplified description of the mitochon-

drial apoptosis regulatory network. The ODE model can be dissected into

three parts as follows:

1. Relocation of Bcl-2 family proteins from cytosol to MOM as initial

signal. We suppose that the concentrations of Bax, Activator, and Bcl2

on the MOM increase linearly with the apoptotic stimulus, while details

such as expression, degradation, and posttranslational regulation are not

considered for reasons of simplicity (see Eqs. 1–4). F stands for the

strength of the combined initial stimuli comprised of three parts, F1, F2,

and F3, which describe the effects of stimuli on the translocation of Bax,

Activator, and Bcl2, respectively. The initial concentrations on MOM

added to the translocated parts make up the mitochondrial concentra-

tions of Bax, Activator, and Bcl2 (Baxmito, Actmito, and Bcl2mito as indi-

cated below), and the concentrations of translocated parts are in proportion

to the stimuli F. Baxmito, Actmito, and Bcl2mito are assumed to be con-

stant during our simulations. Baxcytosol, Actcytosol, and Bcl2cytosol re-

present the concentrations of Bax, Activator, and Bcl2 in the cytosol,

respectively:

F ¼ ðF1;F2;F3Þ; F1;F2;F3 2 ½0; 1� (1)

Baxmito ¼ Baxinitial 1 Baxcytosol � F1 (2)

Actmito ¼ Actinitial 1 Actcytosol � F2 (3)

Bcl2mito ¼ Bcl2initial 1 Bcl2cytosol � F3: (4)

2. Interaction network of Bcl-2 family proteins including: (a), activation of

Bax by Activator in a kiss-and-run manner (23,27,28); (b), the inhibi-

tion of Activator and activated Bax by heterodimerization with Bcl2;

and (c), a possible process in which activated Bax can replace Activator

from Bcl2. The kinetics of these processes is described by the reactions

and rate constants in Table 1. The rate equations of activated Bax mono-

mer, free Activator, and free Bcl2 (the concentrations are indicated a

[AcBax], [Act], and [Bcl2], respectively) are given in the following dif-

ferential equations:

d½Act�
dt
¼ �k5 � ½Act� � ½Bcl2�1 k6 � ½ActBcl2�

1 k7 � ½AcBax� � ½ActBcl2�
� k8 � ½Act� � ½AcBaxBcl2�; (6)

d½Bcl2�
dt

¼ �k3 � ½AcBax� � ½Bcl2� � k5 � ½Act� � ½Bcl2�

1 kbcl2 � ½Bcl2nonfree�; (7)

where [Bcl2nonfree] indicates the total concentration of Bcl2 associated with

both activated Bax and Activator ([Bcl2nonfree]¼ [AcBaxBcl2] 1 [ActBcl2]).

We use kbcl2 to represent the rate of non-free Bcl2 shifting to free Bcl2,

assuming that free Bcl2 originates from both Bcl2 non-free forms at the same

rate. Also, the concentrations of proteins referred above should obey the

following equations because of mass conservation:

TABLE 1 Reactions and relative rate constants of ODEs

modeling of the regulatory network of mitochondrial apoptosis

Description of reactions

Act 1 InBax /k1 Act 1 AcBax

AcBax /k2 InBax

AcBax 1 Bcl2 k4� k3 AcBaxBcl2

Act 1 Bcl2 k6� k5 ActBcl2

AcBax 1 ActBcl2 k8� k7 Act 1 AcBaxBcl2

4 AcBax k10� k9 Bax4

with

Rate constants Initial conditions

k1 ¼0.5 mM�1 s�1 Actmito ¼ 0 3 10�4 mM

k2 ¼ 0.1 s�1 Baxmito ¼ 2 3 10�4 mM

k3 ¼ 2 mM�1 s�1 Bcl2mito ¼ 1 3 10�4 mM

k4 ¼ 0.001 s�1 Actcytosol ¼ 1 3 10�4 mM

k5 ¼ 3 mM�1 s�1 Baxcytosol ¼ 2 3 10�4 mM

k6 ¼ 0.04 s�1 Bcl2cytosol ¼ 0 3 10�4 mM

k7 ¼ 2 mM�1 s�1

k8 ¼ 0 mM�1 s�1

k9 ¼ 2 mM�1 s�1

k10 ¼ 0 s�1

For clarity, abbreviations in Table 2 are used for description of reactions.

We set kbcl2 (the rate of non-free Bcl2 shifting to free Bcl2; for details, see

Model and Methods) equal to k6 assuming that free Bcl2 originate from

AcBaxBcl2 at the same rate with ActBcl2. The parameter k1, k3, k4, k5, k6,

k8, and k9 are set up to with one order-of-magnitude difference with respect

to those used by Hua et al. (43) in their modeling of the effects of Bcl2-level

on Fas signaling-induced caspase-3 activation. The ratio of k3 to k4 ensures

an equilibrium constant of 1e-8M from (32), as well as those used for

defining k5 and k6. The value of k2, k7, and k8 are suitably chosen to reflect

the experimentally known features (13,32,33). To reflect the irreversibility

of the process of Bax-polymerization (35), k10 is step to 0 in our simu-

lations. The concentrations of relative Bcl-2 family proteins in initial

conditions are set up according to experimental data given by Kuwana et al.

(42) and with one order-of-magnitude difference with respect to those used

by Hua et al. (43).

d½AcBax�
dt

¼ k1 � ½Act� � ½InBax� � k2 � ½AcBax�

� k3 � ½AcBax� � ½Bcl2�1 k4 � ½AcBaxBcl2�
� k7 � ½AcBax� � ½ActBcl2�1 k8 � ½Act� � ½AcBaxBcl2�; (5)
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½InBax�1 ½AcBax�1 ½AcBaxBcl2� ¼ Baxmito; (8)

½Act�1 ½ActBcl2� ¼ Actmito; (9)

½Bcl2�1 ½AcBaxBcl2�1 ½ActBcl2� ¼ Bcl2mito: (10)

According to Eqs. 8–10, substitutions and simplifications can be

made for Eqs. 5–7, which ultimately employ [AcBax], [Act], and [Bcl2]

as three variables of the differential equations. Equations 1–10 together

give the mathematical representation of the core module of Bax-activation.

3. Bax-polymerization. Although the complete molecular identity of MAC

is yet to be determined, activated Bax monomers are believed to aggre-

gate into clusters that could represent protein-conducting pores (34,35).

In our extended model considering Bax-polymerization, we suppose

that tetramers are the sole form of Bax polymers equating to MAC. We

use the following differential equation describing the kinetics of Bax

tetramers (the concentration of Bax tetramers is indicated as [Bax4], and

the cooperative coefficient of Bax polymerization n is set to be 3):

d½Bax4�
dt

¼ k9 � ½AcBax�n � k10 � ½Bax4�: (11)

Correspondingly, Eq. 5 describing the kinetics of activated Bax

monomer and Eq. 7 describing the conservation of Bax are modified as

follows:

½InBax�1 ½AcBax�1 ½AcBaxBcl2�1 4 � ½Bax4� ¼ Baxmito:

(89)

All the differential equations listed above were solved mathematically

using the ODE23s routine of MatLab 6.5 (The MathWorks, Natick, MA).

The simulation programs were written in M files, with commonly used

MatLab subroutines. Bifurcation analysis was performed by using the sub-

program AUTO contained in XPPAUT 5.91 (http://www.math.pitt.edu/;bard/

xpp/xpp.html, Department of Mathematics, the University of Pittsburgh).

CELLULAR AUTOMATON

ODEs modeling usually has remarkable predictive power at macroscale

levels, where molecules essentially lose their discreteness and become

infinitely small and numerous. However, it always generates smooth curves

that fail to capture the granularity or stochasticity of living systems. An

alternative concept named the cellular automaton (CA) is presented here and

specifically tailored to model mitochondrial apoptosis regulatory network.

Its value for simulations of biological processes has been discussed

previously (9,39). The crucial feature of the CA devised here is that it utilizes

Brownian motion, which dominates over all other forces at mesoscale levels

to mimic the movement of molecules on the MOM. A model considering all

elements in Fig. 1 was carried out as a CA implementation, which is described

as follows:

System representation

The MOM is realized on a two-dimensional, square lattice (four neighbors)

with periodic boundaries. Each lattice site can contain a restricted number of

molecules, according to the excluded volume effects in cellular conditions

(40). Molecules are uniformly distributed on the lattice at the beginning of

the simulation. They are supposed to be identical in size, but different

weights that influence the abilities of molecules to move are taken into

account. Characteristics of the various molecules are described in Table 2.

Brownian motion

In our implementation, the motions of all molecules are performed in a

stepwise fashion. In each movement cycle, every molecule is first given a

probability check, which determines whether it moves at this particular step

due to its velocity (indicated by probability of movement in a step, given in

the interval [0,100]; a velocity constant V ¼ 50 means that the molecule has

a probability P ¼ 50:100 ¼ 0.5 to move to a neighboring site per updated

step). If a molecule is determined to be stationary in the probability check, an

integer 0 is given to its movement direction. Otherwise, a random integer

between 1 and 4, which indicates possible directions (up, down, left, and

right, respectively) is designated. Next it passes a volume check to avoid

violating the exclusion principle. A randomly chosen new direction is

reassigned if its forth-going site has already been occupied completely. A

movement step is finally performed and all molecules are moved according

to their assigned velocities and directions.

Reaction rules

Reactions take place between two molecules occupying the same lattice site

at a particular time step and follow simple pairwise interaction rules. If more

than two molecules occupy a site, the reaction sequence is chosen in a

random fashion. Reactions and rules are shown in Table 3, where the

reaction rate constants are indicated by probabilities given in the interval

[0,1000]. A reaction rate constant K ¼ 500 means that probability of the

reaction is P¼ 500:1000¼ 0.5 per update step. Most reactions in our model

are reversible. So, for molecules like dimers, a course of dissociation is

included and a set of dissociation constants is embraced in the rules table. An

exclusion check is employed to prevent extreme conditions when the

designation of new molecules originated from old ones would violate the

exclusion principle.

The CA modeling was implemented on a personal computer running

Windows XP. Microsoft Visual Basic 6.0 was used as the programming

language.

RESULTS AND DISCUSSION

Modeling of the mitochondrial apoptosis
regulatory network

In our previous studies, we have constructed a simplified

CA-based model of the mitochondrial apoptosis regulatory

network, focusing particularly on two major mechanisms of

how Bcl-2 family proteins regulate MOMP (41). Consistent

with experimental results, our studies reveal that the

d½AcBax�
dt

¼ k1 � ½Act� � ½InBax� � k2 � ½AcBax� � k3 � ½AcBax� � ½Bcl2�

1 k4 � ½AcBaxBcl2� � k7 � ½AcBax� � ½ActBcl2�1 k8 � ½Act� � ½AcBaxBcl2�
� 4 � k9 � ½AcBax�n 1 4 � k10 � ½Bax4� (59)
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concentration of Bax and the Bcl-2 to Bax ratio are key

factors for controlling the MOMP and apoptosis. Here we

extended this model by introducing more elements of the

mitochondrial apoptosis regulatory network demonstrated in

Fig. 1. The initial nonapoptotic condition of the mitochon-

drial system was simulated first and apoptotic stimuli were

added to the system subsequently.

Initial nonapoptotic condition

We constructed the CA model at the single mitochondrion

level. A grid of 1003100 squares is used to represent the

outer membrane of the mitochondrion (;4 mm2, calculated

from the average size of a mitochondrion, so the size of each

square is 20 nm 3 20 nm). According to the excluded-

volume effects, each square is restricted to containing five

membrane proteins at most (as the diameter of membrane

proteins is ;5–10 nm). Previous studies reveal that Bcl-2

family proteins have different concentrations in different cells

as well as in different subcellular compartments (13,42).

Kuwana et al. (42) calculated that tumor cells typically

contain 200–600 nM Bax; other estimated concentrations are

25, 75, and 83 nM for Bid, Bcl2, and Bax, respectively (43).

Some reports determined certain important ratios, such as

Bcl-2 to Bax, which are critical for regulating the release of

cytochrome c from the mitochondria (44,45). In particular,

Childs et al. (46) quantified the amounts of mitochondrial

Bcl-2 and Bax in rat cardiomyocytes using ELISAs and

found that the ratio of Bcl-2/Bax is ;1.17, which is lifted to

1.41 upon administration of doxorubicin. Furthermore, esti-

mating a cell volume of 1 picoliter shows that 1 nM ¼ 600

molecules per cell, and according to Robin and Wong, a typ-

ical mammalian cell contains approximately several hundred

mitochondria. Partly based on these data (the concentrations

of relevant proteins, the average volume per cell, and the

average number of mitochondria per cell), we made a rough

estimate that there are 1600 Bcl2, 800 InBax, 200 Activator,

80 Enabler, 80 CC, and 3200 other proteins on the outer

membrane of a mitochondrion in resting cells. These ‘‘Other’’

TABLE 2 Molecular table of CA modeling of mitochondrial

apoptosis regulatory network

Abbreviations

Molecular

descriptions Weights Velocities

Act Activator 1 67

Bcl2 Bcl2 1 67

Ena Enabler 1 67

ActBcl2 Heterodimer of Activator

and Bcl2

2 50

EnaBcl2 Heterodimer of Enabler

and Bcl2

2 50

InBax Inactive Bax 1 67

AcBaxm Activated Bax monomer/polymer

(m represents the degree of

polymerization of AcBax, e.g.,

m ¼ 2 represent dimer of activated

Bax, m can be omitted when m ¼ 1)

m 0;67

AcBaxBcl2 Heterodimer of Activated Bax

and Bcl2

2 67

CC Constitutive channel 20 9

AcBaxCC Activated Bax and Constitutive

Channel Complex

21 9

Bcl2CC Bcl2 and Constitutive Channel

Complex

21 9

Other Other molecules which have no

reactions with Bcl-2 family proteins

1 67

Molecular weights of various kinds of proteins are assigned to discriminate

the moving abilities of different molecules. The weights of Act, Bcl2, Ena,

InBax, and Other are set up to 1, and the weights of CC is assigned a value

bigger than Act, Bcl2, Ena, InBax, and Other according to experimental

observations by Verrier et al. (37). Through calculating we can get the

weights of other molecules like heterodimers and homopolymers. Molec-

ular velocities (V) are assumed to be in inverse proportion to molecular

weights (W) and they are calculated from V ¼ 100/(1 1 W/A), where

parameter A is used to regulate the inverse proportion relationship between

W and V. We set A ¼ 2 in our simulation and the values of relative

molecules are listed in the velocities column of Table 2.

TABLE 3 Rules table of CA modeling of regulatory network of

mitochondrial apoptosis

Descriptions of reactions

Act 1 InBax /K1 Act 1 AcBax

AcBax /K2 InBax

AcBax 1 Bcl2 K4�K3 AcBaxBcl2

Act 1 Bcl2 K6�K5 ActBcl2

AcBax 1 ActBcl2 K8�K7 Act 1 AcBaxBcl2

AcBaxm 1 AcBaxn K10�K9 AcBax (m1n)*

Ena 1 Bcl2 K12�K11 EnaBcl2

AcBax 1 EnaBcl2 K14�K13 Ena 1 AcBaxBcl2

Ena 1 ActBcl2 K16�K15 Act 1 EnaBcl2

AcBax 1 CC K18�K17 AcBaxCC

Bcl2 1 CC K20�K19 Bcl2CC

AcBax 1 Bcl2CC K22�K21 AcBaxCC 1 Bcl2

With

Rate constants

K1 ¼ 200 K10d ¼ 2 K17 ¼ 350

K2 ¼ 6 K10t ¼ 1 K18 ¼ 1

K3 ¼ 400 K11 ¼ 500 K19 ¼ 400

K4 ¼ 2 K12 ¼ 1 K20 ¼ 1

K5 ¼ 500 K13 ¼ 150 K21 ¼ 10

K6 ¼ 1 K14 ¼ 150 K22 ¼ 150

K7 ¼ 250 K15 ¼ 250

K8 ¼ 150 K16 ¼ 15

An AcBax polymer can react with another to produce a lager AcBax

polymer. In realistic reaction systems, the rate constants of Bax dimeriza-

tion, trimerization, etc. must be different. We here make a simple

assumption that larger polymers of AcBax are more likely to polymerize

and the set of rate constants are defined by K9 ¼ 1000 3 (m1n)/

(B1(m1n)). Here m, n, and m1n are molecular weights of these polymers;

B is a parameter to regulate the relationship between K9 and (m1n). We

adopt B ¼ 10 to make the value of K9 comparable to other rate constants

used in our CA simulation. Bax dimers and trimers are supposed to be able

to dissociate and the dissociation constants are defined as K10d and K10t,

respectively. The formation of larger Bax polymers is supposed to be

irreversible. The parameters K1 to K9, K10d, and K10t are chosen to preserve

the main ratio relationships among them in ODEs modeling. According to

this set of parameters, K11 to K22 are chosen in such a way to realize stable

dynamics on the simulation grid of our CA model as described by Siehs

et al. (20).
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proteins help to simulate the crowded condition on MOM.

Molecules are randomly scattered on the grid and after rapid

diffusion and reactions, the system arrives at an equilibrium

state that represents the initial condition of MOM in non-

apoptotic cells.

Fig. 2 gives a snapshot showing the molecular information

when the equilibrium state is achieved. Enabler and Activa-

tor are mostly sequestered by Bcl2 (Fig. 3 a, 0–1000 steps).

The total number of Bax pores and active CCs are used to

represent the occurrences of MOMP and apoptosis. Neither

Bax pore (Bax tetramers and larger clusters) nor active CC

(AcBaxCC) is found in this state (Fig. 3 b, the dotted line and

dashed line, respectively, 0–1000 steps).

Simulating apoptosis induction

The amount of translocated Bcl-2 family proteins from the

cytosol to MOM is used to represent the direct signal of

apoptosis. Fig. 3, a–c, illustrates the effect of apoptotic

signals on the homeostasis of the MOM system. At step 1000

the combined signal (including 2400 Bax, 250 Activator, and

120 Enabler) diffuses rapidly into the system. The number of

Activator molecules decreases sharply after translocation

because of Bcl2 sequestration (Fig. 3 a, solid line), but rises

and maintains a high level in the next 3000 steps before

falling down again, as does the Enabler (Fig. 3 a, dotted
line). The number of AcBax monomers first rises sharply

because of rapid activation (Fig. 3 b, solid line), but de-

creases because of Bcl2 sequestration later on. Then it rises

again and maintains a relative high level. As AcBax ag-

gregates into clusters at a later stage (Fig. 3 b, dotted line),

the number of AcBax monomers finally drops. The amount

of Bcl2 decreases at the early stage because of binding with

both Activator/Enabler and AcBax monomers. However,

after Bax-polymerization, Bcl2 is restored to a higher level

(Fig. 3 c) and most Activator/Enabler molecules are seques-

tered again by Bcl2 (Fig. 3 a, second decrease). For compar-

ison, similar kinetics of these molecules is plotted in Fig. 3,

c–e, with a standard best-fit ODE modeling of these reac-

tions. Notice that the CA kinetic curve displays stochasticity

(or noise) compared to the one calculated by solving the

ODEs. This stochasticity must be due to the randomness of

molecule collisions when using a particle-based method,

such as CA. Another reason for stochasticity is the revers-

ibility of these reactions considered in our CA modeling. A

slight difference between the curves of Bax pore exists in

Fig. 3, b and e, because the processes of Bax polymerization

are modeled using different expressions in CA and ODE

model, respectively.

As shown in Fig. 3 b, after apoptosis induction, the

number of Bax pores increases remarkably in contrast to

active CCs. In this simulation, Bax pores constitute the major

parts of the MACs, while active CCs play a negligible role.

This is consistent with most experimental reports (34). How-

ever, in some reports active CCs such as VDAC and/or

permeability transition pore complex have a dominant role

in controlling MOMP (26,47,48). For example, in ethanol-

induced apoptosis of rat hepatocytes, Bax was not found

oligomerized but interacted with the mitochondrial channel

protein VDAC, which is responsible for cytochrome c re-

lease and apoptosis (49). We do not yet know much about the

molecular basis of the origin of these different behaviors. A

natural explanation could be that the concentrations of rele-

vant proteins are different in various cell and stimulus con-

ditions. Our model provides opportunities to examine and

test whether this assumption can work in theory. We changed

the initial ratio of Bax to CC and relevant parameters in our

simulation and consequently reversed the ratio of Bax pores

to active CCs (Fig. 4). Here changing the reaction rate is

equivalent to changing the concentrations of relative pro-

teins. These results indicate that certain contradictory experi-

mental results about the mechanism of MOMP may be due to

different ratios of relevant proteins and parameters in various

cell conditions. Nevertheless, we should admit that what

we have proposed here is just a possible explanation and to

further validate it, special examination of the concentrations

of molecules and related wet-lab experiments under different

conditions are needed.

We can also change the concentrations of molecules to

study the roles of different Bcl-2 family proteins in the cell

response to apoptotic stimuli. For instance, a twofold in-

crease in the concentration of Bcl2 on MOM is used as initial

condition in contrast to those in Fig. 3, a–c. Neither Bax pore

nor active CC is observed during the whole simulation time-

scale (data not shown). So, we can conclude that in our

model, a twofold increase in the concentration of Bcl2 on

MOM can result in resistance to MOMP. This is consistent

FIGURE 2 Snapshot of the CA simulation grid showing the coverage of

different molecules when an equilibrium state of initial condition (non-

apoptotic cells) is achieved. Given is only a section of the grid of 1003100

squares. Overlapping colors indicates that more than one molecule occupy a

same lattice site at this particular time step. Molecules are indicated by

distinct colors and shapes as described on the left. Abbreviations of molecule

names listed in Table 2 are used for clarity.
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with experimental reports in which Bcl-2 overexpressing

cells are usually apoptosis-resistant (31,50). In our previous

simplified model, by varying the concentrations of Bax and

the Bcl-2-to-Bax ratio, these two factors were suggested to

be key factors in regulating MOMP (41). Furthermore, the

interaction rules of our CA model can be modified to perform

experiments easily in silico. One consideration in the current

study is that the process of Bax-activation is examined with

the polymerization of activated Bax abolished.

Bax-activation: a core module of bistability

An important means to study a complex network is to dissect

it into small elementary modules (1). The core module of

Bax-activation was the initial focus. Experimental evidence

suggests a self-amplification process of Bax/Bak-activation

produced by BH3-only proteins (30,51). Cells can generate

more activated Bax after initial activation of a few Bax

molecules and there is always a lag between the initial Bax-

activation and the first detectable MOMP. Bax/Bak auto-

activation was proposed to be one possible explanation,

although in vivo evidence is still lacking (51). An alternative

explanation is based on the interaction network of Bcl-2

family proteins. Bax, Activator, and Bcl2 constitute a positive-

feedback loop as shown in Fig. 1. Once Bax is activated, it

can bind Bcl2 competitively to free Activator, which will in

turn activate more Bax and amplify this process. In Fig. 3, a

and b, the second increase of Activator and AcBax mono-

mers indicates this self-amplification process. It is well known

that nonlinear positive feedback can lead to bistability, a

typical kind of bioswitch (52). This raises the question of

whether the positive feedback here would be strong enough

to make the core module of Bax-activation bistable.

ODE model

The core module of Bax-activation is first constructed using

ODEs in a deterministic way (see Model and Methods). For

simplicity, translocation of Activator is taken as the stimuli

F (F1¼ F3¼ 0, F2 varies from 0 to 1). We first performed bi-

furcation analysis with F as the bifurcation parameter (Fig. 5).

This module shows the desired bistability: two stable

steady states coexist in a certain range of bifurcation param-

eter F, whereas outside this interval only a single steady state

exists. As indicated in Fig. 5, there is an off-state in which

the amount of total AcBax (monomer forms added to AcBax

in polymer forms) is very low (near zero), and an on-state

with a high level of Bax-activation. Another steady state ex-

ists between them but it is unstable and any perturbation will

send this system either up to the on-state or down to the off-

state. The arrows indicate the direction of evolution of the

level of Bax-activation, starting from any region of the diagram.

To test whether bistability is an inherent character of

the core module of Bax-activation, parameters were varied

FIGURE 3 CA and ODEs modeling of the mi-

tochondrial apoptosis regulatory network. The com-

bined signal of apoptosis rapidly diffuses into the

equilibrium system of initial condition. The con-

centration profiles of (a) Act, Ena, (b) AcBax mono-

mer, Bax pore, and AcBaxCC, and (c) Bcl2 are

plotted versus the CA time steps. For comparison

reasons, similar kinetics of these molecules is plot-

ted as panels c–e separately with a standard best-fit

ODE modeling of these reactions.
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systematically within a certain range (for example, k1 was

varied from 0.1 to 5.0, Fig. 6). The results reveal that bistability

exists in a large region of parameter space. Further analyses

with the translocation of Bax or Bcl2 as stimuli F and bi-

furcation parameters show bistability as well (Fig. 7).

The going-up and coming-down analysis with stimuli F as

the parameter is performed by solving the ODEs (using

MatLab 6.5): F is varied along two directions (going-up and

coming-down, the former with 2 3 10�4 mM InBax as ini-

tialization and the latter with 2 3 10�4 mM AcBax as initial-

ization) and the amounts of AcBax in final steady states (we

calculated up to 50,000 steps) are plotted in Fig. 8 a. A hys-

teretic phenomenon exists during this simulation. In a system

that is initially inactive with increasing stimuli F, the ratio of

AcBax to Total Bax remains near zero until it passes a point

at ;F ¼ 0.32, where a sudden jump is seen. However, when

we reduce the stimuli F back, additional decrease is needed

to set this system back to the inactive state. This result is

consistent with Fig. 5 in which the on-state loses its stability

with a sudden decrease of AcBax level when the stimuli

F comes below a restriction point F ¼ 0.15. Our results

indicate that a memory of the transient stimuli is produced

by the core module of Bax-activation.

CA modeling

Noise is an important factor in the function of biological

reaction networks, as simulation studies have abundantly

demonstrated (18,53). In real reaction systems, stochastic

fluctuations of Bax-activation may destroy the bistable

behavior of the core module of Bax-activation effectively.

For instance, any perturbation of Bax-activation higher than

the unstable state will send the system up to the on-state from

the off-state. So, if the system is too sensitive to noise, no

bistability will exist. This raises a concern of whether bistability

exits if stochastic fluctuations are taken into account. Here

CA modeling gives an opportunity to construct such a sto-

chastic model.

The interaction rules in Table 2 were modified to realize

the core module of Bax-activation (the rate of Bax-poly-

merization is set to zero). We performed simulations in a

grid of 50350 squares (a quarter of the MOM), on which we

uniformly scattered 800 AcBax (or InBax), 400 Bcl2, and

800 Other molecules as initialization. The amount of trans-

located Activator is taken as the apoptotic stimulus. Tem-

poral evolution of the amount of AcBax with the given

stimuli can be simulated. We performed going-up and coming-

down analysis as follows: stimuli were varied along two

directions (going-up and coming-down, the former with 800

InBax as initialization and the latter with 800 AcBax as

initialization) and the amounts of AcBax in final steady states

(we calculated up to 30,000 steps) are plotted in Fig. 8 b.

FIGURE 4 Changes of the initial ratio of Bax to CC and relative pa-

rameters reverse the ratio of Bax pores to active CC. 3200 Bcl2, 500 InBax,

200 Activator, 80 Enabler, 100 CC, and 3200 other proteins scattered on the

MOM as the initial condition. K21 is enlarged to 100, K22 is reduced to 15.

Other constants are given the same as in Table 3. Active CC constitute the

major parts of the pores in this simulation.

FIGURE 5 Bifurcation diagram of the core module of Bax activation as

a function of the stimuli F. Translocation of Activator is taken as the stimuli

F (F1 ¼ F3 ¼ 0, F2 varies from 0 to 1). The limit points for saddle-node

bifurcation are at F ¼ 0.15 and 0.32. The arrows indicate the equilibrium

concentrations reached when starting from any point in the diagram.

FIGURE 6 Bifurcation diagram illustrating the role of k1. Bistability ex-

ists in a large region of parameter k1. Translocation of Activator is taken as

the apoptosis stimuli F (F1 ¼ F3 ¼ 0, F2 varies from 0 to 1).
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Increasing stimuli induce a sudden jump of the AcBax steady

level and it takes additional decreases of stimuli to bring the

system back to the off-state. Therefore, bistability of the core

module of Bax-activation exists in both our deterministic and

stochastic models.

Coupling with Bax-polymerization

The bistable character of Bax-activation can relay a digital,

all-or-none signal to downstream events, e.g., MAC forma-

tion and MOMP. It is therefore proposed to be a possible

explanation for the switchlike behavior of apoptosis. How-

ever, there still remain two questions: first, the on-state and

off-state of the Bax-activation can be realized only in a

limited parameter range, whereas outside of this range only

one of them prevails. It is uncertain whether parameter

values in physiological conditions would meet these restric-

tive constraints to make the module bistable. Second, the

bistable module of Bax-activation can act as a toggle switch

that is bidirectional, but this is not the case in apoptosis

induction. In other words, the module of Bax-activation lacks

irreversibility. These questions indicate that bistability of the

Bax-activation module is unlikely to be the sole mechanism

behind bioswitching of apoptosis induction.

Bax-polymerization into clusters, which could represent

protein-conducting pores, is the very end of the MOMP reg-

ulatory network (34). Thus both models mentioned above are

extended to study the effects of Bax-polymerization on the

dynamics of Bax-activation. In the ODE model, four AcBax

are assumed to aggregate into a tetramer and this process is

set to be irreversible. The strength of CA modeling was taken

to enable more realistic modeling where AcBax can aggre-

gate into big clusters in a partly reversible process (for de-

tails, see Table 3). Again this was applied in the going-up

and coming-down analysis to get the dynamics of the Bax-

activation.

The cooperativity of Bax-polymerization can play a cen-

tral role in providing a decisive and irreversible transition in

Bax-activation against noise. In the ODE model (Fig. 9 a),

F is increased from 0 to 1 and upon passing a restriction

point, the amount of AcBax is lifted with a sudden jump in a

similar pattern as in Fig. 8 a. However, it cannot be re-

covered to an off-state even when F has been reduced to 0. A

transition from a toggle switch to a one-way switch takes

place when Bax-polymerization is incorporated to the core

module of Bax-activation. This one-way switch mechanism

can give a reasonable explanation for the irreversibility of

apoptosis induction. Another apparent difference is that the

AcBax level of the on-state is lifted to a higher level when

coupled with Bax-polymerization. With respect to robustness

against noise, this scenario has advantages over the situation

where the AcBax level of the on-state is lower because the

barrier that separates the off-state and on-state of Bax-

activation is now enlarged. All these make a robust one-way

switch of Bax-activation. A similar conclusion can also be

drawn from the results of the CA simulation (Fig. 9 b).

FIGURE 7 The module of Bax activation shows

bistabilities with the concentrations of (a) total Bax and

(b) total Bcl2 as the bifurcation parameters. (a) Translo-

cation of Bax is taken as the stimuli F (F2 ¼ F3 ¼ 0, F1

varies from 0 to 1). Actmito¼ 0.4 3 10�4 mM, Baxmito¼ 0

mM, Bcl2mito ¼ 1 3 10�4 mM, and Baxcytosol ¼ 2 3 10�4

mM are set as initial conditions. (b) Translocation of Bcl2

is taken as the stimuli F (F1 ¼ F2 ¼ 0, F3 varies from 0 to

1). Actmito ¼ 0.3 3 10�4 mM, Baxmito ¼ 2 3 10�4 mM,

Bcl2mito¼ 0 mM, and Bcl2cytosol¼ 1 3 10�4 mM are set as

initial condition.

FIGURE 8 Going-up and coming-down analysis with

stimuli F as parameter of the core module of Bax

activation. (a) In the ODEs modeling of the core module

of Bax activation, the amount of Activator, which repre-

sents the stimuli F (F1 ¼ F3 ¼ 0, F2 varies from 0 to 1), is

varied along two directions (going-up and coming-down)

and the AcBax numbers of final steady states are plotted

versus F. (b) In the CA modeling of the core module of Bax

activation, the amount of Activator, which represents the

stimuli F, is varied along two directions (going-up and

coming-down) and the AcBax numbers of final steady

states are plotted versus the number of Activator (mean 6

SE of three independent simulation results). The reaction

rate constants are given as K1(300), K2(12), K3(800), K4(3),

K5(1000), K6(1), K7(500), and K8(300). All other rate

constants are set to be zero.
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CONCLUSION

In the present study, a systems biology approach was used to

understand dynamic processes in apoptosis induction. Both

ODE and CA models for mitochondrial apoptosis regulatory

network were developed based on qualitative and semiquan-

titative knowledge. A mitochondrial switch of Bax-activation

was proposed to be one of the mechanisms for the all-or-

none, irreversible behavior of cells in response to apoptotic

stimuli.

The purpose of this article is to look into the mitochondrial

apoptosis regulatory network. A self-amplification process

of Bax-activation is reported in the literature and observed

during the CA simulation of the mitochondrial apoptosis reg-

ulatory network. This is due to a positive feedback embedded

in the interaction network of Bcl-2 family proteins. To

examine whether the positive feedback is strong enough to

bring about bistability, a core module of Bax-activation was

constructed by both ODE and CA modeling. Bifurcation

analysis and further studies revealed that bistability does

exist and seems to be an inherent characteristic of the core

module. It acts a toggle switch governing Bax-activation and

changes to a one-way switch with the cooperation of Bax-

polymerization, which strongly improves its robustness against

stochastic fluctuations in physiological conditions.

From the simulation results, it can be concluded that the

remarkable activation and polymerization of Bax is a check-

point of the cell fate decision. The idea that the point at

which epithelial cells undergoing anoikis (a kind of apopto-

sis) have irreversibly committed to apoptosis equates to Bax-

activation is well in accord with this conclusion. Epithelial

cells can be rescued from anoikis even after Bax has dis-

tributed to the MOM, with a small part of them activated at

an early stage. However once Bax-polymerization occurs on

MOM, cells cannot be rescued (13,33). This implies that the

commitment of apoptosis occurs after Bax translocation but

before Bax-polymerization.

A further conclusion drawn from the simulation results is

that two states of cells could possibly coexist under a given

stimulus. This kind of bimodal population distribution is

common in bistable systems. A recent study by Nair et al.

(12) matches surprisingly well with this conclusion. Upon

examination of a population of cells undergoing oxidative

stress at single cell level, they detected a bifurcation of cell

fates into two states, either cell death or survival. The choice

of individual cells between these two exclusive states is sug-

gested to be a stochastic process, which is still lacking eluci-

dation. The mechanism proposed in this article gives a possible

explanation.

The stochastic modeling approach of cellular automaton

was displayed, which aided in uncovering the inherent func-

tion of the mitochondrial apoptosis regulatory network in a

stochastic way. The CA approach has been successfully em-

ployed for many years in various fields (54). Noise arises

because of its particulate or discrete nature. The stochasticity

also arises from the high level of reversibility for reactions.

CA-based simulations of biochemical networks, especially

for the apoptosis regulatory network, were scarce until re-

cently. Siehs et al. (20) simulated the time evolution of Bcl-2

family proteins using discrete time and space variables in a

Lattice Molecular Automaton (LMA). This was the first at-

tempt to analyze the apoptosis regulatory mechanism in a

discrete, stochastic model. Their studies would have been more

realistic if they had considered more detailed interactions of

Bcl-2 family proteins. A crucial feature of our model that

differs from LMA is that it utilizes Brownian motion to

mimic the movements of molecules at the single mitochon-

drion level. This significant dynamic simplification potentially

allows very long timescales and large numbers of entities or

reactions to be modeled on a personal computer. Also, con-

struction of CA models is mainly based on qualitative and

semiquantitative knowledge of biochemical reactions, mol-

ecule numbers, and kinetic rates and can be easily expanded

into a complex model as long as more qualitative and quan-

titative data is obtained.

It should be noted that this study has only examined the

mitochondrial apoptosis regulatory network, which is a small

part of the complex network of apoptosis regulation. The

Bax-activation switch proposed here should not be the sole

mechanism of the all-or-none, irreversible character of ap-

optosis. A lot of work has already been done focused on

positive feedbacks (both short-term and long-term) and co-

operativities that can give rise to bistability. These upstream

and downstream events should undoubtedly be described to

gain a systematic understanding of this complex network.

Furthermore, the simulations performed here are taken at

FIGURE 9 Coupling to the Bax polymerization makes a

one-way-switch. (a) Extended ODE model considering

Bax polymerization. The amount of Activator, which

represents the stimuli F (F1 ¼ F3 ¼ 0, F2 varies from 0 to

1), is varied along two directions (going-up and coming-

down) and the AcBax numbers of final steady states are

plotted versus F. (b) Extended CA model, given is the

mean 6 SE of three independent simulation results.
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single mitochondrion level and the copy numbers of different

proteins are definite. However, most experimental studies

have been performed using a population of cells, with dif-

ferent number of mitochondria in each cell with diverse copy

numbers of different proteins. This kind of system noise is

neglected in our models. Another limitation of this study is

that certain parameters used in the models are chosen to

reflect the experimentally known features. It is adequate

when only qualitative and semiquantitative characters are

discussed. However, we should expect that much of the nu-

merically known or estimated quantities can be made used

for exact construction of the network as more experimental

data are obtained.

Notwithstanding these limitations, our models take a very

important step for carrying out both deterministic and sto-

chastic modeling of the apoptosis regulatory network, in par-

ticular of mitochondrial regulatory events. This study suggests

that the module of Bax-activation coupling with Bax-

polymerization can act as a one-way switch governing the

all-or-none and irreversible behavior of apoptosis induction.
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