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ABSTRACT We study a model system in which lipid bilayers are created using variable (precisely known) proportions of phos-
phatidylcholine and cholesterol. The model membranes exhibit cholesterol-enriched microdomains that are analogous to the so-
called ‘‘lipid rafts’’ that form in living cells. After briefly presenting some experimental results, we formulate and solve a novel
mathematical model based on the Smoluchowski equations for coagulation and fragmentation. We present a comparison be-
tween the distribution of lipid-raft areas observed in experimental lipid bilayers, and that distribution predicted by the theoretical
model. Excellent agreement between the experiments and theory is obtained, with minimal parameter fitting.

INTRODUCTION

The term ‘‘raft’’ was first coined by Simons and Ikonen (1)

in 1997 to describe lipid/protein microdomain structures that

are observed within eukaryotic plasma membranes. Since

then research interest in this area of cell biology has grown

exponentially. The nature of these structures (and in fact even

their experimental detection) has been debated vigorously

(see, e.g., Lagerholm et al. (2)), as has their role in control-

ling processes such as membrane trafficking, signal trans-

duction within the cell, endo/exocytosis (including virus entry

into cells); and in many biochemical reactions occurring

within the cell membrane.

Rafts may be characterized in various ways, but perhaps

they are mainly defined by their property of detergent-

insolubility in, for example, Triton X-100 or Brij98 (2). They

may also be thought of as ‘‘viscous patches’’ on the cell mem-

brane since, when the plasma membrane is viewed as a 2D

fluid sheet, the raft phase is more viscous than the non-

raft phase. Another characterization of rafts is, using the

terminology of phase diagrams for multi-component mem-

brane systems, as so-called ‘‘liquid-ordered’’ cholesterol- or

sphingomyelin-enriched domains within cell membranes.

The phenomenology of the various kinds of biological pro-

cesses in which rafts are involved has been discussed at

length, and some consensus has emerged on their possible

biological roles. As (essentially) phase-separated regions with-

in the 2D membrane, it is thought that rafts can recruit certain

reactants and prevent their interaction with other reactants in

the ‘‘fluid-mosaic’’ membrane (3), or, conversely, bring de-

sired reactants (particularly proteins) into close proximity, thus

promoting certain reactions (4–6). In each case proteinaceous

receptors and smaller ligands or protein-protein interactions

may underlie the biological response, but both cases are con-

ceptually analogous.

Thus rafts may play many very important roles in cell bio-

logy, although it must be conceded that some questions re-

main (2,7). Some of this uncertainty may well reside in the

enormous complexity of real cell membranes, and the very

small size of rafts in vivo (100–200 nm in diameter). Sim-

ilarly, the basic principles that control the formation and

function of rafts within cells remain poorly understood (8,9).

To shed light on these fundamental issues we have embarked

on a series of studies of simple in vitro model systems, gen-

erated in the laboratory in which larger ‘‘rafts’’ can be

observed, and the key processes governing their dynamics

identified. The hypotheses made as a result of the experi-

mental observations can then be tested by formulating and

solving a mathematical model of the experimental system.

The model system we study is the simplest possible that

gives rise to interesting and informative ‘‘raft’’ dynamics.

(Although we utilize the term ‘‘raft’’ relatively indiscrimin-

ately in this article, we are aware that this terminology has

certain meanings outside of the simple definition we take

here, namely, that it represents a distinct microdomain within

the membranes.) We work with planar lipid bilayers com-

posed of precise ratios of phosphatidylcholine (PC; egg lec-

ithin in our experiments) and cholesterol. This model of

a cell membrane can then be successively elaborated until

genuine ‘‘raft’’ behavior is identified. PC-cholesterol mixed

composition bilayers have been studied in detail by many

authors. Fig. 1 is adapted from Fig. 11 A of Silvius et al. (10)

and shows the now well-known phase diagram for ternary

PC-cholesterol mixtures, in which the PC contains variable

proportions of dipalmitoyl phosphatidylcholine (DPPC) and

a bromo-substituted derivative, 12BrPC (indicated along the

bottom horizontal axis of the triangle). Although not strictly

representative of the mixture of PC lipids in egg lecithin,

the phase diagram provides valuable information on what

might be happening in terms of phase in the PC-cholesterol
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membranes used in this study. The ratio of saturated and

unsaturated PC lipids in egg lecithin is ;45% saturated, 55%

unsaturated. If we allow DPPC to represent the saturated PC

lipid in the ternary phase diagram, then an indication of what

the membrane phases are at certain cholesterol concentra-

tions is given by the dashed line in Fig. 1.

We observe cholesterol-rich microdomains (the rafts) form-

ing spontaneously within the bilayer. In terms of the phase

diagram of Fig. 1, we identify the raft phase with the liquid-

ordered phase. The bilayer was left to equilibriate for 24 h,

until a final (dynamic) equilibrium distribution of raft sizes

(surface areas) was obtained. This raft size distribution was

recorded, using fluorescence microscopy (in which fluores-

cent labeling molecules associate preferentially with the raft

phase). We also carried out atomic force microscopy (AFM)

studies, which detect the rafts by virtue of the different mo-

lecular chain lengths associated with the different lipid mol-

ecules. These results are described in separate publications

(H. J. Harris, S. M. Rigby-Singleton, M. C. Davies, S. Allen,

and P. O’Shea, unpublished, and (30)), but we have included a

representative image in Fig. 2. We note here that related imag-

ing studies have been carried out by other authors (12,13).

A mathematical model, based on the Smoluchowski the-

ory of coagulation and fragmentation (14), was formulated to

describe the interactions (binding and unbinding) of the cho-

lesterol molecules. The expressions for the binding and dis-

sociation rates of cholesterol molecules were derived using

thermodynamic principles. The mathematical model was solved

to predict the dynamics of raft formation and disassociation

in the simple model system, and the results of numerical sim-

ulations compared with the experimental data. A number of

key features that the model yields appear to be similar to

what is observed experimentally, and thus may also feature

in cellular membranes.

We also formulated the problem in terms of the Gibbs free

energy, by making the usual assumptions about the entropy

and enthalpy of a mixture of reacting molecules. However,

the results of this calculation (the Gibbs free energy mini-

mization) gave raft size distributions that were very heavily

weighted in favor of very small cluster sizes, and did not

agree at all with the experimental observations. We believe

this is because the standard theory does not take account

of the different dynamics of ‘‘molecules’’ (microdomains, in

our system) of very disparate sizes.

One of the virtues of our approach (both experimental and

theoretical) is that it lends itself to systematic further elab-

orations, such as the incorporation of additional lipid types

and the inclusion of membrane proteins. These could be

modeled in a similar manner to the cholesterol modeling,

with averaged properties, to embody more realistic models

of biological membranes. The obvious advantage of such a

systematic approach is that it allows the effect of each new

additional ‘‘complication’’ to be elucidated, as we build up

FIGURE 1 Ternary phase diagram for the 12BrPC/DPPC/cholesterol sys-

tem at 25�C. The various phases found in this ternary system are liquid dis-

ordered, ld, liquid ordered, lo, and gel phase, P9b. Further details may be found

in Silvius et al. (10).

FIGURE 2 (Upper) Fluorescent images of FPE-labeled PC100% (left), and

PC67%/cholesterol33% (right). The images were obtained at room temper-

ature with the bilayers submerged in Tris buffer (10 mM Tris, pH 7.4).

(Lower) AFM image of the bilayer, illustrating cholesterol-enriched micro-

domains. The grape corresponds to the membrane topography at that loca-

tion. Note the topology change (highlighted), where two microdomains are

sintering together (or possibly splitting apart).
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the complexity from the very clean, simple system consid-

ered here.

The following sections detail the experimental methods

and results, and also the assumptions underlying the mathe-

matical model we use to describe the experiments. The re-

sults of the simulations versus experiments are then discussed,

as well as the implications of our results for more compli-

cated systems.

MATERIALS AND METHODS

PC was purchased from Lipid Products (Kent, UK). Polycarbonate filters

(100-nm pore size) were purchased from Nucleopore Filtration Products

(Pleasanton, CA). A pressure extruder bomb for model membrane prepara-

tion was obtained from Lipex BM Inc. (Vancouver, Canada). Fluorescein

phosphatidylethanolamine (FPE) was synthesized from 1,2-dipalmyitoyl

phosphatidylethanolamine and fluorescein purchased from Sigma Chemi-

cals (Pool, Dorset, UK), as described by Wall et al. (15). Calcium chloride,

cholesterol, dimethyl sulphoxide, DPPC, dioleoyl phosphatidylcholine, magne-

sium chloride, and Tris (hydroxymethyl) methylamine, were purchased from

Sigma Chemicals.

Preparation of lipid vesicles

Phospholipids (13 mM), dissolved in chloroform and methanol, were mixed

in a round-bottomed flask and dried under a stream of nitrogen until a thin

lipid film was formed. The dried lipid film was rehydrated with Tris buffer

(10 mM Tris, pH 7.4), which was quickly frozen in liquid nitrogen and

thawed five times. Finally, the suspension was extruded 10 times through a

25-mm-diameter polycarbonate filter (100-nm-diameter pores). For all lipids

to be in a fluid phase, the lipid suspensions were heated to 45�C before and

during extrusion, resulting in a monodisperse, unilamellar suspension of

100-nm-diameter phospholipid vesicles (PLVs) (16).

PLVs were labeled exclusively in the outer lamella with FPE, as de-

scribed in Cladera and O’Shea (17). The PLVs (13 mM lipid) were incu-

bated in the dark with FPE (30 mM in ethanol) at 37�C for more than 1 h.

The unincorporated FPE was removed by size exclusion chromatography

using a Sephadex PD10 column, equilibrated with Tris buffer (10 mM Tris,

pH 7.4). This procedure leads to the incorporation of 30–50% of the exter-

nally added FPE to the PLVs.

Bilayer preparation for laser scanning confocal
microscopy imaging

Clean 22-mm Ø glass cover slips were treated with magnesium chloride

(10 mM) at room temperature for 1 h. Fluorescently labeled liposomes

(1.3 mM), heated to 45�C, were then added to the coverslip and left in the

dark at room temperature for more than 5 h. The fusion of the liposomes,

resulting in the unilamellar bilayer covering the glass slide, was pioneered

by Watts et al. (18) and results in a bilayer forming on a layer of water on the

solid support (the glass coverslip).

Single and two-photon microscopy

The single and two-photon fluorescence microscopy was carried out with a

Leica (Wetzlar, Germany) SP2 MP, which utilizes a laser scanning confocal

microscope (LSCM). The pinhole required for single-photon microscopy

was set at one Airy unit. Alternatively, a Leica DMIRBE inverted fluo-

rescence microscope equipped with a laser source and a mercury lamp/

monochomator assembly with a LaVision (Goettingen, Germany) cooled

charge-coupled device (CCD) camera was used. Both imaging systems were

equipped with a thermostatted stage for temperature control. The optical

slicing capability of the LSCM system was not necessary; we simply suggest

that our experimental protocol can also be implemented with such a system

if available instead of high-sensitivity (e.g., CCD-based) fluorescence mi-

croscopy. To prevent undersampling, and to increase the number of intensity

levels of images, 512 3 512-pixel (12-bit) images were taken. Both single-

and two-photon microscopy imaging were carried out with objectives with

a magnification of 63 and a numerical aperture of 1.32, in illuminating

wavelength of 488 or 490 nm. However, no differences were found between

the image collection regimes. The laser power was kept at a minimum, and

the offset and the photomultiplier voltage or CCD output were optimized

at the beginning of each experiment and kept constant throughout to deter-

mine any contribution from photobleaching and for comparisons between

experiments.

Data analysis

The images obtained from LSCM experiments (see Fig. 2 for an example)

had a total of 10242 pixels and 0–4095 intensity levels (12-bit images). The

images underwent particle analysis using the Scion Image software

(Scioncorp, National Institutes of Health, Bethesda, MD) yielding the areas

of the more fluorescent patches present in the membranes. The background

‘‘noise’’ was removed to avoid recording spurious microdomains; this pro-

cess is illustrated schematically in Fig. 3. Patch areas were recorded for any

connected set of at least five fluorescing pixels. The raw data was recorded as

a column of figures: raft number versus its area.

EXPERIMENTAL RESULTS

Mixed composition bilayers were left to equilibrate for 24 h

at 20�C before fluorescence scanning images were obtained.

Three different controlled compositions were used: 33%

cholesterol/67% PC; 20% cholesterol/80% PC; and 5%

FIGURE 3 Method of image analysis. The intensity of the individual pixels

in the fluorescent images (a) were plotted (c), and the background noise was

removed, resulting in image b. A histogram of the various patch sizes was then

plotted.
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cholesterol/95% PC. A typical fluorescence scanning picture

is shown in Fig. 2, for a 33% cholesterol bilayer (this figure

also shows one of our AFM images for the PC-cholesterol

system, which gives a clearer idea of the raft structure).

The fluorescence images were analyzed as described above,

and the data for microdomain areas thus obtained was re-

presented in histogram form, with the bin size chosen as de-

sired for comparison with the theoretical model. Histograms

for each of the three data sets are presented later. The data is

represented in the dimensionless form used for the theoretical

model, which is explained in the following section.

THEORETICAL MODELING

We model the experimental system mathematically, apply-

ing the Smoluchowski theory of coagulation and fragmen-

tation (14) to an idealized system in which a large number of

cholesterol molecules in 2D clusters of differing sizes (the

rafts, or patches) are diffusing around in an otherwise inert

2D fluid (the PC bilayer). Although this approach has been

widely used to describe coagulation and fragmentation in a

variety of systems (19–24,26,27), previous applications to

the problem of lipid-raft formation, even in a very simple

model system of the kind considered here, are almost non-

existent. The only previous such model we are aware of is

by Turner et al. (28), who use such an approach to study the

effect of membrane recycling on microdomain size distribu-

tions within living cells.

Consider first coagulation (or binding) events between

groups or clusters of cholesterol molecules. We assume that

these are rate-limited (slow) rather than diffusion-limited

(fast), i.e., that relatively few of the collisions that occur

between clusters of sizes i and j (clusters containing i and j
cholesterol molecules, respectively) result in a coagulation

event (a reaction). The concentration of clusters of any given

size is thus fairly uniform throughout the bilayer. The re-

action rate is proportional to the number of collisions, and

hence to s(vi 1 vj)[ci][cj], where vi and vj are the mean

cluster velocities, [ci] and [cj] are the concentrations of i and j
clusters, and the collision cross-section s is taken as the sum

of the cluster radii (proportional to (i½ 1 j½)). A schematic

is shown in Fig. 4. Postulating that kinetic energies are pro-

portional to thermal energies for the clusters gives vi } (2kT/

(mi))½, vj } (2kT/(mj))½, where k is Boltzmann’s constant,

T is the system temperature, and m is the mass of an indi-

vidual cholesterol molecule. Including an Arrhenius activa-

tion energy term to account for the fact that only a certain

proportion of collisions result in coagulation gives the coag-

ulation rate coefficients

Gij ¼ K
2kTA

m

� �½

exp �
E

c

ij

kT

� �
i

j

� �½

1 2 1
j

i

� �½
 !

;

where K is a constant of proportionality, A is the area occu-

pied by a cholesterol molecule within a cluster (since rafts

are not composed solely of cholesterol, we expect that this

will be greater than the cross-sectional area of a cholesterol

molecule), and Ec
ij is the activation energy of coagulation

between i and j clusters. A similar approach can be found in

collision theory (see, e.g., Pilling and Seakins (25), Chapters

3 and 4). (We note that the standard Smoluchowski rate co-

efficient, for a diffusion controlled reaction, Gij } (Di 1

Dj)(di 1 dj) (where Di is the diffusion coefficient of i-clusters

and di their radius) also gives Gij } ((i/j)½ 1 2 1 (j/i)½).

However, there is some doubt about the correctness of this

expression for such (diffusion-limited) reactions in two space

dimensions, since the concentration of a reactant c about a

reacting particle is, local to the particle, c ¼ k log(r/r0), where

r is the distance from the particle, r0 its radius, and k a con-

stant. This is in contrast to the analogous case in three di-

mensions, for which c ¼ k(1 – r/r0) and which tends to a

finite limit as r/1N, unlike in the 2D case.) We hypoth-

esize that this coagulation takes place in stages, beginning

with the formation of a single bond between an i and a

j cluster (Fig. 4). With the clusters then held together, the

slower formation of the subsequent bonds required to merge

the clusters is facilitated. (See the AFM image in Fig. 2, il-

lustrating such a coagulation process.) Where merging takes

place in this kind of two-stage process, it suggests that Ec
ij

should be roughly constant (since the difficult step in the

coagulation is formation of the initial bond), and we assume

this from now on.

For fragmentation of an (i 1 j) cluster into an i and a j
cluster, we postulate that the rate should be proportional to

the circumference of the fragmenting cluster, again with an

Arrhenius term. Thus, we take fragmentation rate coefficients

Bij ¼ Lð2p
½

A
½ði 1 jÞ½Þexp �

E
f

ij

kT

 !
;

where L is a constant. The activation energy for fragmentation

is proportional to the number of bonds that have to be broken,

and we use a ‘‘surface tension’’ approximation, which says

that Ef
ij is proportional to the total length of boundaries after

splitting minus the total boundary length before splitting:

FIGURE 4 Schematic illustrating collision of clusters of size i and j before

coalescing. Cluster radii scale as i½ and j½.
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E
f

ij ¼ 2gðpAÞ½ði½
1 j

½ � ði 1 jÞ½Þ:

In terms of dimensionless variables ci*, t* (time) and the

parameter M, defined by

½ci� ¼ �cc
�
i ; t ¼ m

½
expðEc

=ðkTÞÞt�

�cKð2kATÞ½
;

M ¼ K�cðkTÞ½

Lð2mpÞ½expð�ðEf � E
cÞ=ðkTÞÞ

;

where �c is the average number of cholesterol molecules per

unit area in the bilayer and Ef is a typical fragmentation ac-

tivation energy, the dimensionless Smoluchowski model is

dc
�
1

dt
� ¼ � +

N

k¼1

ĝk;1c
�
kc
�
1 1

1

M
+
N

k¼2

b̂k�1;1c
�
k

� �
(1)

dc
�
j

dt
� ¼

1

2
+
j�1

k¼1

ĝk;j�kc
�
kc
�
j�k �

1

M
b̂k;j�kc

�
j

� �

� +
N

k¼1

ĝk;jc
�
kc
�
j �

1

M
b̂k;jc

�
j1k

� �
(2)

where

ĝi;j ¼
i

j

� �½

1 2 1
j

i

� �½
 !

for i 6¼ j; ĝi;i ¼ 8;

b̂i;j ¼ ði 1 jÞ½exp �
E

f

ij � E
f

kT

 !
:

Note that for this system,

+
N

i¼1

ic
�
i ¼ 1; (3)

that mass is conserved for all time.

The experimental observations have millions of molecules

per raft, which corresponds to the parameter M being very

large in the above model. Solving this discrete system

numerically is prohibitively expensive in this regime, but if

we introduce the scalings

x ¼ dj; y ¼ dk; t
� ¼ t

d
; c

�
j ¼ d

2
cðxÞ; M ¼ d

�3=2
;

then, taking the limit d / 0 in Eqs. 1 and 2 yields the

integrodifferential equation

@c

@t
ðx; tÞ ¼ 1

2

Z x

0

½gðy; x � yÞcðyÞcðx�yÞ�bðy; x�yÞcðxÞ�dy

�
Z N

0

½gðy; xÞcðyÞcðxÞ�bðy; xÞcðy1xÞ�dy; (4)

where the coagulation and fragmentation kernels g(x,y) and

b(x,y) are given by

gðx; yÞ ¼ y

x

� �½

1 2 1
x

y

� �½
 !

; (5)

and

bðx; yÞ ¼ 1

e
2ðx 1 yÞ½exp �1

e
ðx½

1 y
½ � ðx 1 yÞ½Þ

� �
; (6)

with e ¼ d½kT/(2g(pA)½), and we have taken the arbitrary

parameter of nondimensionalization Ef¼ kT(log(1/e2) 1 log

d). Equation 4 preserves mass, so that the mass conservation

condition (Eq. 3) becomesZ N

0

xcðxÞdx ¼ 1: (7)

This integrodifferential integral equation can be solved by

discretization, on a mesh that requires far fewer points than

the original discrete system in the regime of interest. This en-

sures that even where e� 1, b(x,y) is order one in the sense

that
R 1

0
bðx; yÞdx ¼ Oð1Þ for y ¼ O(1).

Note that the parameter e characterizes the width of the

dimensionless fragmentation kernel b(x,y), in the sense that

for x; y� e2 there is almost no fragmentation. Thus, in our

model, the size of fragments that can break off is limited.

Translating back into the dimensional variables, we find that

almost no fragments of size

j� kT

2g

� �2
1

pA

will break off from larger clusters.

RESULTS: COMPARISON OF EXPERIMENTAL
DATA WITH MODEL

The experimental data gives the areas a of all rafts (above the

microscopic resolution size amin), in a given total area aT of

the bilayer, when the system is judged to be in a steady state.

A histogram is made of the numbers of rafts nm with areas in

the range am to am11¼ am 1 D, where D is some small area

increment (the bin size). The mathematical model predicts

that the number of rafts nm in the mth bin is

nm ¼ aT +
ðam1DÞ=A

j¼am=A

½cj�;

or, in terms of the continuum model (Eq. 4),

nm �
d

2
DaT�c

A
cðxÞjx¼dam=A:

Thus, we should compare experimental plots of Anm=
ðd2DaT�cÞ versus dam/A (the histogrammed data, scaled ap-

propriately), with theoretical plots from the model (Eq. 4) of

c(x) versus x, taken at large enough times that the model

solution has reached its steady state.

The dimensional constants D, aT and �c are known. The

average area occupied by a cholesterol molecule in a raft, A,

can then (in principle) be evaluated by considering the total

area of all rafts measured experimentally, V(amin) (where
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V(a) denotes the combined total area of all rafts with areas

greater than a). We should have

A

Z N

x¼damin=A

xcðxÞdx ¼ VðaminÞ
�caT

:

However, in addition to the experimental limitation of the

fluorescence microscopy resolution size amin, there is a nu-

merical restriction due to the fact that the solution of Eq. 4

can only be evaluated on a finite domain 0 # x # xmax. When

comparing the numerical solution to the experimental data

it is crucial that the total raft area between x ¼ damin/A and

x ¼ xmax (or equivalently a ¼ amin and a ¼ xmaxA/d) is the

same in both numerical solution and experiment. This amounts

to the condition

A�caT

Z xmax

x¼damin=A

xcðxÞdx ¼ VðaminÞ �V
xmaxA

d

� �
;

or, equivalently,

Z xmax

x0

xcðxÞdx ¼ K
�
x0 1�

V xmaxamin

x0

� �
VðaminÞ

0
@

1
A; (8)

where K� ¼ VðaminÞ
aT�cdamin

; and x0 ¼
damin

A
: (9)

Given d, we can determine K* in terms of the experimental

parameters amin, V(amin), aT, and �c. With xmax, amin, and K*

known, we can solve Eq. 8 to find x0, whence A can be de-

termined from Eq. 9. We are then left with just two param-

eters we can adjust to fit the data: d ¼ M�2/3 and e, which

characterizes the width of the dimensionless fragmentation

kernel b(x,y); once this fitting is done, the resulting value for

A provides a further check on the reasonableness of the model.

Best fits of the theoretical model to three sets of experi-

mental data are shown in Figs. 5–7, corresponding to PC-

cholesterol bilayers containing, respectively, 33%, 20%, and

5% cholesterol. In each case plots are shown of the experi-

mental histogrammed data, scaled as explained above, com-

pared directly with best-fit plots of c(x), both for rafts of

small size (where most of the cholesterol mass in the system

resides) and for larger raft sizes. We also plot the cumulative

cholesterol mass for each case, that is, the proportion of the

cholesterol in the system that resides in rafts of (dimension-

less) size #x, versus x. From these cumulative mass plots it is

clear that the model predicts that most cholesterol resides in

rafts of dimensions that are less than diffraction-limited spots

(i.e., rafts that are too small to measure). An alternative ex-

perimental approach that would have enabled us to measure

the size of all rafts present would have been AFM; and in-

deed we did carry out a small number of AFM studies on

model membranes (11). However, the disadvantage of this

procedure is that the size of membrane that can be scanned

is very limited. Thus, it is difficult (with current AFM tech-

nology) to obtain a statistically significant set of raft areas

with which to compare the mathematical model.

FIGURE 5 Comparison of theoretical predictions with experimental mea-

surements for the 33% cholesterol membranes. Experimental measurements

were made over a total membrane area of 40 mm 3 40 mm. Best-fit param-

eter values for the theoretical model are d ¼ 1/8000, e ¼ 0.2375. (a and b)

Experimental data shown as histograms of number of rafts versus number of

cholesterol molecules per raft (both scaled as discussed in text), against the

theoretical curve. Different bin sizes are used in the two histograms. (a) The

focus is on smaller rafts, where most of the cholesterol mass in the system

resides. (b) The whole range of raft sizes is represented. (c) Cumulative cho-

lesterol mass in the system as a function of raft size, with the solid line rep-

resenting the theoretical prediction and the dots the experimental data points.
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For the 33% cholesterol membrane (Fig. 5), the experi-

mental measurements were made on a region of bilayer of

size 40mm 3 40mm, and the best fit to the experimental

data was found to be d ¼ 1/2000, e ¼ 0.2375, giving a value

A33% ¼ 38 Å2 for the area occupied by a cholesterol mole-

cule within the raft. In this case the theory predicts that the

experimental measurements captured ;25% of the total raft

area present. This allows us to estimate the total proportion

of membrane area occupied by rafts, P33%, from the experi-

mental data as

FIGURE 6 Same description as for Fig. 5, but for the 20% cholesterol

membranes. Experimental measurements were made over a total membrane

area of 240 mm 3 240 mm. Best-fit parameter values for the theoretical

model are d ¼ 1/60000, e ¼ 0.2375.

FIGURE 7 Same description as for Fig. 5, but for the 5% cholesterol

membranes. Experimental measurements were made over a total membrane

area of 40 mm 3 40 mm. Best-fit parameter values for the theoretical model

are d ¼ 1/300, e ¼ 0.23375.
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P33% �
Total area of patches measured

0:25 3 Total membrane area
� 0:353

and so in this case the rafts are almost entirely composed of

cholesterol (a figure of 0.33 would indicate pure cholesterol

rafts). Hence the rafts for this data set contain a proportion

D33% of cholesterol, where

D33% �
0:33

0:353
¼ 0:935:

From this, we can use the model to estimate the actual cho-

lesterol molecule area Ã33%, as

Ã33% ¼ D33%A33% ¼ 35:5 Å
2

;

which provides a further check on the reasonableness of the

mathematical model.

For the 20% cholesterol membrane, measurements were

made over a larger region of membrane, 240mm 3 240mm,

and the best-fit parameter values were d ¼ 1/15000, e ¼
0.2375, giving A20% ¼ 80 Å2 for the area/cholesterol mol-

ecule. Here we estimate that the experimental measurements

captured ;15% of the total raft area present, from which we

find the total proportion of membrane occupied by rafts, P20%,

as

P20% �
Total area of patches measured

0:153Total membrane area
� 0:635;

and so these rafts are much more dilute in cholesterol. The

rafts for this data set contain a proportion D20% of choles-

terol, where

D20% �
0:20

0:635
¼ 0:315:

From this, we can again work out the actual cholesterol mol-

ecule area Ã20%:

Ã20% ¼ D20%A20% ¼ 25:2 Å
2

:

Finally, for the 5% cholesterol case, measurements were

made on a 40mm 3 40mm membrane region, and values d¼
1/75, e ¼ 0.23375 gave the best fit to the data, giving A5% ¼
424Å2 for the area occupied by each cholesterol molecule

within the raft, with ;19% of the total raft area being mea-

sured by the experimental procedure. The total proportion of

membrane occupied by rafts, P5%, is

P5% �
Total area of patches measured

0:193Total membrane area
� 0:768;

and these rafts are consequently very dilute in cholesterol.

They contain a proportion D5% of cholesterol given by

D5% �
0:05

0:768
¼ 0:065;

hence, the actual cholesterol molecule area Ã5% is estimated

as

Ã5% ¼ D5%A5% ¼ 27:6 Å
2

:

We note that the area/cholesterol molecule within the raft,

A, increases as the cholesterol concentration in the bilayer

mixture decreases. This is in line with the above results that

show the rafts becoming much more dilute in cholesterol as

the bilayer as a whole becomes more dilute. The actual

molecular areas Ã show no definite trend, however. Our

obtained values for Ã may be compared with data from

various sources summarized by Edholm and Nagle (29). This

article reports values of cholesterol molecule areas in mixed

DPPC/cholesterol bilayers with varying cholesterol concen-

trations. Using the above estimates for the cholesterol concen-

tration within the rafts (93.5%, 31.5%, and 6.5%, respectively,

for the three data sets), we take the figures that Edholm and

Nagle report for bilayers that are very dense in cholesterol

(27 Å2, to be compared with our value Ã33% ¼ 35:5 Å2), for

bilayers that are 33% cholesterol (40.5 Å2, to be compared

with our value Ã20% ¼ 25:2 Å2), and for bilayers that are 6%

cholesterol (51.8 Å2, to be compared with our value Ã5% ¼
27:6 Å2), these being the results in Edholm and Nagle closest

to those required.

Thus, the molecular area Ã33% for the 33% cholesterol

experiment is remarkably close to the desired result, whereas

the other values are certainly qualitatively acceptable—

remarkably so, given the simplicity of our model and the

minimal fitting.

We observe also that the model is able to capture very

closely the cumulative mass as a function of raft size in each

case. This is particularly true of the results for the 33% cho-

lesterol bilayers, where the experimental data is sufficiently

good to demonstrate the sharp decay of the cumulative mass

toward zero as the raft size decreases to zero (Fig. 5 c). The

sharp decay of the data toward zero is almost perfectly cap-

tured by the numerical results.

An interesting peculiarity of our results is that, though the

fitted value for the parameter d varies widely between the

three data sets, the best-fit value of e is almost the same in all

cases, e¼ 0.2375, e¼ 0.2375, and e¼ 0.23375, for the 33%,

20%, and 5% cholesterol experiments, respectively. Further

numerical calculations of the solution to Eq. 4 show that, for

e ,; 0.23, the total mass within the computational domainR xmax

0
xcðx; tÞdx decreases with time as mass is lost to large

values of x. It is not possible to tell from the computations

whether this is as a result of a genuine bifurcation as e passes

some threshold value, in which mass is lost to infinity, or

whether it is a consequence of the finite size of the compu-

tational domain. However, we show explicitly in the Ap-

pendix that a closely related (though simpler) toy model has

a bifurcation in its steady-state solution. By comparing the

small e limit of the full model (Eq. 4) (in the steady case)

with the toy model, we are able to argue that we believe such

a bifurcation is highly likely in our system as e decreases,

and, moreover, that all the experiments lie rather close to this

bifurcation point.
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An equilibrium model based on
thermodynamic arguments

Although we have good reasons for formulating a dynamic

mathematical model (to compare theoretical results to future

dynamic experimental measurements), it is of interest to con-

sider whether a steady-state model based on thermodynamic

considerations can be formulated to describe the experimen-

tal results presented here. To do this, we need to write down a

Gibbs free-energy density for the system.

We postulate that the dimensionless internal energy of a

cluster of size j is given by

Ej ¼ g0j
½ � hj (10)

for positive constants g0 and h, the two contributions rep-

resenting the surface energy and internal bond energy, re-

spectively. The total enthalpy of the collection of clusters is

then given by

H ¼ +
N

j¼1

cjEE

and the Gibbs free energy density of the system is

G ¼ H � TS; (11)

where T is the system temperature and S is the entropy den-

sity, given, according to ideal mixture theory, by

S ¼ �k cDlog
cD

cD 1 +ck

� �
1 +

N

j¼1

cjlog
cj

cD 1 +ck

� � !
;

where cD is the concentration of DPPC in the membrane.

We have to minimize the Gibbs free energy, subject to the

constraint that the total amount of cholesterol in the system

is conserved. Nondimensionalizing as earlier, scaling con-

centrations with �c, g0, and h with kT, and G with kT�c, and

working in the dimensionless variables henceforth, we must

minimize

G� l +
N

j¼1

jcj

with respect to ci, where l is a Lagrange multiplier for the

mass conservation constraint. This leads to

ci

cD 1 +ck

¼ expðLi� g0i½Þ;

where L ¼ h 1 l is unknown as yet. However, if we assume

that cholesterol is dilute in the membrane (a reasonable ap-

proximation for the membranes considered experimentally)

then cD � +ck, and thus

ci � cD expðLi� g0i
½Þ; (12)

and imposing mass conservation gives an equation to fix L,

+
N

i¼1

i expðLi� g0i
½Þ ¼ 1

cD

; (13)

which completes the solution for ci. It is clear that we require

at least L # 0 for the sum in Eq. 13 to converge. Consider

the limiting case in which L ¼ 0. In this case, Eq. 13 is an

equation for g0 only, and has a critical solution g0* . 0 that

is easily determined numerically (g0* ¼ 1.74515 for cD ¼
0.8). Consider what happens as g0 passes through g0*. From

Eq. 13, we have

+
N

i¼1

i expð�g
�
0i

½Þ ¼ 1

cD

;

and, thus,

for g0 , g
�
0 +

N

i¼1

i expð�g0i
½Þ. 1

cD

; (14)

while for g0 . g
�
0 +

N

i¼1

i expð�g0i
½Þ, 1

cD

: (15)

Since we know L # 0, exp(Lj) 2 (0, 1) for all j, and it

follows from Eq. 15, above, that Eq. 13 can never be satisfied

for g0 . g0*. This demonstrates the existence of a bifur-

cation in the solution at a critical value of the surface energy

parameter g0*, in which mass is lost to a cluster of infinite

size.

It is immediately obvious that the above approximate solu-

tion (Eq. 12) for ci can never be made to fit the experimental

data, even approximately, since the decay in ci with i is always

rapid unless the concentration of DPPC is absolutely tiny

relative to that of cholesterol (corresponding to cD � 1). In

this context, we note that there are various other scenarios in

which it is inappropriate to apply equilibrium thermodynam-

ics to determine equilibrium constants (e.g., diffusion-limited

reactions).

Finally, we note that exactly the same solution for the ci

can be derived by the alternative approach of using reaction

coordinates jij to parameterize the equilibrium in the reaction

i-cluster 1 j-cluster� ði 1 jÞ-cluster;

and minimizing the Gibbs free energy with respect to these

reaction coordinates.

DISCUSSION AND CONCLUSIONS

We have presented three experimental data sets detailing

microdomain (‘‘raft’’) formation in PC-cholesterol bilayers,

and have derived a simple mathematical model based on

plausible thermodynamic arguments that describes the ex-

perimental findings well for appropriate choices of two fit-

ting parameters. A further check on the reasonableness of the

theoretical results is provided by the predictions of the areas

of cholesterol molecules within the rafts, which are qualita-

tively correct. Moreover, our results exhibit the right trend

whereby rafts in more dilute cholesterol bilayers are them-

selves more dilute in cholesterol.

The mathematical model makes several simplifying as-

sumptions, which may not be fully justified and which could
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be addressed by a more sophisticated model. One obvious

point is that the phosphatidylcholine is assumed not to play a

dominant role as far as the model is concerned. Although the

PC may not play an important role in the simple experiments

described here, we will in future consider more complex

membrane systems that are more representative of real cell

membranes. This will require development of theoretical

models that can describe the simultaneous interaction of sev-

eral bilayer components.

Our results may be discussed in light of the classical the-

ory of phase transitions, referred to briefly in the Introduc-

tion. The phase diagram for PC-cholesterol mixed bilayers

given in Silvius et al. (10) is reproduced in Fig. 1. The dashed

line indicates where in the phase diagram we believe our

experiments to lie, according to the fraction of DPPC in the

PC component of the mixture. From this diagram we infer

that, for the experiments with 33% cholesterol in the bilayer,

our experimental results lie in the shaded region where liquid

disordered and liquid ordered regions should coexist,. The

20% cholesterol experiments lie in the triangular region where,

in addition to the liquid-ordered and disordered regions, we

expect some gel phase. Finally, for the 5% cholesterol ex-

periment, according to the phase diagram, there should only

be liquid-disordered regions, together with some gel phase.

The phase diagram suggests, then, that, at least for the 5%

cholesterol experiment, the identification of the rafts with

liquid-ordered regions may not be a perfect analogy, but that

the experiments are also detecting and measuring gel phase,

which may be enriched in cholesterol. This latter point has

been examined, as it is simple to prepare FPE with various

kinds of fatty acyl chains. In other words, we are able to

prepare the FPE with unsaturated or saturated fatty acids, and

this predisposes the FPE to ‘‘prefer’’ the raft regions of the

fluid-mosaic membrane. In any event, however, this may not

be a problem, as the mechanisms by which the gel phase be-

comes cholesterol-enriched are probably largely the same as

those we postulate in our model. However, the difference in

the physical structure of the cholesterol-enriched regions in

the two cases may mean that trends in the data are obscured

(see below).

It is interesting to note that although the value of the fitting

parameter d varies significantly from one set of experimental

results to another, the best-fit value of e is almost the same

for all data sets. Recalling the definition of e, this means that

the quantity

kT d
½

g A
½

is more or less constant for all the experiments. Since (after

fitting) the only unknown quantity here is the cluster ‘‘sur-

face tension’’ g, we can work out how g varies from one ex-

periment to the other. We find

g33%

g20%

¼ d33%A20%

d20%A33%

� �½

� 3:97;
g20%

g5%

� 0:163:

The trend for the 33% and 20% cholesterol bilayers is as

we would expect. The clusters in the 33% bilayer are denser

in cholesterol (as is reflected in the A-value); thus, the

cholesterol molecules within the clusters are more strongly

held together, leading to a higher effective surface tension for

the cluster. The anomalous result for the 5% case (higher

surface tension than the 20% case) we attribute to the fact,

discussed above, that we are probably in a different region of

the phase diagram, and so we are not really comparing like

with like. The different nature of the molecular packing in

the 5% cholesterol bilayer makes it difficult to draw direct

comparisons between this experiment and the other two.

The last part of this article was concerned with attempts to

formulate a steady-state model to describe the experiments,

since all experimental measurements made were at steady

state. We saw that the predictions of such thermodynamics-

based models could not possibly explain the experimentally

observed distributions, showing that the simple thermody-

namic approach based on minimization of the Gibbs free

energy for the system of clusters is not appropriate for our

system, essentially because it does not take into account the

different mobilities of the clusters of molecules, which have

hugely varying sizes in our system.

In future, we intend to extend the experimental study 1), to

measurements taken at different time points (to capture the

dynamics of microdomain formation); and 2), to thermody-

namically open systems (such as a real cell). In both respects,

a formulation such as ours has considerable advantages over

a purely equilibrium theory. To make it more biologically

realistic, additional elaborations to the mathematical model

that we plan include, in the first instance, modeling several

lipid types (variations in headgroup identity/chemistry and

fatty acyl saturation). We would also include the role of

sphingomyelin. This would then put us in a position where

we would be able to investigate the role of membrane pro-

teins in modulating these interesting aspects of macroscopic

membrane structure. We will also investigate the model for

the diffusion-controlled limit (in which clusters react on col-

lision, as opposed to the reaction-limited case considered

here, in which the probability of coagulation on collision is

relatively small) as an alternative hypothesis. The diffusion-

limited problem is much more challenging, since one has to

solve a local problem (Laplace’s equation with appropriate

boundary conditions) around each cluster to describe the

‘‘depletion zone’’ that surrounds it due to other clusters re-

acting with it. However, such local solutions in two space

dimensions have logarithmic divergence in the far field, mak-

ing construction of the full solution very delicate.

APPENDIX: A BIFURCATION IN THE STEADY
SOLUTION OF EQ. 4

Numerical calculations of the solution to Eq. 4 show that, for e ,; 0.23, the

total mass within the computational domain
R xmax

0
xcðx; tÞdx decreases with

time as mass is lost to large values of x. It is impossible to tell from the
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computations whether this is as a result of a genuine bifurcation, in which

mass is lost to infinity, or whether it is a consequence of the finite size of the

computational domain. However, by considering the limit of the steady state

equations for Eq. 4 as e/0, we can show that such a bifurcation is likely as

e decreases. We start by considering the toy model for which g(x, y) ¼ 1,

bðx; yÞ ¼ ð1Þ=ðe2Þexpð�ð1=eÞðx½1y½ � ðx1yÞ½ÞÞ. Here, there is an exact

(detailed balance) steady solution to Eq. 4, obtained by setting both

integrands in Eq. 4 to zero by writing

cðx 1 yÞ ¼ gðx; yÞ
bðx; yÞ cðxÞcðyÞ:

In turn, this gives the solution

cðxÞ ¼ k
x

e
2 exp �1

e
x½

� �
; (16)

where k is a constant that lies in the range 0 , k # 1 (note that if k . 1, the

integral diverges). The value of this constant is determined from the mass

conservation conditionZ N

0

xcðxÞdx ¼ 1 0

Z N

0

x exp �xjlogkj � 1

e
x

½

� �
¼ e

2
:

Furthermore, it is straightforward to show that
RN

0
x exp �jlogkj � x½=eð Þ#

12e4. It follows that, for e,1=
ffiffiffiffiffi
12
p

, it is no longer possible for a solution of

the form demonstrated in Eq. 16 to satisfy the mass conservation condition;

in terms of the unsteady model, some of the mass is lost to infinity below the

bifurcation point at e ¼ 1=
ffiffiffiffiffi
12
p

.

As e/0 in the full model (Eqs. 4–6) the exponential term in the expres-

sion for b(x, y) becomes dominant. This suggests looking for a steady solu-

tion of the form

cðxÞ ¼ f ðxÞ
e

2 exp �1

e
x½

� �
:

In our case, it proves convenient to introduce a further rescaling,

x ¼ e
2
j y ¼ e

2
h; f ðxÞ ¼ egðjÞ;

which leaves the steady equations for Eqs. 4–6 in the formZ j=2

0

h

j � h

� �½

1 2 1
j � h

h

� �½
 !

gðj � hÞgðhÞ
"

� j
½

gðjÞ�expð�ðj � hÞ½ � h
½Þdh

¼
Z N

0

h

j

� �½

1 2 1
j

h

� �½
 !

gðjÞgðhÞ
"

� ðj 1 hÞ½gðj 1 hÞ�expð�j
½ � h

½Þdh (17)Z N

0

jgðjÞexpð�j
½Þdj ¼ 1

e
3: (18)

It is obvious from Eq. 18 that g $ O(1/e3) for mass conservation to be

satisfied. If this is the case, the dominant terms in Eq. 17 are those that are

quadratic in g, and it is fairly clear that, for sufficiently small E and j, no

balance in which g $ O(1/e3) is possible in Eq. 17. This suggests that the real

model, like the toy one, exhibits a bifurcation as e decreases through a critical

value (our computations suggest ;0.23) in which mass is lost to infinity.
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