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ABSTRACT Examining calcium spark morphology and its relationship to the structure of the cardiac myocyte offers a direct
means of understanding excitation-contraction coupling mechanisms. Traditional confocal line scanning achieves excellent
temporal spark resolution but at the cost of spatial information in the perpendicular dimension. To address this, we developed a
methodology to identify and analyze sparks obtained via two-dimensional confocal or charge-coupled device microscopy. The
technique consists of nonlinearly subtracting the background fluorescence, thresholding the data on the basis of noise level,
and then localizing the spark peaks via a generalized extrema test, while taking care to detect and separate adjacent peaks. In
this article, we describe the algorithm, compare its performance to a previously validated spark detection algorithm, and
demonstrate it by applying it to both a synthetic replica and an experimental preparation of a two-dimensional isotropic myocyte
monolayer exhibiting sparks during a calcium transient. We find that our multidimensional algorithm provides better sensitivity
than the conventional method under conditions of temporally heterogeneous background fluorescence, and the inclusion
of peak segmentation reduces false negative rates when spark density is high. Our algorithm is robust and can be effectively
used with different imaging modalities and allows spark identification and quantification in subcellular, cellular, and tissue
preparations.

INTRODUCTION

In cardiac myocytes, excitation-contraction coupling is

initiated by the initial influx of Ca21 into the sarcolemmal

space (1); this occurs as highly localized subcellular changes

in the intracellular concentration ([Ca21]i) either spontane-

ously (2) or elicited by an influx through L-type channels (3),

triggering Ca21-induced Ca21 release (CICR) from the sarco-

plasmic reticulum (SR). Since their discovery, the spatial and

temporal summation of these elementary entry events (called

Ca21 ‘‘sparks’’) have been thought to potentiate the Ca21

wave (2,4,5).

Ca21 sparks are customarily measured with fluorescent

Ca21 indicators (6) and laser scanning confocal microscopy

involving a laser raster scan along a single line with a

temporal resolution of ;1–2 ms. This procedure generates

stacked (x,t) data that are visualized in the form of a two-

dimensional (2-D) image. This approach is limited in three

ways: 1), the line scan monitors a slice on a single spatial

axis, so that the lack of spatial information may cause an under-

estimation of spark number and morphology as a function of

location (see Fig. 2 in Goldhaber et al. (7) for an example of

this effect); 2), sparks outside of the scan line may still be

detected due to Ca21 diffusion but attenuated in peak inten-

sity, with the result that the spark amplitude distribution is

skewed as a function of distance from the scan line (8,9); and

3), spark morphology is known to be variable even under

line scan conditions when Ca21 release is stimulated to

insure high spatial localization (10). Also, Ca21 diffusion

associated with spark formation is known to be anisotropic in

2-D (11). Automatic detection methods have been developed

to detect sparks in confocal line scans to overcome sam-

pling bias (9). However, these algorithms were optimized for

isolated sparks amid uniform background fluorescence, and

are not sufficient for spark detection under conditions of

larger scale Ca21 release (12) or the presence of overlapping

sparks (13).

To address these issues, we have developed an alternative

means of detecting sparks. Our computational algorithm

analyzes image data obtained with either line scan or high-

speed fluorescent charge-coupled device (CCD) microscopy,

performs spark identification by their spatiotemporal profile,

and provides a means of quantitative characterization of

sparks and statistical profiles of spark ensembles. Such ana-

lyses are expected to be important in light of recent studies

suggesting that 2-D imaging of sparks may elucidate the

subcellular structure-function relationships that regulate

Ca21 metabolism in muscle cells (7,10,12,14–21).

METHODS

Experimental protocol

Briefly, ventricular myocytes were isolated from 2-day-old neonatal rats

using trypsin and collagenase, and cultured on fibronectin-coated coverslips

to form confluent tissue monolayers. Two-dimensional fluorescence Ca21

imaging was performed with a CCD camera recording with 4 3 4 binning to

yield an output full-frame format of 128 3 128 pixels (corresponding to

130 3 130 mm2) per frame at 90 fps. The full details of cell isolation and

culture and Ca21 imaging are provided in the Supplementary Material.
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Spark detection algorithm

In both line scans and full-frame scans, a spark appears as a sudden increase

in the local fluorescence intensity. At maximum intensity, (typical rise time,

10 ms), Ca21 release halts and the intensity decreases as the Ca21 diffuses

away from the source and Ca21 reuptake mechanisms are activated (22). The

spark also expands radially for a full-width, half-maximum (FWHM)

amplitude value of ;2 mm with a full-duration, half-maximum (FDHM) of

20–40 ms for intact myocytes isolated from adult rat (23). Therefore, spark

detection consists of locating a short duration spatiotemporal peak in a scalar

field changing with a longer timescale. Fig. 1 shows fluorescence (x,y)

images obtained from neonatal rat cardiac myocytes, where the sarcolemma

is labeled using di-8-ANEPPS in panel A and the nuclei are shown using

DAPI in panel B. Panel C shows [Ca21]i measured by fluo-4 fluorescence

(see the online Supplementary Material, movie M1), whereas panels D and E

show cross sections of panel C in (x,t) and (y,t); these cross sections would

be equivalent to a confocal line scan taken over a section of tissue. Identify-

ing a localized increase in fluorescence as a calcium spark (as is highlighted

in Fig. 1 C) requires analysis of its temporal development to distinguish it

from noise or some other artifact (Fig. 1 D–F).

The modules for image input, preprocessing, detection, and visualization

were written and implemented in MATLAB (MathWorks, Natick, MA). The

methodology is described for image (x,y,t) data but is applicable to data in

two dimensions (i.e., line scan (x,t) data). The test data used and the spark

detection algorithm described below are available at http://www.deas.harvard.

edu/diseasebiophysics/SparkAnalysis/.

Determination of nonspark fluorescence

The data sequences record the spark activity superimposed upon native

background fluorescence in addition to fluorescence that is often heteroge-

neous in space (e.g., intracellular buffering and organelle dye compartmen-

talization) and time (e.g., photobleaching or a Ca21 transient). For example,

the highlighted spark in Fig. 1 F is not located within quiescent tissue but on

the recovery phase of the previous Ca21 transient, for which the simple

subtraction of a constant value representing the baseline fluorescence would

be inadequate. The normalized fluorescence DF/F0 is calculated as (24):

DF=F0 ¼ ðF� FbaseÞ=ðFbase � BÞ; (1)

where Fbase(x,y) is the baseline (i.e., quiescent) fluorescence and B is the

background fluorescence of an area adjacent to the cell or tissue. For optimal

processing, sparks must be identified both against Fbase and the underlying

nonspark Ca21 activity. This dynamic fluorescence is estimated by using a

nonlinear iterative method using the following steps:

1. The fluorescence time sequence F(t) associated with each spatial point

(x,y) is fitted with a cubic spline G(t).

FIGURE 1 Example of raw fluorescence data obtained

by a CCD camera from an engineered two-dimensional

cardiac tissue. (A–C) A single (x,y) fluorescence (F) map

taken at t ¼ 2.38 s labeled with (A) di-8-ANEPPS,

highlighting the cell membranes, (B) DAPI, highlighting

the nuclei, and (C) fluo-4, showing [Ca21]i. (D,E)

Development in time of F along the dotted lines labeled

D and E shown in panel C. The red boxes outline the same

spark in panels D and E. The periodic pattern represents

spontaneous, large-scale Ca21 transients that occupy the

entire tissue area simultaneously. (F) Temporal trace at the

location shown in panel C with a white box, illustrating

the spontaneous Ca21 transients and the spark highlighted

in panels D and E. Spatial scale bar is 20 mm, temporal

scale bar is 0.5 s. A movie of the Ca21 fluorescence shown

in panel C is provided as Supplementary Material.
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2. G(t) is then fitted with a weighted cubic spline H(t). In calculating the

weighted spline, the points of F(t) that lie below G(t) are weighted

significantly more than those that are not. As a result, this procedure

shifts H(t) toward the baseline values.

3. F(t) is then set equal to H(t).

4. Steps 2–3 are repeated in an iterative fashion until the difference in the

residual between iterations falls below 10% of the initial value.

The resultant (x,y,t) image sequence representing the nonspark activity is

subtracted from the original fluorescence sequence and then normalized with

(Fbase � B). For the experimental data, Fbase(x,y) is the time average of

F(x,y,t) during the quiescent period before the next transient.

Threshold determination

Spark detection requires the isolation of sparks from the background noise.

The most common method is determining the mean fluorescent noise level in

the image, and then defining the threshold as a multiple of standard devia-

tions (s) above this mean. Cheng et al. (9) use a twofold thresholding oper-

ation with 2s as the first threshold to distinguish spark events from noise,

followed by a second threshold (Cri) defined as 3.5s based on their de-

tection criteria (i.e., maximize the number of true detections while mini-

mizing the number of false detections). However, locations with increased

spark frequency (such as changes in SR Ca21 content or rest period (25)) or

sustained Ca21 release (such as under voltage clamp (9)) will exhibit higher

variance in fluorescence than the surroundings. In these instances, a global

computation of the fluorescence standard deviation can yield a misleading

value. Here, we derive an alternative method of determining the threshold

that is less sensitive to these conditions.

First, the DF/F0 sequence is spatiotemporally smoothed, followed by

calculation of the intensity histogram. For a typical image sequence, the

majority of the pixels represent background fluorescent noise and the

histogram will have a global maximum at the mean of the noise intensity.

The histogram is asymmetric around the maximum, with the bins less than

the mean of DF/F0 (denoted asDF�=F0) representing the negative noise

component. In contrast, the bins greater than the mean (DF1=F0) represent

the positive noise component in addition to the intensity values comprising

the sparks, since sparks are represented by an increase in DF/F0.

For our purposes, we take the primary noise process to be photon (shot)

noise, which is described by a Poisson probability distribution. However, the

signal intensity achieved by our experimental setup is sufficiently high such

that the background noise may be approximated by a Gaussian distribution.

Furthermore, the DF�=F0 values alone are sufficient to calculate the

standard deviation and the mean of the background intensity distribution. As

the histogram values typically span several orders of magnitude, using the

natural logarithm of the histogram to determine the mean and standard

deviation is less prone to fitting error. Taking the natural log of a Gaussian

distribution gives the formula for the curve f encompassing DF�=F0,

uðDF=F0Þ ¼ a� ½ðDF
�
=F0 � mÞ=s�2; (2)

where m and s are the mean and standard deviation of the DF/F0

distribution, respectively, and a is the natural logarithm of the histogram

maximum value. Thresholding the data sequence by Cri 3 s produces a set

of bounded regions (R) in two or three dimensions.

Spark detection

Each thresholded region R is analyzed for the presence of potential sparks,

which is a maximum embedded in the scalar n-dimensional data set. First,

we define the DF/F0 values in R as a multivariate function f(j1, j2, . . . jn); n

is equal to 2 and 3 for line scan (x,t) and full frame (x,y,t) data, respectively.

The actual maxima are calculated as the intersection of the zero level sets of

the spatial partial derivatives of f, i.e., @f/@j1 ¼ 0 \ @f/@j2 ¼ 0 \ . . . \ @f/

@jn ¼ 0. The function f is fit with an interpolating spline to precisely

calculate the partial derivatives and the level sets are 2-D contour lines (for

line scan data) or 3-D isosurfaces (for full-frame data).

Next, the relative maxima of R are calculated to avoid discretization

effects (such as grid coarseness surrounding a peak) that may produce false

negatives; and to produce a defined border delimiting the boundaries of

the spark region for further processing. The relative maxima are obtained

analytically using the general second derivative test, as follows:

1. For each R, define the Hessian matrix H as the Jacobian of [@f/@j1, @f/

@j2, . . . , @f/@jn], that is,

H ¼

@
2
f =@z
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2. Define the k-th leading principal minor Mk as the determinant of the k 3

k submatrix of the n 3 n matrix H obtained by deleting the last (n–k)

rows and columns from H.

3. The function f has a relative maxima at the location [j1(o), j2(o), . . . ,

jn(o)] if H evaluated at that location is negative definite, i.e., (�1)k �
Mk . 0 for each k ¼ 1,. . . , n.

This procedure produces a set of subregions that represent relative

maxima in R, the neighborhoods that contain actual maxima (i.e., spark

peaks). If a relative maximum region does not have a corresponding actual

maximum, the region is labeled for removal.

In some cases, sparks are sufficiently close together (in either space or

time) so that multiple actual maxima lie within a single (x,t) or (x,y,t) relative

maximum region, or multiple relative maxima lie within a single supra-

threshold region (Fig. 2 A). These joined regions are split using marker-

controlled watershed segmentation; the maxima are used as starting markers

(Fig. 2 B) and the resulting watershed lines are used to divide the region (Fig.

2 C).

The next task is the identification and removal of actual maxima that are

peaks in the intensity field but are so low in amplitude that they are probably

either spurious noise or out-of-focus sparks above the threshold Cri � s. For

each relative maximum region in f(j1, j2, . . . jn), a function of the form a1j1

1 a2j2 1 . . . 1 anjn ¼ 0 (a plane in two dimensions, a hyperplane in n

dimensions) is fit to each region using a multivariate linear least-squares

regression. If the correlation coefficient r2 exceeds 95%, the region is close

to being linear (i.e., ‘‘flat’’) and is probably not a substantive spark, marking

it for removal.

Data analysis

Once the spark has been identified, all desired spark parameters can be

extracted. The following parameters were determined (calculated from the

raw data to avoid low-pass filtering effects in the smoothed data; results are

presented as mean 6 SE):

1. Location. This parameter is calculated as the location of the maximum,

(xp,yp,tp)

2. Amplitude. This value is calculated as the value of DF/F0 at (xp,yp,tp)

3. Full-width half-maximum. For the (x,y,t) data set, a 2-D Gaussian

function,

A 3 exp � x � mx

2s
2

x

� �
�

y� my

2s
2

y

 !" #
; (4)

is fitted to the (x,y) data at tp, the time of the peak amplitude, and x and y are

fixed to xp and yp, respectively, to find A, mx, my, sx, and sy. The FWHM for

a given direction is s�[8 ln(2)]1/2, where s is the variance in the respective

direction.

The full-duration half-maximum of the spark is a temporal parameter that

is also commonly measured. The estimation procedure is straightforward:
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calculating the FWHM for each time point encompassed by the relative

maxima yields a series of Gaussian parameters for the spark at each time t.

The values of A (the peak amplitude) at (xp,yp) for each t forms a temporal

profile of the spark and the FDHM is calculated as the time between the

points where the profile has the value of A/2. Likewise, the rise time (the

time to peak) of the spark may also be extracted by this means. However,

sparks recorded with our CCD imaging system span only two to four frames

in duration. Therefore, our frame rate precludes accurate reporting of the

FDHM for this study. Using full-frame (x,y) high-speed confocal micros-

copy would overcome this technical limitation, allowing a full comparison

of this procedure against real values.

Numerical protocol

To test the performance of the algorithm under controlled conditions, we

generated synthetic (x,y,t) data sets composed of sparks added to embedded

noise, as shown in Fig. 3. A stereotypical spark was produced by averaging a

set of sparks obtained from quiescent tissue. Each synthetic data set was

generated with a random number of stereotyped sparks at random (x,y,t)

locations; all sparks were constrained to be within the boundaries of the data

field-of-view. The number of sparks per data set varied from 1 to 480, so that

for the spatial and temporal sampling parameters used, the maximum spark

frequency for a given data set would be 0.05 sparks/mm2/s, which is at the

upper limit on spark frequency reported in rat ventricular myocytes (7).

Gaussian noise with a mean of 0 and a standard deviation of 1 was added to

each spark, with the sparks scaled in amplitude according to a random uni-

form distribution so that the SNR would match that of the experimentally

collected data (Fig. 3 A).

These data sets were used as input in two forms: a), the original

unmodified format with uniform baseline fluorescence, shown in Fig. 3 B;

and b), modified with a nonuniform decrease in fluorescence representative

of the falling phase of a Ca21 transient, shown in Fig. 3 C. The stereotypical

reduction in fluorescence during Ca21 reuptake was obtained from raw

experimental data during which the entire tissue was activated by a Ca21

transient. The fluorescence curve represented the fluorescence temporal

average from 75% of full recovery to quiescence; this curve was then added

to the sparks and noise to form a new synthetic data set.

RESULTS

Performance on synthetic data

Uniform baseline fluorescence

Sixty sets of synthetic data (denoted DS0) were created, for a

total of n ¼ 8789 sparks. In addition, five sets of two control

cases were produced: 1), DS1, consisting of zero-mean

Gaussian noise and no sparks; and 2), DS2, containing 160

stereotypical sparks and no added noise.

To optimize the spark detection parameters, the algorithm

performance was tested on the DS0 data sets for a variety of

Cri threshold values. Three statistical metrics were exam-

ined: a), sensitivity, defined as the probability of the correct

detection of a spark of a given amplitude; b), the false

negative rate, defined as the probability that a spark of a

given amplitude will be missed by the algorithm; and c), the

positive predictive value (PPV), defined as the probability

that a detection by the algorithm will be correct as a function

of amplitude. In addition, the algorithm was tested against

eye detection on a DS0 data set by a well-trained exper-

imentalist; Fig. 4 illustrates the results for the DS0 data. As

FIGURE 2 Example of adjacent spark

segmentation. (A) Two neighboring

sparks, highlighted as three regions in

(x,y,t) space: suprathreshold regions

(green), relative maxima (blue), actual

maxima (black dots). A plane intersect-

ing the actual maxima and bisecting the

relative maxima and suprathreshold

regions is shown in black outline. (B)

The Euclidean distance transformation on the plane shown in panel A with respect to the relative maxima. The actual maxima are shown as black dots. The

watershed line is shown in red, dividing the space into two regions, labeled 1 and 2. (C) The same plot as that in panel A, with the watershed surface

superimposed in red, dividing the (x,y,t) space into two regions, labeled 1 and 2.

FIGURE 3 Creation of synthetic sparks. (A) A sample frame from t¼ 1 s. Scale bar is 20 mm. (B,C) Space-time plot of DF/F0 along the line shown in panel

A, showing synthetic sparks in the presence of (B) added baseline fluorescence noise and (C) added baseline fluorescence noise in addition to the fluorescence

change associated with tissue-wide Ca21 reuptake.
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expected, the sensitivity of the algorithm (Fig. 4 A) and the

PPV (Fig. 4 B) increased while the false negative rate (Fig. 4

B) decreased as the spark amplitude increased for all Cri
values. Based on the sensitivity metric, the appropriate Cri
value for the algorithm would be 3.5s, in agreement with

Cheng et al. (9). However, for DF/F0 ; 0.10–0.17 (the range

where the Cri ¼ 3.5s curve spans 10–90% sensitivity), the

PPV is only 1–44%. Therefore, the algorithm would yield a

high proportion (.66%) of low-amplitude false positive

detections at the Cri ¼ 3.5s sensitivity. To avoid an unac-

ceptable number of false positives, we note that the close

juxtaposition of the PPV curves in Fig. 4 B indicates that a

higher Cri value can be chosen without significantly compro-

mising the proportion of true positives at higher DF/F0

amplitudes. Furthermore, a Cri value may be matched to the

false negative rate of eye detection (the red line in Fig. 4 B)

by examining the 50% detection probability of both curves.

Therefore, we used Cri¼ 4.9s for subsequent calculations to

balance between Type I (false positive detections) and Type

II (false negative misses) errors.

The distortion in amplitude introduced by the algorithm was

examined for the DS0 and DS2 cases (see supplemental Fig.

S1, Supplementary Material). The algorithm shows high

accuracy for high amplitude sparks in both instances as ex-

pected. As the synthetic spark amplitude decreases, the dif-

ference between the detected amplitude between DS0 and DS2

increases. The spatial localization error of the detected sparks

was 1.83 6 0.06 mm for DS0 and 1.8 6 0.06 mm for DS2.

Fig. 5 A shows the FWHM estimation as a function of

calculated spark amplitude in the x-direction from the DS0 and

DS2 synthetic data (the results in the y-direction are virtually

identical; data not shown). As DF/F0 increases, both the signal/

noise ratio (SNR) and the estimation of FWHM in x and y
improved. When the spark amplitude in DS0 approached the

level of the added noise (SNR ; 1), the FWHM estimation

tended toward larger values as expected. Fig. 5 B illustrates

FWHM estimation in x as a histogram, showing the expected

distribution around the actual value (similar results in the

y-direction; data not shown). Therefore, the overall performance

on the DS0 synthetic data yielded measurements of FWHM

that fit the true values to within 25% even without discrimi-

nating against low SNR. The same performance was displayed

in DS2 data sets as well (data not shown). The deviation in the

estimated FWHM value was consistent irrespective of spark

amplitude in the absence of noise. This suggests that

appropriate fluorescence subtraction is a substantial factor

in accurate spark parameter estimation.

Algorithm reliability was also tested using the DS1 data set,

which produced few false positives (Cri¼ 4.9s: total of 0.4 per

data set with a mean estimated DF/F0 of 0.18 6 0.04). The false

positives in DS1 were consistently localized to within 55 ms of

the end frames regardless of Cri threshold value. Because the

nonlinear nature of the fluorescence subtraction (see Methods)

produced fluctuations at the temporal limits of the data, DF/F0

is slightly underestimated at these points, yielding false posi-

tives. Such edge distortion is a well-known problem in image

processing and filter construction, and can be minimized by

either 1), truncating the temporal boundaries or 2), extending

the temporal sequence by padding (or extrapolating) the data.

Therefore, the automatic selection of threshold is effective in

isolating the spark regions provided that the fluorescence

subtraction preprocessing step is performed robustly.

Inclusion of nonuniform fluorescence during Ca21 reuptake

The same stereotypical spark distribution was used to create

additional synthetic data sets, DS3, which embedded a uni-

formly decreasing fluorescence field representing the falling

phase of a tissue-wide Ca21 transient. The performance in spark

amplitude estimation was similar to that of the data sets with

uniform baseline fluorescence, permitting the use of the same

Cri value as that for the DS0 data. Estimated FWHM values

for Cri ¼ 4.9s were also similarly distributed as compared to

DS0 (values of 3.65 6 0.05 and 3.66 6 0.05 mm in the x- and

y-directions, respectively) with a spatial localization error of

1.83 6 0.06 mm. The comparable performance between the

DS0 and DS3 data sets indicates that the fluorescence subtrac-

tion adequately removes the nonlinear change in intensity.

Comparison to conventional spark
detection algorithm

The automated spark detection algorithm by Cheng et al. (9)

(hereafter referred to as the conventional algorithm) is the

FIGURE 4 (A) Sensitivity of the al-

gorithm as a function of synthetic spark

normalized amplitude for various thres-

hold criteria, Cri. (B) False negative

rate (blue) and positive predictive val-

ues (green) as a function of synthetic

spark normalized amplitude for values

of Cri. The average results of eye de-

tection by a coauthor were fitted to a

sigmoid curve and given as the solid red

lines in panels A and B.
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most commonly used algorithm in the literature. To quan-

titatively examine the effectiveness of our algorithm (here-

after called the multidimensional algorithm), we compared

them by analyzing a set of DS0 synthetic data. As indicated

in Cheng et al. (9), the optimal Cri value for the conventional

algorithm was determined to be 3.5. However, to confirm

that the performance of the conventional algorithm was not

altered by the data, we applied the statistical metrics de-

scribed above to the synthetic data for a variety of Cri values.

The only modifications made to the conventional algorithm

were: 1), the spatiotemporal filtering parameters from Cheng

et al. (9) were scaled to the spatial extent of (x,y) images

used; and 2), all 2-D specific operations were extended to

3-D operations.

The performance of the conventional versus the multidi-

mensional algorithm upon DS0 data (uniform baseline

fluorescence) is shown in Fig. 6, A and B. An optimal Cri
value of 3.2 achieves a false negative rate similar to that

determined by eye while retaining comparable sensitivity

(we note that since determination of s is different between

the two methods, Cri values cannot be strictly compared). If

the baseline fluorescence is quiescent, the conventional

algorithm yields a lower PPV rate (i.e., lower false positives)

than the multidimensional algorithm. Both exhibit the same

performance in sensitivity (50% detectable at DF/F0 ; 0.17–

0.18) at their respective selected Cri values. However, Fig. 6,

C and D, highlight a notable performance difference between

the conventional and multidimensional algorithms with

respect to the DS3 (Ca21 reuptake) data. Here, the sensitivity

and false negative rate curves for the conventional algorithm

are all shifted toward the right, with a 50% sensitivity and

false detection rate at DF/F0 ; 0.68. This result indicates that

the nonuniform fluorescence drastically reduces the spark

detectibility by the conventional algorithm, whereas the detec-

tion statistics of the multidimensional algorithm remain con-

stant in the same conditions.

The effect of spark density on the probability of spark

detection is also of interest since sparks that are closer to-

gether are more difficult to distinguish and may lead to false

negatives. Figs. 4 and 6 indicate that the false negative rates

for all DS0 data sets are approximately zero for sufficiently

high amplitudes at all Cri values. Fig. 7 shows the false neg-

ative rate in the DS0 data sets as a function of spark density

for sparks whose DF/F0 . 0.3 (excluding false negatives due

to low amplitude). The graph indicates that as the density of

high amplitude sparks increases, the multidimensional algo-

rithm decreases the false negative detection rate by about

fourfold.

Performance on experimental data

Data were obtained from isotropic monolayers of cardiac

myocytes in which the myocytes exhibited spontaneous

CICR. Each data set was subdivided into intervals containing

a single, whole-tissue Ca21 transient. Each interval was then

segmented into episodes spanning the period beginning with

the point at which the mean fluorescent signal across the

tissue had recovered to 25% of the maximum amplitude and

ending with the start of the next transient, before which the

tissue is quiescent. To minimize temporal boundary effects

(see above), the beginning of the segment was padded with

the prior 55 ms of data whereas the end just before the

transient was truncated by 55 ms.

Spark events were detected from an ensemble of Ca21

transient episodes (n ¼ 16) using the multidimensional

algorithm. Any sparks for which an FWHM measure could

not be estimated in either the x or y axis were excluded from

FIGURE 5 (A) Accuracy of fullwidth, half-maximum (FWHM) estima-

tion in the x-direction using the detection algorithm on DS0 (noise added, d)

and DS2 (no noise, s) synthetic data. All synthetic sparks have the same

FWHM but varying amplitudes, given by the horizontal black dotted line.

Error bars show SEM. (B) Histograms of the estimated FWHM measure-

ments in the x-direction from the DS0 synthetic data sets, given as the

average number of detected events per image. The actual FWHM in x is

given by the vertical black dotted line.
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further ensemble analysis. Large amplitude sparks tended to

cluster around a consistent FWHM value, whereas weak

sparks displayed a larger spatial spread (Fig. 8 A) in a manner

analogous to the synthetic data. The FWHM was estimated

as 4.93 6 0.2 mm in the x-direction, 4.09 6 0.12 mm in the

y-direction, with a greater trend toward lower values than that

seen in the synthetic data (Fig. 8 B). Overall, the amplitude

and FWHM distributions resembled those of the synthetic

data, but with larger FWHM values than those normally

reported (23).

In contrast, the conventional algorithm on the same

transient episodes was able to detect a portion of the sparks

in the data. All the detected sparks were localized within the

first few milliseconds of the transient episode, for the period

during which the fluorescence intensity was still above the

detection threshold. However, as Ca21 reuptake occurred,

the number of sparks detected became dependent on the

growing difference between the estimated (x,y) baseline fluo-

rescence (constant) and the mean fluorescence (decreasing)

1 Cri 3 s. Hence, the number of sparks detected also

decreased as the fluorescence approached the detection

threshold and required increasingly higher amplitude to be

detected. Once the fluorescence fell below this threshold, no

further sparks were found. In addition, the Ca21 transient

associated with the nuclei was delayed with respect to the

cytosolic Ca21 transient and lasted longer (26), as seen in the

online supplemental movie in Supplementary Material. This

phenomenon created additional intensity peaks in the

normalized fluorescence field, biasing the calculation of the

fluorescence standard deviation. As a result, the presence of

the Ca21 transient compromised the performance of the

conventional algorithm upon experimental data.

Fig. 9 A shows an example of the experimental results

obtained using the multidimensional algorithm with the

detected sparks marked with boxes; Fig. 9 B illustrates a

spark spatial frequency map, displayed as a smoothed 2-D

FIGURE 6 Statistical parameters ob-

tained for the conventional algorithm

for uniform baseline fluorescence (top

row) and Ca21 reuptake (bottom row).

(A and C) Sensitivities as a function of

synthetic spark normalized amplitude

for various threshold criteria, Cri. (B

and D) False negative rate (blue) and

positive predictive values (green) as a

function of synthetic spark normalized

amplitude for values of Cri. The aver-

age results of eye detection by a

coauthor were fitted to a sigmoid curve

and given as the solid red lines. Curves

shifted to the right indicate diminished

detection properties. Note the change in

x axis limits between panels A and B
and panels C and D.

FIGURE 7 Number of false negatives as a function of spark density for

synthetic data. Circles and fitted solid line indicate those detected using the

conventional algorithm; plus signs and fitted dotted line indicate those

detected using the multidimensional algorithm. Only those sparks with DF/

F0 . 0.3 are considered.
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histogram to avoid discretization effects. The map shows that

some Ca21 sparks appear around, or even within, the nucleus

boundaries. In part, this is due to the fact that the frequency

histogram is a sum over a binned square area. Even so, ob-

served sparks that overlapped the nuclear area were not

uncommon; the temporal development of a representative

spark from one nucleus is shown in Fig. 9 C. Closer obser-

vation of these sparks revealed that the spark foci begins in

the perinuclear area and diffuses outward from that point.

Laser scanning confocal microscopy may reveal that such

spark activity is above or below the nucleus. Investigating

the origin of sparks proximal to the nucleus is a subject for

future study.

DISCUSSION

The goals of this study were to develop a means of iden-

tifying Ca21 sparks from 2-D spatiotemporal fluorescence

data and measuring their important morphological parame-

ters. For line scanning techniques, various methods have

been implemented to automatically detect and isolate sparks

for analysis, the conventional algorithm developed by Cheng

et al. and its variants being the most widely used (9). The

conventional algorithm corrects the line scan image for

baseline fluorescence by subtracting a constant value for

each spatial location. Such an approach would be appropriate

for long periods of quiescence but inadequate during a Ca21

transient, in which not only the global [Ca21]i is above base-

line levels, but the associated fluorescence varies non-

linearly. An algorithm for identification of Ca21 release sites

in 2-D confocal images has been developed previously using

a specialized detection kernel to enhance contrast (14,16) but

relies on a priori knowledge of the spark properties to define

the kernel characteristics. Furthermore, if sparks occur in

close proximity, any detected spark must be distinguished

from its neighbors. This is not a concern when single sparks

are evoked (27), but may be problematic when the sparks

originate from multiple foci or the activation frequency is

high (28). Here, we have presented a means of localizing

sparks spatiotemporally, with a generalized mathematical

FIGURE 8 (A) Estimated FWHM values in x and y as a function of esti-

mated amplitude using the detection algorithm on data collected from Ca21

transient events (n¼ 21). Error bars show mean 6 SE. (B) Histograms of the

estimated FWHM values in x and y for the experimental data sets.

FIGURE 9 (A) An example of spark detection algorithm performance of

experimental data taken at t ¼ 89 ms; t ¼ 0 is the point at which the tissue

fluorescence has fallen to 25% of its maximum intensity. (Left) [Ca21]i

fluorescence of the tissue. Red rectangles indicate the boundaries of a

detected spark in (x,y) and borders of nuclei are shown in yellow outline.

Scale bar is 20 mm. (Right) (x,y,t) image sequence (x,y, horizontal axes; t,

vertical axis; t¼ 0 at the bottom face) with the red boxes indicating the (x,y,t)
boundaries of a detected spark. The image frame shown in the left panel is

illustrated as a horizontal cross section in the right panel. (B) Spatial map of

spark frequency. Detected spark locations are expressed as a 2-D smoothed

histogram with 25 3 25 mm2 bins. Scale bar is 20 mm. Borders of nuclei

shown with a white outline. (C) Image of DF/F0 smoothed with 3 3 3 spatial

average filter depicting the development of a perinuclear spark. Black

outline indicates contour of nucleus labeled with an asterisk in panel B. Scale

bar is 5 mm.
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formulation that lends itself to either (x,t) or (x,y,t) spark

analysis.

Refinement of detection techniques has particular impli-

cations in elucidating the link between spark morphology to

pathophysiological cardiac states. For example, Lindner et al.

examined the differences between Ca21 sparks in myocytes

obtained from normal and terminally failing human hearts

(29). Their results indicate that factors such as decreased

SERCA expression and activity contribute to significant

alterations in time-to-peak and half-time of decay. Changes

in spark frequency have also been reported from myocytes

isolated from patients exhibiting atrial fibrillation (30),

although the results are inconsistent with those of Lindner

et al. Other changes in spark characteristics have been noted:

hypertrophic myocytes isolated from spontaneously hyper-

tensive rats displayed an increase in the average Ca21 spark

amplitude (31), although yet again, differing results have

been reported (32). These discrepancies on the cellular level

coupled with the presence of subcellular heterogeneities

indicates the need to visualize the Ca21 spark fully to better

assess the impact of cardiomyopathic cellular remodeling.

The full-width half-maximum is a standard measurement in

spark analysis, and has been applied to the derivation of other

parameters such as spark ‘‘mass’’ (the volume integral of the

change in fluorescence) (33), as well as inferring the necessary

amount of current required to generate a spark (34). Because it

has been observed that Ca21 diffusion is anisotropic with

respect to the sarcomeric Z-lines (11) and that sparks are asym-

metric in shape (35), our algorithm computes the Gaussian

profile along two perpendicular spatial axes. Such an ap-

proach may facilitate calculations of spark mass, which often

assumes an isotropic distribution implying a spherical or

cylindrical symmetry (13,36) that may not be appropriate for

some experimental conditions. The FWHM values seen here

were in the range of 2–4 mm, which is larger than those

previously reported in ventricular neonatal rat myocytes (1.5–

2 mm) (37). One possible reason for this disparity is that the

values described in the literature were obtained from single

dissociated myocytes, whereas this study uses monolayer

tissue cultures; sparks with a spatial extent .2 mm have been

observed in multicellular rat papillary muscle preparations

(38). Another reason is that a spark may activate Ca21 release

from neighboring ryanodine receptors to form a compound

spark (‘‘macrospark’’) (2,28,39). Several additional reasons

include: 1), additional blurring introduced by the wider depth-

of-field associated with the CCD camera; and 2), the use of

binning to increase the temporal frame rate but with the side

effect that sparks with a smaller spatial extent may go

undetected since the effective pixel size is now larger.

Several factors may increase spark frequency, ranging

from increasing [Ca21]i or SR [Ca21] content (25),

decreasing extracellular [Na1] (7), and altering the intracel-

lular pH (40), as well as the presence of sites that exhibit

sudden bursts of high spark activity (41). When sparks are

occurring in close proximity in either space or time, the con-

ventional algorithm will produce a proportion of false

negatives. This results from the presence of multiple sparks

within a suprathreshold region, since the peak with the

highest amplitude will be selected but the adjacent peaks will

be omitted. If this occurs, either the single detected spark is

retained or the entire region must be discarded from consid-

eration. In addition, the spark clustering may lead to poor

estimation of spatiotemporal parameters. Although our syn-

thetic data possessed a relatively low number of adjacent

sparks, the number of sparks recovered by proper separation

will vary depending on the experimental conditions. For

example, a study by Hollingsworth et al. estimated that up to

15% of detected sparks obtained from frog skeletal muscle

failed to be analyzed for this reason (13). Our results indicate

that the multidimensional maxima and watershed computa-

tion will improve detection in conditions associated with

increased spark activity (30) and without the use of a separa-

tion threshold, as has been attempted previously (20).

The quality of spark detection was found to be highly

dependent upon multiple factors. Temporal nonlinear heter-

ogeneities arise from several sources: 1), monotonic de-

creases in intensity (such as during photobleaching); and 2),

large-scale changes in intensity from nonspark activity. Such

temporal changes may also be spatially heterogeneous, such

as the difference between cytosolic and perinuclear [Ca21]i

diffusion (26). These problems can be minimized with an

estimated fluorescence distribution that accommodates these

nonlinear changes in space and time. If performed correctly,

sparks may be extracted during the high [Ca21]i levels as-

sociated with a whole-cell Ca21 transient, as illustrated by

the comparison of the conventional and multidimensional

algorithms. Our results corroborate a recent study (42) de-

monstrating the positive predictive value (PPV) as a useful

performance metric in light of Type I errors caused by low-

amplitude sparks. The conventional algorithm achieved a

higher PPV overall compared to the multidimensional algo-

rithm. However, the sensitivity of the conventional algorithm

is largely abolished when the underlying large-scale [Ca21]i

activity is temporally nonuniform. The inability of the con-

ventional algorithm to accommodate such changes for 2-D

Ca21 focal release imaging has been noted previously (12).

Because the performance of the spark detection procedure is

dependent on the quality of input, further refinement of the

fluorescence subtraction methodology would be needed to

bring the PPV to a comparable level with the conventional

algorithm while maintaining the improved sensitivity under

the [Ca21]i conditions modeled here.

In summary, the algorithm presented here provides a basis

for extracting Ca21 sparks from 2-D cell cultures of cardiac

ventricular myocytes. The complexity of Ca21 release in

multiple spatial dimensions necessitates the development of

more sophisticated spark detection methodologies. The mor-

phological data obtained from such studies are needed to

further examine the relationship of spark function at the

microscopic and macroscopic structural levels, as well as
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cardiac myocyte behavior under normal and pathological

conditions.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http:/www.biophysj.org.
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