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Abstract

Following genotoxic stress, transcriptional activation

of target genes by p53 tumor suppressor is critical in

cell fate determination. Here we report that the resto-

ration of p53 function in human cancer cell lines that

are deficient in p53 functionupregulated the expression

of Notch1. Interestingly, the expression of wild-type

p53 in human prostate and breast cancer cell lines

correlated well with increased expression of Notch1.

Furthermore, knockdown of p53 expression in cancer

cells that express wild-type p53 resulted in reduced

expression of Notch1. Importantly, genotoxic stress

to cancer cells that resulted in activation of p53 also

upregulated the expression of Notch1. Moreover, p53-

mediated induction of Notch1 expression was associ-

atedwith stimulationof the activity of Notch-responsive

reporters. Notably, p53 differentially regulated the

expression of Notch family members: expression of

Notch2 and Notch4 was not induced by p53. Sig-

nificantly, treatment of cells with gamma secretase

inhibitor, an inhibitor of Notch signaling, increased

susceptibility to apoptosis in response to genotoxic

stress. Together, our observations suggest that p53-

mediated upregulation of Notch1 expression in human

cancer cell lines contributes to cell fate determination

after genotoxic stress.
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Introduction

p53 is a key tumor suppressor that is mutated in > 50% of

human cancers [1–3]. p53 is a transcription factor that

activates the transcription of its target genes by binding to

a p53 DNA-binding consensus sequence [2]. Importantly,

proteins encoded by p53 target genes contribute to the de-

termination of cell fate after genotoxic stress [4,5]. p53

mediates its tumor-suppressive functions by inducing cell

growth arrest, apoptosis, or senescence [3,6].

A recent study [7] has identified a potential p53 DNA-binding

site about 3.7 kb upstream in the promoter region of the human

Notch1 gene. Notch1 gene encodes a protein that belongs to a

family of large (f 300 kDa), single-pass, evolutionarily con-

served membrane-associated receptors [8,9]. Other members

of the mammalian Notch family include Notch2, Notch3, and

Notch4. Proteins in the family primarily regulate cell fate and

lineage specification during embryonic and postembryonic

development. These proteins have conserved structural ele-

ments in their extracellular transmembrane and intracellular

domains [8,9]. Mammalian cells are shown to express five li-

gands (i.e., Jagged-1, Jagged-2, Delta-1, Delta-3, and Delta-4)

for Notch family receptors [10]. Notch signaling is initiated by

receptor– ligand interactions between neighboring cells, re-

sulting in two successive proteolytic cleavages by tumor ne-

crosis factor-a–converting enzyme and gamma secretase/

presenilin complex [11,12]. These two proteolytic cleavages

of the Notch receptor protein result in the release of the intra-

cellular domain [notch intracellular domain (NIC), the function-

ally active form of Notch], which translocates to the nucleus

and modulates the transcription of target genes. Gamma

secretase inhibitors (GSIs), such as the tripeptide inhibitor

z-Leu–Leu–Nle–CHO, inhibit the generation of NIC [13,14].

Consequently, treatment of cells with GSI is shown to inhibit

Notch signaling [13,15] and to decrease cell survival.

After nuclear translocation, NIC binds to CBF1 (also termed

RBP-Jn), a DNA-binding protein [16,17]. In the absence of NIC,

CBF1 acts as a transcriptional repressor. However, the binding
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of NIC to CBF1 converts it to a transcriptional activator, which

results in Notch1-dependent transcriptional activation of

genes. Notch1 target genes include Hes (Hairy/Enhancer

of Split), p21CIP1/WAF1, and cyclin D [16,17].

Similar to its role in development, the role of Notch family

members in oncogenesis appears to be cell type/organ–

specific. Aberrant Notch1 signaling has been cited as causa-

tive in T-cell lymphoblastic leukemias, certain lymphomas,

breast carcinomas, and kidney carcinomas [18]. In keratino-

cytes, however, Notch1 signaling mediates terminal differ-

entiation [16]. Neoplastic effects of Notch1 may be attributed

to its role as a cell survival factor in tumor cells mainly

through the inhibition of p53 through mammalian target of

rapamycin (mTOR) [19]. In addition, there have been other

reports of Notch-mediated inhibition of p53 functions, in-

cluding apoptosis [20,21].

Although the role of Notch1 in regulating p53 function has

been reported, it is not known whether p53 has any effect

on Notch1 expression and/or its functions. In the present

study, we demonstrate that the restoration of p53 function in

human cancer cell lines deficient in p53 function upregu-

lates the expression of Notch1. Significantly, we found that

genotoxic stress, which resulted in transcriptional activa-

tion of p53, also upregulated the expression of Notch1 in

human cancer cell lines. Moreover, inhibition of Notch1

activity after genotoxic stress by an inhibitor of Notch sig-

naling increased susceptibility to apoptosis. Together, our

observations provide support for the idea that induction of

Notch1 expression by p53 in cells counteracts p53-mediated

proapoptotic functions.

Materials and Methods

Cell Lines, Culture Conditions, and Treatments

Saos-2 cells, stably expressing the temperature-sensitive

mutant (Val138 mutation) of human p53 (with Arg72) [22],

were generously provided by Dr. Maureen Murphy (Fox

Chase Cancer Center, Philadelphia, PA). LNCaP, DU-145,

PC-3, MCF-7, and Saos-2 cell lines were purchased from

the American Type Culture Collection (Manassas, VA). All

cell lines (except Saos-2) used in the study were maintained

in (high-glucose) Dulbecco’s modified Eagle’s medium

(Invitrogen Life Technologies, Carlsbad, CA) supplemented

with 10% (vol/vol) fetal bovine serum and antibiotics. The

Saos-2 cell line was maintained in RPMI 1640 medium.

Temperature-sensitive cells were maintained at the speci-

fied temperature, and the medium was left unchanged for the

duration (15–17 hours) of treatment. Etoposide (Calbiochem,

San Diego, CA) was prepared as a 50-mM stock solution

in dimethyl sulfoxide (DMSO) and stored at �20jC until

use. Control cell plates were treated with an equal volume

of DMSO.

Knockdown of p53 Expression

Subconfluent cultures of LNCaP cells were transfected

with a pool of p53 siRNA (cat no. M-003557-00-05; purchased

from Dharmacon, Denver, CO) or nonspecific control siRNA

(cat no. D-001206-02-05) as recommended by the supplier

using Lipofectamine (Invitrogen Life Technologies) transfec-

tion agent. Sixty hours after the transfection of cells, cell

lysates were prepared and processed for immunoblotting.

Nucleofection

PC-3 or Saos-2 cells were nucleofected with pCMV or

pCMV-p53 plasmid (2 mg) using Nucleofector-II device (Amaxa

Biosystems, Nattermannallee 1, Germany). PC-3 cells were

nucleofected using Nucleofection Kit VCA-1001 (Amaxa Bio-

systems) and the T-013 program, as suggested by the sup-

plier. For Saos-2 cells, we used the same nucleofection kit

with the program D-024. If so indicated, 24 hours after the

nucleofection of cells, cells were treated with etoposide

(45 mM) for 24 hours. Forty-eight hours after nucleofection,

cells were processed for immunoblotting.

Reverse Transcription–Polymerase Chain Reaction

Total RNA was isolated from the indicated cells using

TRIzol reagent (Invitrogen Life Technologies), as suggested

by the supplier. Isolated total RNA was subjected to cDNA

synthesis using SuperScript First-Stand Synthesis system

(Invitrogen Life Technologies), as suggested by the supplier,

followed by PCR, using a pair of primers specific to human

Notch1 cDNA (forward primer: 5V-CAGGCAATCCGAG-

GACTATG-3V; reverse primer: 5V-CAGGCGTGTTGTTCT-

CACAG-3V), p21, or actin cDNA using a kit from Invitrogen

Life Technologies, as suggested by the supplier. The PCR

product for human Notch1 (428 bp) was analyzed by agarose

gel electrophoresis after 36 PCR cycles.

Immunoblotting and Antibodies

Total cell lysates were prepared in a modified RIPA buffer

(50 mM Tris–HCl pH 8.0, 250 mM NaCl, 1% NP-40, 0.5%

sodium deoxycholate, and 0.1% sodium dodecyl sulfate plus

complete mini EDTA-free protease inhibitor cocktail; Roche,

Mannheim, Germany). Lysates were incubated for 30 min-

utes on ice and sonicated briefly. The lysates were centri-

fuged at 14,000 rpm in a microfuge at 4jC for 10 minutes,

and equivalent protein amounts were subjected to immuno-

blotting as described previously [23].

The following antibodies used in our experiments were

purchased from Santa Cruz Biotechnology (Santa Cruz, CA):

p53 (horseradish peroxidase–conjugated; cat no. sc-6243),

p21 (horseradish peroxidase–conjugated; no. sc-397),

Notch2 (no. sc-5545), Notch4 (no. sc-5594), glyceraldehyde-

3-phosphatase dehydrogenase (GAPDH) (no. sc-32233), and

a-tubulin (no. sc-8035). Human total Notch1 antibody (bTan20

ascites fluid) was purchased from Developmental Studies

Hybridoma Bank (Iowa City, IA). Processed/cleaved Notch1

antibody (Val1744; no. 2421) was purchased from Cell Sig-

naling Technology (Danvers, MA). b-Actin antibody (no.

A3853) was from Sigma (St. Louis, MO).

Reporter Assays

Subconfluent cultures (in 60-mm plates) of cells were

transfected with FuGene6 transfection agent (Roche Applied
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Science, Indianapolis, IN), as suggested by the supplier,

using 2 mg of total plasmid DNA per plate. Forty-two to

44 hours after transfection, cells were lysed, and the ac-

tivities of firefly luciferase and Renilla luciferase were deter-

mined as described previously [24].

Flow Cytometry

Flow cytometry was performed on single-cell suspen-

sions on adherent (after trypsin and EDTA treatment) and

floating cells after pooling them. Briefly, for cell cycle analy-

sis, cells were stained with propidium iodide (50 mg/ml;

Sigma) and subjected to flow cytometry using a Coulter

Epics XL-MCL flow cytometer (Coulter, Fullerton, CA), as

described previously [24]. Apoptosis was measured by the

accumulation of cells with sub-G0 DNA content.

Results

Recently, Notch1 gene has been identified as a potential

transcriptional target of p53 in human cells [7]. Therefore,

we tested whether p53 could regulate the expression of

Notch1 gene in human cancer cell lines that are deficient in

p53 function.

Expression of a Temperature-Sensitive Mutant of p53

in Human Saos-2 Cells Upregulates the

Expression of Notch1

To determine whether p53 could upregulate the expres-

sion of Notch1 in human cancer cells, we chose to use the

well-characterized human osteosarcoma Saos-2 cell system

(Saos-2 cells are null for p53). Saos-2 cells express a

temperature-sensitive mutant of p53 with the amino acid

residue Arg (instead of Pro) at position 72 (cells indicated

as SaosArg72; see Dumont et al. [22]). As shown in Figure 1A,

incubation of SaosArg72 cells at 32jC for 16 or 24 hours re-

sulted in upregulation of p21 protein, a transcriptional target

of p53 protein. Importantly, levels of Notch1 protein also

increased several fold in extracts from SaosArg72 cells that

were incubated at 32jC.
To rule out the possibility that incubation of cells at a

reduced (32jC) temperature could account for increases

in Notch1 protein levels (independent of p53 expression),

we also compared Notch1 protein levels between paren-

tal Saos-2 cells that were incubated at 39j and parental

Saos-2 cells that were incubated at 32jC. We found no

difference between Notch1 protein levels in extracts from

cells incubated at these two temperatures (data not shown).

Figure 1. Restoration of p53 expression in the human Saos-2 osteosarcoma cell line upregulates the expression of Notch1. (A) Subconfluent cultures of SaosArg72

cells were either incubated at 39jC (lane 1), incubated at 32jC for 16 hours (lane 2), or incubated at 32jC for 24 hours (lane 3). After incubation, total cell lysates

were analyzed by immunoblotting using antibodies specific to the indicated proteins. (B) Saos-2 cells were nucleofected with either an empty vector pCMV (lane 1)

or the plasmid pCMV-p53 encoding wild-type p53 (lane 2). Sixty hours after the nucleofection of cells, cells were lysed, and cell lysates containing an equal amount

of proteins were processed for immunoblotting using antibodies specific to the indicated proteins. (C) Subconfluent cultures of SaosArg72 cells were incubated either

at 39jC (lane 1) or at 32jC (lane 2). Twenty-four hours after incubation, total RNA was isolated, and steady-state levels of Notch1, p21, and actin mRNA were

analyzed by semiquantitative reverse transcription–polymerase chain reaction. (D and E) Two sets of SaosArg72 cell cultures (in 60-mm plates) were transfected

with p21-luc, CBF1-luc, or Hes1-luc reporter plasmid (1.8 �g) along with pRL-TK plasmid (0.2 �g; plasmids in a 9:1 ratio) using FuGene6 transfection reagent. One

set of plates for each reporter was incubated at 39jC, and the other sets of plates were incubated at 32jC. Forty-four hours after incubation, cells were processed

for dual luciferase reporter activity assays, as described in Materials and Methods. Firefly luciferase reporter activity was normalized to Renilla luciferase activity to

control for variations in nucleofection efficiencies. Luciferase activity for p21-luc (C) and for CBF1-luc and Hes1-luc (D) in control cells is shown.
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Moreover, forced expression of wild-type p53 in Saos-2 cells

(after the nucleofection of cells with pCMV-p53 plasmid

encoding wild-type p53) also resulted in upregulation of

Notch1 expression (Figure 1B).

We also noted that steady-state levels of Notch1 mRNA

also increased about two-fold in SaosArg72 cells after their

incubation at 32jC for 24 hours (Figure 1C). Although we

were unable to detect the processed NIC form of Notch1

protein in extracts from SaosArg72 cells that were incubated

at 32jC for 16 or 24 hours using Val1744 antibody to cleaved

Notch1 protein, we found that the activity of the two Notch1-

responsive reporters (CBF1-luc and Hes1-luc) was consis-

tently stimulated in SaosArg72 cells after incubation at 32jC
for 24 hours (Figure 1,D and E ). Moreover, we noted that the

activity of CBF1-luc reporter was stimulated robustly com-

pared to the activity of Hes1-luc reporter. The reasons for this

differential stimulation of Notch1-responsive reporters in

SaosArg72 cells remain unknown. Together, these observa-

tions suggested that the restoration of p53 function in Saos-2

cells upregulated Notch1 expression and stimulation of the

activity of Notch1-responsive reporters.

The Functional Status of p53 in Human Cancer Cell Lines

Correlated with Expression Levels of Notch1 Protein

Our observations on the upregulation of Notch1 expression

by functional p53 in human Saos-2 cell lines made it impor-

tant to determine whether the functional status of p53 in

human cancer cell lines correlates with expression levels of

Notch1. Because three common human prostate cancer cell

lines (LNCaP, DU-145, and PC-3) and two human breast

cancer cell lines (MCF-7 and MDA-468) are known to differ

with respect to the functional status of p53, we compared the

expression levels of Notch1 protein in these cancer cell lines.

Consistent with a previous report [25], expression of p53 was

detectable in LNCaP (wild-type p53) and DU-145 (mutant

p53) cells (Figure 2A). However, the expression of p53 was

not detectable in PC-3 cells (null for p53). Likewise, the ex-

pression of p53 was detectable in MCF-7 (wild-type p53) and

MDA-468 (mutant p53) cells (Figure 2B). Moreover, consistent

with the functional status of p53 in these cell lines, expression

levels of p21 were relatively high in extracts from LNCaP and

MCF-7 cells. Importantly, consistent with a previous report

[26], levels of the full-length Notch1 protein were also relatively

high in LNCaP cells than in DU-145 and PC-3 cells (cf. lane 1

with lane 2 or lane 3). Similarly, levels of Notch1 protein were

relatively higher in MCF-7 cells than in MDA-468 cells. To-

gether, these observations suggested that the wild-type

status of p53 in the above human cancer cell lines is asso-

ciated with increased expression levels of Notch1 protein.

Forced Expression of p53 in PC-3 Cells Upregulated

Notch1 Expression

Because PC-3 cells are null for p53, we tested whether

restoration of p53 expression in these cells and activation of

Figure 2. The functional status of p53 and its expression levels in human cancer cell lines correlate with expression levels of Notch1 protein. (A) Total cell lysates

from human prostate cancer cell lines LNCaP (lane 1), DU-145 (lane 2), or PC-3 (lane 3) were analyzed by immunoblotting using antibodies specific to the indicated

proteins. (B) Total cell lysates from the human breast cancer cell line MCF-7 (lane 1) or MDA-468 (lane 2) were analyzed by immunoblotting using antibodies

specific to the indicated proteins. (C) PC-3 cells were nucleofected with either pCMV vector (2 �g; lanes 1 and 2) or pCMV-p53 (wild-type) plasmid (2 �g; lanes 3

and 4), as described in Materials and Methods. Twenty-four hours after nucleofection, cells were either left untreated (lanes 1 and 3) or treated with etoposide

(45 M) for 24 hours. Forty-eight hours after nucleofection, total cell extracts were analyzed by immunoblotting using antibodies specific to the indicated proteins. (D)

LNCaP cells were transfected with either control siRNA (lane 1) or a pool of p53 siRNA (lane 2), as described in Materials and Methods, using Lipofectamine

transfection reagent. Sixty hours after the transfection of cells, total cell lysates were analyzed by immunoblotting using antibodies specific to the indicated proteins.
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p53 by genotoxic stress have any effect on Notch1 expres-

sion. As shown in Figure 2C, restoration of the expression of

wild-type p53 in cells upregulated p21 and Notch1 protein

levels (cf. lane 3 with lane 1). Interestingly, treatment of

these cells expressing wild-type p53 with etoposide further

upregulated the expression of both p21 and Notch1 proteins

(cf. lane 4 with lane 3). These observations suggested

that restoration of p53 function in PC-3 cells upregulated

Notch1 expression.

Knockdown of p53 Expression in LNCaP Cells

Downregulated Notch1 Expression

To further examine whether p53 regulates the expression

of Notch1, we chose to knock down the expression of p53 in

LNCaP cells. As shown in Figure 2D, transfection of LNCaP

cells with a pool of p53 siRNA, but not control siRNA,

resulted in a > 70% decrease in p53 protein levels (cf.

lane 2 with lane 1). Importantly, the knockdown of p53

expression in cells resulted in decreases in p21 and Notch1

protein levels. These observations suggested that the ex-

pression of functional p53 in LNCaP cells contributes to

relatively higher steady-state levels of Notch1 protein.

Activation of p53 By Genotoxic Stress Upregulates

Notch1 Expression

Genotoxic stress to cells due to their exposure to DNA-

damaging agents, such as etoposide, is known to activate

p53-mediated transcription of its target genes [27]. There-

fore, we sought to determine whether exposure of LNCaP or

MCF-7 cell lines, which express wild-type p53, to etoposide

results in upregulation of Notch1. As shown in Figure 3A,

treatment of LNCaP cells with etoposide resulted in the

upregulation and activation of p53 in a dose-dependent

manner. Moreover, treatment of cells resulted in upregulation

of p21 and Notch1 proteins. Similarly, treatment of MCF-7

cells with etoposide resulted in upregulation of both p21 and

Notch1 protein levels (Figure 3B). However, treatment of

human prostate cancer cell lines PC-3 (null for p53) and

DU-145 (mutant p53) with increasing concentrations (22.5,

45, or 90 mM) of etoposide for 24 hours did not result in

upregulation of Notch1 protein (Figure 3, C and D, respec-

tively). Together, these observations indicated that geno-

toxic stress– induced activation of p53 in human cancer

cell lines also upregulates Notch1 expression.

p53 Differentially Regulates the Expression of Notch

Family Members

p53-mediated upregulation of Notch1 mRNA and protein

in Saos-2 cells (Figure 1) made it interesting to determine

whether p53 also regulates the expression of other members

of the Notch receptor family. For this purpose, we compared

the expression levels of Notch1, Notch2, and Notch4 pro-

teins in extracts from SaosArg72 cells that were incubated

at 39j or 32j. Consistent with our previous observations

(Figure 1A), we found that incubation of cells at 32jC
resulted in upregulation of Notch1 proteins (Figure 4; cf.

lane 2 with lane 1). Interestingly, incubation of cells at 32jC
did not result in upregulation of Notch2 or Notch4 protein

Figure 3. Etoposide treatment – induced genotoxic stress in p53-positive human cancer cell lines upregulates Notch1 expression. (A) Total cell lysates from the

human prostate cancer cell line LNCaP, treated with either DMSO alone (lane 1), 45 �M etoposide (final concentration; lane 2), or 90 �M etoposide (final

concentration; lane 3) for 15 hours, were analyzed by immunoblotting using antibodies specific to the indicated proteins. (B) Total cell lysates from the human

breast cancer cell line MCF-7, either treated with DMSO alone (lane 1) or treated with 45 �M etoposide (final concentration) for the indicated time (hours), were

analyzed by immunoblotting using antibodies specific to the indicated proteins. (C and D) Total cell lysates from the human prostate cancer cell line PC-3 (C) or

DU-145 (D), either treated with DMSO alone (lane 1) or treated with indicated concentrations of etoposide for 24 hours, were analyzed by immunoblotting using

antibodies specific to the indicated proteins.

Regulation of Notch1 Expression by p53 Alimirah et al. 431

Neoplasia . Vol. 9, No. 5, 2007



levels (cf. lane 2 with lane 1). These observations suggested

that functional p53 differentially regulates the expression of

Notch receptor family members in human SaosArg72 cells.

Inhibition of Notch1 Activity and Genotoxic Stress

Cooperate in MCF7 Cells to Increase Susceptibility

to Apoptosis

Notch signaling is known to play an important role in

mammary gland tumorigenesis [28]. Moreover, increased

expression of Notch1 protein in human breast cancer cell

lines is associated with their resistance to apoptosis [29].

Therefore, we tested whether genotoxic stress– induced

upregulation of Notch1 expression in the MCF-7 breast

cancer cell line contributes to increases in resistance to

apoptosis. As shown in Figure 5, treatment of MCF-7 cells

with GSI (an inhibitor of Notch1 activity) [13,15] or etoposide

resulted in increases in p53, p21, and Notch1 protein levels.

Consistent with increases in p53 protein levels after GSI

treatment of cells, we noted some cleavage of PARP protein,

an indication of apoptosis. However, flow cytometry analysis

of GSI-treated cells (after propidium iodide staining of DNA)

for the accumulation of cells in sub-G0 phase indicated

no increase in sub-G0 cells (compared to control cells; Fig-

ure 5B). Moreover, treatment of cells with etoposide alone

did not result in detectable cleavage of PARP protein.

Interestingly, treatment of cells with both GSI and etoposide

resulted in measurable increases in the cleavage of PARP

protein (cf. lane 4 with lane 2) and measurably increased

accumulation of cells in the sub-G0 phase, as determined

by flow cytometry (Figure 5B). These observations indi-

cated that inhibition of Notch1 activation in MCF-7 cells

and etoposide treatment of cells together increase suscep-

tibility to apoptosis.

Discussion

Inhibition of cell proliferation by p53 is largely attributable to its

ability to transcriptionally activate the expression of genes that

encode proteins, which determine cell fate [4,30]. Depending

Figure 4. p53 differentially regulates the expression of Notch receptor family

members. Subconfluent cultures of SaosArg72 cells were incubated at either

39jC (lane 1) or 32jC (lane 2) for 24 hours. After incubation, total cell ly-

sates were analyzed by immunoblotting using antibodies specific to the

indicated proteins.

Figure 5. Inhibition of Notch1 activity and genotoxic stress increase susceptibility to apoptosis. (A) Subconfluent cultures of MCF-7 cell line were either left

untreated (lane 1) or treated with GSI (lane 2; 25 �M), etoposide (lane 3; 45 �M), or both GSI and etoposide (lane 4). Cells were incubated for 20 hours, and total

cell lysates were analyzed by immunoblotting using antibodies specific to the indicated proteins. Two arrows indicate two forms of PARP protein: the precursor

form (113 kDa) and the cleaved form (85 kDa). (B) Subconfluent cultures of the MCF-7 cell line were either left untreated (control; top left panel) or treated with

GSI (25 �M; top right panel), etoposide (45 �M; bottom left panel), or both GSI and etoposide (bottom right panel). After incubation of cells for 20 hours, floating

and attached cells were collected and processed for propidium iodide staining followed by flow cytometry. The percentage of cells in sub-G0 phase is indicated

in each panel.
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on cellular context, wild-type p53 limits cell proliferation in

response to DNA damage and other cellular stresses by in-

ducing cell cycle arrest, apoptosis, or senescence [2–5].

The human Notch1 gene has been identified as a direct

transcriptional target of p53 [7]. Based on this observation

and accumulating evidence for crosstalks between Notch1

and p53 signaling pathways to regulate cell fate [20,21], we

investigated whether p53 could regulate Notch1 gene ex-

pression in human cancer cell lines that lack p53 function.

Our experiments revealed that: 1) expression of functional

p53 in human cancer cell lines upregulated the expression of

Notch1 mRNA and protein (Figure 1); 2) p53-mediated

increased levels of Notch1 protein in cell lines stimulated

the activity of Notch-responsive reporters (Figure 1); 3)

knockdown of p53 expression in LNCaP cells reduced the

expression levels of Notch1 protein (Figure 2); 4) in response

to genotoxic stress by etoposide treatment of human pros-

tate (LNCaP) and breast (MCF-7) cancer cell lines, tran-

scriptional activation of p53 also upregulated Notch1

expression (Figure 3); 5) p53 did not upregulate the expres-

sion of Notch2 and Notch4 in Saos-2 cells (Figure 4); and 6)

treatment of MCF-7 cells with GSI, an inhibitor of Notch

signaling, increased susceptibility to apoptosis induced by

etoposide treatment of cells (Figure 5). Together, these

observations provide support for the idea that p53-mediated

upregulation of Notch1 expression in human cancer cell lines

counteracts p53-mediated proapoptotic functions.

Consistent with our observations, activated Notch1 is

shown to exert antiapoptotic effects on cells by inhibiting

p53-mediated transactivation [20]. Moreover, survival sig-

naling by Notch1 is mediated, in part, through the PI3 kinase/

AKT/mTOR axis [19]. In contrast to the antiapoptotic role of

activated Notch1 in the above cell systems, conditional

expression of a constitutively active form of Notch1 in early

progenitor cells, but not in postmitotic neurons, selectively

induced apoptosis [31]. Together, these observations pro-

vide support for the idea that Notch1-mediated determination

of cell fate depends on cellular context.

p53 has been reported to negatively regulate Notch1

expression and activation in several mouse thymoma cell

lines [21]. Moreover, the study also showed that expression

of activated Notch1 (NIC) was elevated in Trp53�/� thymo-

cytes compared to that in Trp53+/+ thymocytes. Because

activated p53 is shown to differently activate the transcription

of genes in different tissues in vivo [32], further work will

be needed to determine whether p53-mediated regulation

of Notch1 expression varies among different mouse and

human tissues and cell lines derived from these tissues.

It has been reported that SV40 virus–encoded proteins

(large T antigen and small t antigen) that inactivate p53

function can upregulate the expression of Notch1 mRNA

and protein in human mesothelial cells [33]. Therefore, it is

likely that signaling pathways independent of p53 also acti-

vate the transcription of Notch1 gene in SV40 virus– infected

mesothelial cells. Furthermore, it is important to note that

p53 knockout mice are viable with no obvious developmental

abnormalities [34]. However, these mice are prone to devel-

oping certain types of cancers later in life [34]. These

observations are consistent with the idea that, in addition

to p53, other factors also contribute to the regulation of

Notch1 expression in certain mouse and human cells.

While this manuscript was under review, two reports

[35,36] provided evidence that the human Notch1 gene is a

direct transcriptional target of p53 tumor suppressor. In one

of these studies [35], the authors identified two potential p53

DNA-binding sites (p53-A and p53-B) in the promoter region

(about 3.5 and 0.8 kb, respectively) of Notch1 gene. More-

over, they reported that p53 associated with these p53 DNA-

binding sites in chromatin immunoprecipitation assays and

upregulated the expression of Notch1 in normal primary

human keratinocytes. Similarly, Yugawa et al. [36] reported

the presence of at least two (proximal and distal) putative

p53 DNA-binding sites in the promoter region of the human

Notch1 gene. Importantly, mutations in the distal p53 DNA-

binding site resulted in reduction in the basal activity of the

promoter and lack of response to ionizing radiation. More-

over, this study also indicated that inactivation of p53 by

human papillomavirus–encoded E6 protein in human kera-

tinocytes and epithelial cells resulted in downregulation of

Notch1 expression. Therefore, taken together, the observa-

tions described here and in the two studies [35,36] are

consistent with the idea that the human Notch1 gene is a

transcriptional target of p53 in a variety of human cells. More

importantly, these studies provide support for the idea that,

depending on cellular context, Notch1 expression contrib-

utes to a different cell fate.

Aberrant Notch1 signaling has been cited as causative in

T-cell lymphoblastic leukemia, certain lymphomas, breast

carcinomas, and kidney carcinomas [18]. Significantly, our

observations raise the possibility that Notch1 protein can

function as a survival effector in wild-type p53-containing

human cancer cells exposed to genotoxic stress. Because

many human tumors maintain wild-type p53 status, inhibition

of Notch1 function provides a logical approach to selectively

targeting such tumors for effective cancer therapy.
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