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A
central issue in developmental

biology is the understanding of
how various processes interact
to produce spatio-temporal

patterns in the embryo. To even observe
these dynamical patterns directly is a
challenge and, although technological
advances in, for example, imaging tech-
niques are beginning to address this
problem, it is still far from trivial. A
new strain of mouse that is deficient in
hair formation (1) now makes it possible
to visualize directly traveling waves of
pigmentation propagating over the skin
of the mouse. This new study adds an
extra dimension to the challenge of elu-
cidating the mechanisms that underlie
embryonic pattern formation and
provides further evidence for self-
organization.

From an apparently homogeneous
mass of dividing cells in the very early
stages of development emerges the vast
and sometimes spectacular array of pat-
terns and structures observed in ani-
mals. The mechanisms underlying the
coordination required for cells to pro-
duce pattern on a spatial scale much
larger than a single cell is still largely a
mystery, despite a huge amount of ex-
perimental and theoretical research.
There is inherent in the oocytes posi-
tional information that must guide pat-
tern, but cells that are completely dis-
sociated and randomly mixed can
recombine to form periodic spatial
structures (2). This leads to the intrigu-
ing possibility that at least some aspects
of spatio-temporal patterning in the em-
bryo arise from the process of self-orga-
nization. The mathematician Alan Tur-
ing first proposed such a mechanism in
his seminal 1952 article (3), in which he
showed that a system of chemicals could
evolve spontaneously into a spatial pat-
tern. He further hypothesized that if
these chemicals, which he termed mor-
phogens, cued cell differentiation, then
the patterns we see in nature would be
the interpretation of chemical prepat-
terns. One year earlier, the Russian
chemist Belousov showed experimentally
that a system of reacting and diffusing
chemicals could evolve into a spatio-
temporal pattern of traveling waves and
spirals. This reaction is known as the
Belousov–Zhabotinskii (BZ) reaction
(see ref. 4 for a brief review of the his-
tory of this reaction), and such spatio-
temporal patterns have now been ob-
served in a range of chemical systems.

A number of authors have shown that
Turing-type models can exhibit an enor-
mous diversity of patterns, many of
them consistent with those observed in
nature (5, 6), and Turing’s original con-
cept was developed more fully into the
general patterning principle of short-
range activation, long-range inhibition
(7) (sometimes known as local-activa-
tion-lateral-inhibition, or LALI). In
1995, Kondo and Asai (8) showed that,
in certain fish species, pigmentation
stripes moved as the fish grew until the
interstripe distance was about twice the
original wavelength, at which point an-
other stripe was initiated to preserve the

original wavelength. This is consistent
not only with the Turing-type models,
but also with other LALI models. Now,
in a fascinating new study, Suzuki et al.
(1) show that traveling patterns, similar
to those observed by Belousov, can ac-
tually be exhibited on the skin of certain
mice. Although traveling patterns of
hair formation in mice have been known
for some time, this article carries out a
detailed study of this phenomenon on a
new mutant strain of mouse. In this
mouse, hair follicle development termi-
nates just after pigment begins to accu-
mulate in the follicle. The immature fol-
licles are discharged, new follicles begin
to form, and the cycle of pigment accu-
mulation resumes. This results at first in
the pigmentation pattern on the skin
oscillating synchronously. About 30 days
later, they observe a broad traveling
band of pigment moving along the skin
of the mouse; the band then splits into
two traveling bands moving in opposite
directions. As the mouse matures, the
bands narrow. Eventually, in the adult,
each wave appears to arise from the
armpit regions and spreads over the
skin.

The progression from bulk (synchro-
nous) oscillations to traveling bands is
common in chemical systems and is well
understood by using mathematical mod-

els. It is interesting to note that, al-
though the study of pattern formation in
chemistry is characterized by experiment
and theory moving hand in hand, with
theory informing experiment and vice
versa, in developmental biology few ex-
perimentalists have embraced mathe-
matical modeling. A notable exception
is Kondo and his laboratory. In their
present study, they show that the spac-
ing of subsequent waves varies as in the
BZ reaction and that waves collide also
in a similar way to the BZ reaction. The
phenomenon of traveling waves with
variable wavelength also occurs during
the aggregation phase in the slime mold
Dictyostelium discoideum. There, a plau-
sible explanation for this variation is
that biochemical properties affecting
wave speed change over the course of
aggregation. However, mathematical
modeling reveals that this is not neces-
sary, because the change in period of
the signaling cAMP waves is a natural
consequence of the aggregation process
interacting with the excitable medium
from which the waves are generated (9).

The type of spatial patterning ob-
served in Suzuki et al. (1) is more com-
plicated than the sequential patterning
that is typical in many areas of develop-
mental biology. For example, pigmenta-
tion patterns on certain alligators begin
at the head and form behind a traveling
front of pattern initiation (10); feather
germ patterns form in a hexagonal array
behind a propagating maturation front
(11). The fronts are unique in each of
these cases, so the problem of collision
does not arise. However, for photore-
ceptors in the developing Drosophila
eye, one can make ectopic fronts that
travel in different directions to the endog-
enous front and arrange for collisions
between fronts. In this case, pattern for-
mation self-organizes behind the endoge-
nous and ectopic fronts (12). A very
well studied example of patterning be-
hind a front occurs in somitogenesis,
where somites form in a well ordered
spatio-temporal sequence from head to
tail. Recently, it has been shown that
waves of gene expression actually propa-
gate in the opposite direction, narrowing
as they move headway and defining, it
seems, the caudal part of the next
somite (13).

See companion article on page 9680.
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If morphogens cued
cell differentiation, then
natural patterns would
be the interpretation of
chemical prepatterns.
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Suzuki et al. (1) conjecture that there
is a pacemaker around the armpit re-
gion. However, another possible expla-
nation is that there could be a reentrant
trajectory around the torso and arms,
much as is thought to happen in a ring
of cardiac tissue, or around a myocardial
infarct leading to sustained activity in
the ventricles (see, for example, ref. 14).

The ability of reaction–diffusion
mechanisms of the type proposed by
Turing to generate stable spatial pat-
terns has been demonstrated in a num-
ber of chemical systems. For example,
the chloride-iodide-malonic acid reac-
tion yields stable patterns of stripes and
spots exactly as predicted by the model
(15, 16). However, whether such mecha-
nisms act to specify pattern in biology
remains hugely controversial. For exam-
ple, although Turing-type models can
provide very elegant explanations for
the formation of periodic striped pat-
terns of, for example, the pair-rule

genes during Drosophila segmentation,
experiments suggest that each stripe
forms independently and that this pat-
tern is the result of a complex cascade
of interacting gradient-like elements.
Examples such as this illustrate that,
although self-organization may provide
an elegant means of producing patterns
de novo, pattern formation in biology
may sometimes depend more on sequen-
tial elaboration of initially simple asym-
metries (17).

The hypothesis that biological pattern
formation is the result of self-organiza-
tion, though highly controversial and

largely ignored by experimental biolo-
gists, does raise a number of very im-
portant points. For example, in Turing’s
model, the chemicals are proposed to
react in such a way that, in the absence
of diffusion, they reach a stable, spa-
tially uniform steady state. It is diffu-
sion, normally assumed to be a homoge-
nizing process, that actually drives the
instability. That is, two stabilizing ele-
ments are combined to produce an in-
stability. This is an example of an emer-
gent property and shows that not only is
it important to determine the individual
components in a biological system, but it
is at least equally as important to under-
stand how they interact. The BZ reac-
tion is another example. It is a relax-
ation oscillator, but researching the
molecular basis of this reaction in the
hope of finding the oscillating element
would be fruitless. It is the integration
of the elements that leads to the oscilla-
tor. Mathematical models can also pro-
vide a mechanistic understanding of ob-
served developmental constraints (18).
Perhaps the most famous of these con-
straints is that described by Murray (5),
who showed that it is more likely to
have a spotted animal with a striped tail
than a striped animal with a spotted tail.

Of course, biology is much more com-
plicated than chemistry, and so, whereas
in the latter we now have several well
identified and studied examples of self-
organization, in the former we do not
yet have the molecular detail at hand to
support or refute the self-organization
hypothesis. The article by Suzuki et al.
in this issue of PNAS (1) does, however,
provide another example of a biological
pattern that can, at least, be mimicked
by a mathematical model for self-
organization. The growing number of
examples of patterns that can be mim-
icked by simple models based on self-
organization presents a challenge to
experimentalists to determine the mo-
lecular circuitry that underlies these pat-
terning events. Coat patterns form an
ideal system in which to pursue this

question because they are easily visual-
ized compared with, say, patterns at gas-
trulation, and variants tend to be viable.

Progress is now being made through
the use of genetics. For example, a wide
range of mutant strains of zebrafish
have been identified that exhibit altered
pigmentation patterns. In the case of
mutations of one gene in particular, the
leopard gene, it is possible to match the
observed allelic sequence by smoothly
varying a parameter in a Turing-type
model (19). This lends further support
to the notion that a self-organizing pro-
cess is at work in this system. In the
present study, Suzuki et al. (1) identify
the expression patterns of a number of
genes that may play an important role in
the spatio-temporal dynamics they ob-
serve. They also allude to the possible
functions they may have in establishing
the appropriate interactions for a self-
organizing process.

As pointed out by Suzuki et al. (1), in
a number of animals, each individual
hair (or quill in the case of porcupines)
has a roughly periodic pigmentation pat-
tern. In such cases, this pattern could be
the spatial read-out of a temporally os-
cillating process of pigmentation produc-
tion. The biochemical pathways underly-
ing melanin synthesis have been studied
in detail (20), and a mathematical
model for melanogenesis has been pro-
posed (21) that takes into account sev-
eral of the key elements involved. The
resultant model, a system of ordinary
differential equations, is of a type that
can exhibit temporal oscillations. Incor-
porating spatial variation and coupling
into such models may provide a frame-
work in which one could study how the
local dynamics that give rise to propa-
gating patterns on an individual hair
interact to give the global spatio-tempo-
ral picture. We may then be able to an-
swer the age-old question of how the
leopard got its spots (22).
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