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It is shown that for each 0 < l < 1, the free Araki–Woods factor of
type IIIl cannot be written as a tensor product of two diffuse von
Neumann algebras (i.e., is prime) and does not contain a Cartan
subalgebra.

A von Neumann algebra M is called prime if it cannot be
written as a tensor product of two diffuse von Neumann

algebras. Using Voiculescu’s free entropy theory (1), Ge (2) and
later Stefan (3) gave examples of prime factors of type II1 (and
hence of type II`). An example of a separable prime factor of
type III is given here: I show that for each 0 , l , 1, the type
IIIl free Araki–Woods factor Tl introduced in ref. 4 is prime.
The main idea of the proof is to interpret the decomposition
Tl 5 A R B as a condition on its core, which is of type II. I then
use Stefan’s result (3) showing that L(F`) cannot be written as
the closure of the linear span of NzC1zC2 where N is a II1 factor,
which is not prime, and Ci are abelian von Neumann algebras.

I also prove the existence of separable type III factors that do
not have Cartan subalgebras by showing that Tl, 0 , l , 1 has
no Cartan subalgebras. The key ingredient is Voiculescu’s result
on the absence of Cartan subalgebras in L(F`) (1).

Although the proofs are based on a reduction to the case of
type II algebras (for which free entropy methods are available),
I believe that the results of this paper should be viewed as an
indication that free entropy theory should have an extension to
algebras of type III.

Tl Is Prime
We use the following theorem, due to Connes (see sections 4.2
and 4.3 of ref. 5):

THEOREM 2.1. Let M be a separable type IIIl factor with 0 ,
l , 1. Then there exists a faithful normal state f on M, for which:

1. The centralizer Mf 5 {m [ M ; f(mn) 5 f(nm) @n [ M}
is a factor of type II1;

2. The modular group st
f of f is periodic, of period exactly

2pylogl;
3. M is generated as a von Neumann algebra by Mf and an isometry

V, satisfying:
(a) V*V 5 1, Vk(V*)k [ Mf for all k;
(b) st

f(V) 5 l2it(V); thus, f(Vk(V*)k) 5 lkf((V*)kVk) 5
lkf(1) 5 lk;

(c) V normalizes Mf: VmV* and V* mV are both in Mf if
m [ Mf.

The weight f R Tr(B(,2)) is unique up to scalar multiples and up
to conjugation by (inner) automorphisms of M > M R B(,2).

Moreover, 2f 1 and 3; 1f 2 and 3. In particular, if f1 and f2

satisfy either 1 or 2, the centralizers Mf1 and Mf2 are stably
isomorphic: Mf1 R B(,2) > Mf2 R B(,2).

The existence of such a state can be easily seen by writing M
as the crossed product of a type II` factor C by a trace-scaling
action of Z: set f̂ to be the crossed-product weight (where C is
taken with its semifinite trace). Next, compress to a finite
projection p [ C and set f 5 f̂(pzp). The isometry V is precisely
the compression of the unitary U, implementing the trace-
scaling action of Z.

Recall that a von Neumann algebra M is called full if its group
of inner automorphisms is closed in the u-topology inside its
group of all automorphisms (see ref. 6).

LEMMA 2.2. Let M be a full type IIIl factor. Assume that
M 5 A1 R A2, where A1 and A2 are von Neumann algebras. Then
A1 and A2 are both full factors, and exactly one of the following
must hold true:

1. A1 and A2 are both of type IIIl1
and IIIl2

, respectively, and l1,
l2 satisfy:
(i) 0 , li , 1, i 5 1, 2, (ii) l1

Zl2
Z 5 lZ;

2. For some i Þ j, Ai is of type IIIl and Aj is of type II;
3. For some i Þ j, Ai is of type IIIl and Aj is of type I.

In particular, if we require that A1 and A2 must both be diffuse, only
1 and 2 can occur. Moreover, if 2 occurs, we may assume that one
of the algebras A1, A2 is of type II1.

Proof: If one of A1, A2 fails to be a factor, then their tensor
product would fail to be a factor, hence both A1 and A2 must be
factors. Similarly, if at least one of A1 and A2 fails to be full, their
tensor product would fail to be full.

If, say, A1 is of type I or type II, then A2 must be type III,
because otherwise A1 R A2 would be of type II or type I. Hence
if at least one of A1 and A2 is not type III, the situation described
in 2 or 3 must occur.

If A1 and A2 are both type III, so that A is type IIIl1
and A2

is type IIIl2
, we must prove that lZ 5 l1

Zl2
Z. Neither l1 nor l2 can

be zero, because then at least one of A1, A2 would then fail to
be full, and hence A1 R A2 would fail to be full.

Denote by T(M) the T invariant of Connes (see section 1.3 of
ref. 5). Since

2pZ

log l
5 T~A1 ^ A2! 5 T~A1! ù T~A2!

[ref. 5, Theorem 1.3.4(c)] and T(Aj) 5 (2pZyloglj), statement
1 must hold.

PROPOSITION 2.3. Let M be a type IIIl factor, and assume that
M 5 A1 R A2, where A1 is a type IIIl1

factor, A is a type IIIl2
factor,

and lZ 5 l1
Zl2

Z. Let fi be a normal faithful state on Ai as
in Theorem 2.1, and let f 5 f1 R f2 be a normal faithful state
on M.

Then the centralizer Mf of f in M is a factor, which can be written
as a closure of the linear span of NzC1zC2, where N is a tensor
product of two type II1 factors, and Ci are abelian von Neumann
algebras. In particular, Mf is not isomorphic to L(F`).

Proof: Since the modular group of f1 R f2 is st
f1 R st

f2, it
follows that st

f1 ^ f2 has period exactly 2pylog l. Hence the
centralizer of f1 R f2 is a factor.

Choose now a decreasing sequence of projections pk
(1) [ A1

f1,
pk

(2) [ A2
f2, with fi(pk

(i)) 5 li
k, and isometries Vi [ Ai, so that

V*iVi 5 1, Vi
k(V*i)k 5 pk

(i), so that Vi normalizes Ai
fi, and Ai 5

W*(Ai
fi, Vi). Then A1 R A2 is densely spanned by elements of the

form

W 5 V 1
m1 ^ V 2

n1za1
~1! ^ a1

~2!zV 1
m2 ^ V 2

n2aj
~i! [ Ai

fi, mi, ni [ Z,

with the convention that Vi
2n 5 (V*i)n if n $ 0.
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Using the fact that V*iaVi, ViaV*i [ Ai
fi whenever a [ Ai

fi, we
can rewrite W as

W 5 ~V*1!m ^ ~V*2!nza~1! ^ a~2!zV1
l ^ V2

k,

a~i! [ Ai
fi, m, n, k, l $ 0.

Let now pk 5 pk
(1) 5 V1

k(V*1)k [ A1
f1 be as above. One can

choose a diffuse commutative von Neumann algebra !, con-
taining pk, k $ 0, and so that ! , A1

f1 and V1!V*1, V*1!V1 ,
!. Choose a projection ! ] q0 # p1, so that q0 ' p2 and f1(q) 5
Nf1(1 2 p1) 5 N(1 2 l1) for some integer N. Choose
projections ! ] q1, . . . , qn # 1 2 p1, so that ¥i51

N qi 5 1 2 p1

and f1(qi) 5 f1(q0) 5 (1yN)f1(1 2 p1). Choose matrix units
{eij}0#i, j#N , A1

f1, so that eii 5 qi, 0 # i # N. Let C be the von
Neumann algebra generated by

$V1
keij~V*1!k ; 1 # i , j # N, k $ 0%.

By our choice of eij, C is hyperfinite (notice that V1
keii(V*1)k [ !,

and C is in fact the crossed product of ! > L`(X) by a singly
generated equivalence relation). Let R1 5 W*(C, V) , A1. Then
R1 is also hyperfinite; in fact, it is the crossed product of C by the
endomorphism x ° V1xV*1. Notice that R1 contains V1. Fur-
thermore, for all k $ 0, there is a d $ 0 and partial isometries
r1, . . . , rd [ R1 ù A1

f1, so that

1 2 V1
k~V*1!k 5 O

i 5 1

d

riV1
k~V*1!kr*i.

Construct in a similar way the algebra R2 , A2, in such a way
that V2 [ R2 and for all k $ 0, there is a d $ 0 and partial
isometries r1, . . . , rd [ R2 ù A2

f2, so that

1 2 V2
k~V*2!k 5 O

i 5 1

d

riV2
k~V*2!kr*i.

Notice that R1 R R2 , A1 R A2 is globally fixed by the modular
group of f1 R f2. In particular, this means that

~R1 ^ R2!
f1 ^ f2uR1 ^ R2 5 ~R1 ^ R2! ù ~A1 ^ A2!

f1 ^ f2.

Assume now that W [ (A1 R A2)f1 ^ f2. Then st
f1 ^ f2(W) 5

W. Hence l1
m2lzl2

n2k 5 1. It follows that W can be written in one
of the following forms, using the fact that V*iAi

fiVi , Ai
fi:

W 5 ~V*1!m ^ 1za~1! ^ a~2!z1 ^ V2
k, or

W 5 1 ^ ~V*2!nza~1! ^ a~2!zV1
l ^ 1,

where a(1) [ A1
f1, a(2) [ A2

f2 and l1
m 5 l2

k, l2
n 5 l1

l . In the first
case, choose r1, . . . , rd [ R1 ù A1

f1 for which 1 2 V1
m(V*1)m 5

¥i51
d riV 1

m(V*1)mr*i. Then, writing

1 5 V 1
m~V *1!m 1 ~1 2 V 1

m~V *1!m!

5 V 1
m~V *1!m 1 O riV 1

m~V *1!mr*i

we obtain

W 5 ~V*1!m ^ 1za~1! ^ a~2!z1 ^ V 2
k

5 @~V*1!ma~1!V 1
m ^ a~2!#z~V*1!m ^ V 2

k

1 O
i 5 1

d

@~V*1!ma~1!riV1
m ^ a~2!#z~V*1!mr*i ^ V2

k

[ span$~A1
f1 ^ A2

f2!z~R1 ^ R2!
f1 ^ f2%.

Reversing the roles of A1 and A2, we get that in general,
span{(A1

f1 R A2
f2)z(R1 R R2)f1 ^ f2} is dense in (A1 R A2)f1 ^ f2.

Since each Ri is hyperfinite, the algebra R1 R R2 is also
hyperfinite; hence (R1 R R2)f1 ^ f2 is hyperfinite. It follows that
the centralizer Mf1 ^ f2 of M 5 A1 R A2 can be written as the
closure of the span of NR, where N is a tensor product of two
type II1 factors, and R is a hyperfinite algebra. Since every
hyperfinite algebra can be written as a linear span of the product
C1zC2, where Ci are abelian von Neumann algebras, it follows
that the centralizer Mf is the closure of the span of NzC1zC2, with
N a tensor product of two type II1 factors, and C1, C2 abelian von
Neumann algebras. Hence by Stefan’s result (3), we get that Mf

cannot be isomorphic to L(F`).
THEOREM 2.4. Let Tl be the free Araki–Woods factor con-

structed in ref. 4. Then Tl À A1 R A2, where A1 and A2 are any
diffuse von Neumann algebras.

Proof: Since Tl is a full IIIl factor, we have by Lemma 2.2 that
the only possible tensor product decompositions with A1 and A2
diffuse are ones where either exactly one of A1 and A2 is type II1
and the other is of type IIIl, or each Ai is of type IIIli

, with
l1

Zl2
Z 5 lZ.

Denote by c the free quasifree state on Tl. It is known (see
ref. 4, Corollary 6.8) that Tl

c is a factor, isomorphic to L(F`). Let
f be an arbitrary normal faithful state on Tl, such that Tl

f is a
factor. Then (see Theorem 2.1), Tl

f R B(,2) > Tl
c R B(,2) >

L(F`) R B(,2). Since L(F`) has R1 as its fundamental group
(see ref. 7), it follows that whenever f is a state on Tl, and Tl

f

is a factor, then Tl
f > L(F`).

Assume now that one of A1, A2 is of type II1; for definiteness,
assume that it is A1. Choose on A2 a normal faithful state f2 for
which Af2 is a factor, and let t be the unique trace on A1. Let f 5
t R f2 on Tl. Then Tl

f > A1 R A2
f2, and hence cannot be

isomorphic to L(F`) by the results of Stephan (3) and Ge (2).
This is a contradiction.

Assume now that Ai is type IIIli
, with 0 , li , 1. Then by

Proposition 2.3 there is a state f on Tl, for which Tl
f is a factor,

but is not isomorphic to L(F`); contradiction.

3. Tl Has No Cartan Subalgebras
Recall that a von Neumann algebra M is said to contain a Cartan
subalgebra A if:

1. A , M is a MASA (maximal abelian subalgebra).
2. There exists a faithful normal conditional expectation E ; M
3 A.

3. M 5 W*(1(A)), where 1(A) 5 {u [ M ; uAu* 5 A, u*u 5
uu* 5 1} is the normalizer of A.

For type II1 factors M, condition 2 is automatically implied by
condition 1.

PROPOSITION 3.1. Let M be a factor of type IIIl, 0 , l , 1. Then
there exists a normal faithful state c on M, so that s2pylogl

c 5 id,
and that the centralizer Mc is a II1 factor containing a Cartan
subalgebra.

Proof: Let A , M be a Cartan subalgebra. Let E ; M 3 A be
a normal faithful conditional expectation. Let f be a normal
faithful state on A > L`[0, 1], and denote by u the state f+E on
M. Then u is a normal faithful state. Furthermore, Mu . A,
because E is u-preserving and hence suuA 5 suuA 5 id. Since M
is type IIIl, it follows that st0

u is inner if t0 5 2pylog l. Let u [
M be a unitary for which st0

u (m) 5 umu*, @m [ M. Then uxu*
5 x for all x [ A, since suuA 5 id. It follows that u [ A9 ù M 5
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A9, since A is a MASA. Choose d [ A positive so that dit0 5 u.
Note that d is in the centralizer of u (which contains A). Set
c(m) 5 u(d21m) for all m [ M. Then the modular group of c
at time t0 is given by Adu* + st0

u 5 id. It follows that c is a
normal faithful state on M, so that st0

c 5 id. It furthermore
follows from Theorem 2.1 that the centralizer of Mc is a factor
of type II1. By the choice of c, its modular group fixes A
pointwise, hence A , Mc.

I claim that A is a Cartan subalgebra in N 5 Mc. First, A9 ù
N , A9 ù M 5 A, hence A is a MASA. Since A is a Cartan
subalgebra in M, M is densely linearly spanned by elements of the
form fzu, where u [ 1(A) is a unitary and f [ A. The map

E~m! 5
1

2pE
0

2p

st
c~m!dt

is a normal faithful conditional expectation from M onto N. If
u [ 1(A) is a unitary, so that ufu* 5 a(f) for all f [ A and a [
Aut(A), then uf 5 a(f)u. Hence

E~u!f 5 E~uf! 5 E~a~f!u! 5 a~f!E~u!.

It follows that N is densely linearly spanned by elements of the
form E(fzu) 5 fzE(u) for f [ A and u [ 1(A). Let w(u) be the
polar part of E(u), and let p(u) 5 E(u)*E(u) be the positive part
of E(u), so that E(u) 5 w(u)p(u) is the polar decomposition of
E(u). Since

E~u!*E~u!a 2 1~f! 5 E~u!*fE~u!

5 a 2 1~f!E~u!*E~u!,

it follows that p(u) commutes with A and hence is in A.
Moreover, we then have that

w~u!fw~u!* 5 a~f!,

so that w(u) [ 1(A) ù N. Thus N is densely linearly spanned
by elements of the form fzu for f [ A and u [ 1(A) ù N, hence
A is a Cartan subalgebra of N.

COROLLARY 3.2. For each 0 , l , 1 the IIIl free Araki–Woods
factor Tl does not have a Cartan subalgebra.

Proof: If Tl were to contain a Cartan subalgebra, it would
follow that for a certain state c on Tl, the centralizer of c is a
factor containing a Cartan subalgebra. Let f be the free
quasifree state on Tl. Then by Theorem 2.1, one has

~Tl!f ^ B~,2! > ~Tl!c ^ B~,2!.

Since (Tl)f > L(F`) (see Corollary 6.8 of ref. 5), and because
the fundamental group of L(F`) is all of R1 (see ref. 7) we
conclude that L(F`) contains a Cartan subalgebra. But this is in
contradiction to a result of Voiculescu that L(F`) has no Cartan
subalgebras (see ref. 1).
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