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We compare, by calculations on a simple model of glycolysis, the
evolutionary development of oscillatory reaction mechanisms in
the presence and absence of external periodic events, such as an
oscillatory or constant influx of glucose in an open reaction system.
The chosen model has autonomous oscillations for given choices of
the parameters of the feedback loops responsible for the oscilla-
tions, and for a given range of the total adenylate pool concen-
tration. We change first one, then two of the parameters, so that
there are no autonomous oscillations, and then vary these param-
eters with a genetic algorithm method in which the parameters are
represented by binary strings that evolve by selection, crossover,
and mutations; the optimization goal is the attainment of a high
ATP�ADP concentration ratio in the system. This goal is taken to
provide evolutionary advantages and is shown to be achieved
more quickly in the presence of external periodic events, rather
than constant influx of glucose. The results suggest the possibility
of the enhanced evolutionary development of oscillatory biolog-
ical reactions at shores where waves impinge on rocks and bring
nutrients periodically. Measurements have shown that animals
and plants grow more rapidly in the presence of such wave action
than in its absence.

An interesting report appeared in 1987 (1) that showed that
the impact of water waves in intertidal zones enhances the

biological growth of intertidal organisms. The authors offer four
possible reasons: (i) ‘‘waves aid in protecting intertidal inhabit-
ants from their principal enemies’’; (ii) ‘‘waves strip away the
boundary layer of used water from kelp blades, thus facilitating
nutrient uptake’’; (iii) ‘‘waves apparently enhance algal produc-
tivity by allowing algae to use light more efficiently’’; and (iv)
‘‘waves enable some of the shore’s more productive inhabitants
to displace their competitors.’’ Furthermore, they add, ‘‘in
general, intertidal zones of the northeastern Pacific are more
completely covered by plants and animals the more exposed they
are to wave action.’’

In this article, we propose a possible additional reason: in
unicellular and higher organisms, there exist oscillatory reac-
tions, far from equilibrium (e.g., glycolysis under certain condi-
tions including constant influx of glucose; refs. 2 and 3), in which
concentrations of metabolites vary in nonlinear oscillations with
a given period. External periodic perturbations of such reactions
in concentration, temperature, pressure, light intensity, or im-
posed electric fields can phase shift the oscillatory rate compared
to the oscillatory Gibbs free energy change, with consequent
changes in the dissipation and conversely in the efficiency of the
reaction (4–8). Similar phase shifts occur in alternating current
(AC) networks, where the analog of the rate is the current, and
that of the Gibbs free energy change is proportional to the
voltage. These effects of an ‘‘AC chemistry’’ have been shown in
experiments on the oscillatory horseradish peroxidase reaction
by external periodic variation of the oxygen influx concentration
into the system (9, 10), in photosynthesis in a C3 plant (11, 12),
and in theoretical studies in proton transfer (7, 13) and com-
bustion reactions (14, 15). In calculations on a model of glycolysis
(5, 6), with a constant input of glucose, it was shown that the ratio
of the concentrations ATP�ADP is substantially increased after

a transition from steady state kinetics to oscillatory kinetics, with
that ratio averaged over a full oscillation. A variation of dissi-
pation, both increases and decreases, with the frequency of an
external perturbation on an oscillatory reaction within entrain-
ment bands was reported in ref. 17. We are considering time
scales of the order of minutes, not circadian time scales.

The combination of our prior experience on autonomous and
externally periodically perturbed oscillatory reaction and this
stimulating report (1) has led us to consider the possibility that
oscillatory reactions in biological systems may have evolved in
response to periodic perturbations of water waves impacting on
a shore. We investigate this conjecture by considering a simple
system, a part of the reaction mechanism of glycolysis shown in
Fig. 1, and employ a genetic algorithm (GA) that is analogous of
the processes of selection, crossovers (recombinations), and
mutations in the gene pool that occur during the evolution of a
biological population. The values of the enzymatic binding
constants and rate constants are abbreviated EBR. In the EBR,
there are four dissociation constants for ligands bound to the R
and T conformations (KR

AMP, K2,T
ATP, KR

AMP, and K4,T
ATP) for phos-

phofructokinase (PFKase) and pyruvate kinase (PKase), respec-
tively, and in turn we define two ratios of �1 � KR

AMP�K2,T
ATP and

�2 � KR
Fru-1.6-P2�K4,T

ATP as variables, for which autonomous oscil-
lations occur at constant influx of glucose (Table 1, and for
details on rate constants, see ref. 5).

We start the GA procedure by choosing an influx of glucose
and the adenylate pool concentration (the sum of the concen-
trations of AMP, ADP, and ATP) such that this reaction
mechanism has single stable stationary state (in Table 1, the
initial value of �1 by the GA is the first number given in the
second column and the initial value of �1, �2 is the first number
in the fourth column). We then compare the evolutionary
development of two types of such systems, one with a constant
influx of glucose and the other with an oscillatory influx of
glucose, to model the periodic effect of waves impinging on an
organism. We allow a given initial choice of the EBR to vary by
small random increments from one generation to the next, first
for one variable and then for two, and carry out this variation
systematically by means of a numerical GA method.

For prior applications of the GA to problems in chemical
kinetics see refs. 18 and 19. For our study, we wish to optimize
the ratio ATP�ADP, and assume that this ratio is a correlative
measure of the rate of growth of an organism. The questions to
be asked then are: (i) what is the relative development in time
with the GA-controlled variation of the EBR of the two types of
systems, one with constant influx of glucose, the other with an
oscillatory influx of glucose, with average influx the same as in
the constant influx case? (ii) How will the ATP�ADP ratio
produced by the GA variation of the EBR compare in the two
types of systems? (iii) What are the changes as we go from one
to two variables? (iv) What bearings do the answers to these
questions have on the issue of the evolutionary development of

Abbreviations: GA, genetic algorithm; EBR, enzymatic binding and rate constants.
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biological oscillatory reactions and the observations reported in
ref. 1?

GA Calculations
The GA works with encoding a parameter of the EBR into a
binary string. The algorithm evolves parameter sets by the
operations of selection, crossover and mutations into the strings
from one generation to the next. A variable p has a simple form,
pin�(1 � pmax�R�(216 � 1)), where pin is the initial value of p, pmax
gives the maximum change of the parameter not per generation
but overall, and R is initially set to be zero; then a binary string
corresponding to R is evolved within the range 0 � R � 216 �
1 by the GA operations. In the GA, we assign strings for 24
individuals for the variables in the EBR, searching from the
initial stable stationary state to autonomous oscillation. We set
the maximum change of each variable per generation within
�7%. For more details of description of GAs, see refs. 18 and 19.

Results of Computations
One Variable. We consider the ratio �1 as a variable and choose
the adenylate pool to be constant at 41.3 mM; �2 is set to be
constant at 0.075. The stationary states of the kinetic equations
for this system (see ref. 5) yield the bifurcation diagram shown
in Fig. 2, which is a plot of the real part of the temporal
eigenvalues of the linearized kinetic equations vs. the parameter
�1. For �1 � 0.334, the real part is negative, and the stationary
states are stable foci or nodes. For �1 � 0.334, the stationary
states are unstable foci and evolve to a stable limit cycle with a
period of 0.505 min in the vicinity of the bifurcation.

In the application of the GA we compare two different
systems; one has a constant influx of glucose (the flow, Vconst �

2 mM�min) and the other has a sinusoidal oscillatory influx of
glucose with the same average flux as that of the constant influx,
i.e., Vosl � Vconst � a�sin[(2��T)t], where a is the amplitude and
T is the period of the oscillation. For each system, we select 24
copies (individuals) of the system, each with an initial value of
the parameter �1 � 0.25, such that no oscillations occur. We set
pmax to be 0.8, such that the middle value of �1 (0.35) (see Table
1) is in the vicinity of the bifurcation. In each new generation, the
binary strings of �1 are evolved by the GA operators within a
range such that the new highest value of the parameter in any one
generation does not differ by more than 7% from the prior
generation. The kinetic equations (see equations 1–16 and 21 in
ref. 5) are then solved for each of the 24 individuals and from
these solutions we record the state attained for each individual,
either stationary or oscillatory. We define the ratio of the
ATP�ADP in units of its initial value. For the stationary case, the
ratio is (ATP�ADP)stat�(ATP�ADP)�1�0.25

, where (ATP�
ADP)stat is the ratio of ATP�ADP in a stationary state and
(ATP�ADP)�1�0.25

is the ratio of the initial stationary state at
�1 � 0.25. For the oscillatory case, the ratio is (ATP�ADP)osc�
(ATP�ADP)�1�0.25

, where (ATP�ADP)osc is time averaged over
one period of the oscillation. In each generation and in each
group of 24, we select the system with the highest ATP�ADP
ratio and pass that individual to the next generation; we change
the worst performer to equal the best performer, and we alter
the remaining individuals by mutations and recombinations
prior to passing them on to the next generation. As the number
of generations increases, the individuals attain higher values of
the parameter �1 up to and beyond the bifurcation.

In the oscillatory influx of glucose, we drive the initially stable
focus with a given period (frequency) and amplitude of the

Fig. 1. A simple model of the reaction mechanism of glycolysis (see more details in ref. 5). In the EBR, there are four dissociation constants for ligands bound
to the R and T conformations (KR

AMP, K2,T
ATP, KR

AMP, and K4,T
ATP) for PFKase (step 2) and PKase (step 4), respectively.

Table 1. Values of parameters in glycolysis model

Parameter
Experimental

value
GA

one variable pmax

GA
two variable pmax

�1 � KR
AMP�K2,T

ATP 0.417 0.25–0.45 0.8 0.25–0.45 0.8
�2 � KR

Fru-1.6-P2�K4,T
ATP 0.0215 0.075 — 0.053–0.954 0.8

Adenylate pool concentration, mM 40.95 41.3 41.3

The values of the enzymatic binding constants at autonomous oscillations for constant influx of glucose are
given in the first column (see ref. 5; note that the negative signs in equations 7 and 8 of ref. 5 need to be replaced
by a positive sign). We define two ratios of binding constants as variables: �1 � KR

AMP�K2,T
ATP for the second reaction

(step 2) in Fig. 1, and �2 � KR
Fru-1.6-P2�K4,T

ATP for the fourth reaction (step 4). Variable ranges in the GA are given for
one-variable and two-variable cases. The maximum change of the parameter pmax (see Results of Computations)
is determined in such way that the middle values of variables are in the vicinity of the bifurcation. At the initial
values of �1 and �2 for both one-variable and two-variable GA cases, this model has a single stationary state. We
set the adenylate pool concentration to be 41.3 mM for our study.
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imposed sinusoidal glucose oscillation (a � 0.5 mM�min).
Before the bifurcation, the system is either a stable node or
stable focus and responds to the imposed periodic influx of
glucose with the same period as that of the influx. After the
bifurcation, the period of the response may differ from the
period of the autonomous oscillation. Considering the period as
a parameter, we observe that if this period is less than the period
of the autonomous oscillation (0.5 min) in the vicinity of the
bifurcation, the value of the ATP�ADP ratio can be maximized
before the bifurcation; for instance, if the driving period is set to
be 0.43 min, the value of the ATP�ADP ratio is (locally)
maximized before the bifurcation. After the bifurcation, the
value of the ATP�ADP ratio decreases with the fixed external
period. This decrease is caused by the existence of a narrow
entrainment band of the frequency in response to the external
oscillatory influx. However, if the fixed external period after the
bifurcation is outside the entrainment band (see ref. 17), then the
value of the ATP�ADP ratio is decreased.

The result for the one-variable case is shown in Fig. 3a for an
oscillatory influx of glucose. The point at the 30th generation is
at the bifurcation. In Fig. 3b, the ratio of the ATP�ADP as a
function of �1 (deterministic) is plotted, and the plot shows
bistable behavior after the bifurcation (�1 � 0.334). Note the
increase in the ATP�ADP ratio.

An analogous plot for a constant input of glucose is given in
Fig. 3c in which the bifurcation is reached at the 60th generation;
the value of ATP�ADP ratio does not change before the
bifurcation and a very small increase in ATP�ADP ratio occurs
just at the bifurcation. The kinetic equations we solve are
deterministic, but stochastic elements are introduced in the GA.
Hence, individuals in a given group arrive at the bifurcation after
different numbers of generations. Thus, we generate a frequency
distribution for the arrival at the bifurcation as a function of the
generation number. This frequency density for an individual
reaching the bifurcation differs for the oscillatory input, Fig. 4a,
compared to the constant input of glucose, Fig. 4b. The most
probable value of the generation reaching the bifurcation is 30
for the oscillatory input and substantially larger, 59, for the
constant input.

Two Variables. Now we choose �1 and �2 as variables. We set both
pmax to be 0.8, such that the middle value of �1 (0.35) and �2
(0.074) is in the vicinity of the bifurcation. We select 24
individuals of the system with initial values of the parameters
�1 � 0.25 and �2 � 0.053, where the system has no oscillations,
and impose a constant influx of glucose. In each generation, the
binary strings of �1 and �2 evolve by means of the GA operators

within a range such that the new highest value of the parameter
does not differ by �7% from that of the prior generation. We
define again the ratio of the ATP�ADP in units of its initial
value. For the stationary case, the ratio is (ATP�ADP)stat�
(ATP�ADP)�1�0.25,�2�0.053

. For the oscillatory case, the ratio
is (ATP�ADP)osc�(ATP�ADP)�1�0.25,�2�0.053

, where (ATP�
ADP)�1�0.25,�2�0.053

is the ratio of the initial stationary state at �1 �
0.25 and �2 � 0.053. At the bifurcation, the value of the
ATP�ADP ratio has very small increase, from 1.0 to 1.0004, as
shown in Fig. 5a. In Fig. 6a, we generate a frequency distribution
vs. number of generations for an individual to reach the bifur-

Fig. 2. Bifurcation diagram for the adenylate pool at 41.3 with �2 � 0.075.
The real part of the temporal eigenvalues of the linearized kinetic equations
is plotted vs. the parameter �1. The bifurcation occurs after �1 � 0.334.

Fig. 3. Plot of the ATP�ADP ratio (see definition under One Variable in
Results of Computations) vs. the number of generations in the GA (a), �1 for
the oscillatory influx of glucose with the amplitude 0.5 mM�min (deterministic
case) (b), and the number of generations for the constant influx of glucose (c).
In a and c, the highest value of the ATP�ADP ratio among 24 individuals at each
generation by the GA is plotted and shows that systems with the constant
influx of glucose take about double the generations necessary to reach the
autonomous oscillation than for systems with the oscillatory influx of glucose.
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cation and find the most probable number of generation to be
167.

Next, we choose again 24 individuals with initial values of �1 �
0.25 and �2 � 0.053 and impose an oscillatory influx of glucose.
As shown in Fig. 5b, the ATP�ADP ratio at the bifurcation is 1.1,
much higher than the value for the constant flux (1.0004, see Fig.
5a). The most probable number of generation is 76 (Fig. 6b),
which is substantially smaller than the value for the constant flux
(167, see Fig. 6a). Fig. 6 a and b gives the frequency distributions
for the number of generations to reach the bifurcation.

The frequency (period) of the periodic influx of glucose plays
an important role in determining the behavior of the value of
ATP�ADP ratios. This ratio decreases with an increase of �2,
whereas it increases with an increase of �1. The maximum of the
value of the ATP�ADP ratio occurs at �2 � 0.053 (initial value)
and �1 � 0.45 (the maximum value in the range of �1 by the GA).
We set the period of the glucose influx to be 0.65 min (compared
to 0.5 min for the autonomous period in the vicinity of the
bifurcation), so that the rate of change in �2 first is f lat, initially
within a change of 10�3, and then decreases within 10�2 before
the bifurcation. Then, after the bifurcation, the value of the
ATP�ADP ratio monotonically increases with increasing �1 and
�2. With the driving period of 0.65 min, the value of ATP�ADP
ratio increases substantially after the bifurcation. Although the
decreasing rate with increasing �2 is steep enough when the
driving period is 0.5 min, the system can attain autonomous
oscillations because of the driving force of increasing the value
of ATP�ADP ratio in the other variable, �1. This finding is rather
surprising, because, in the one-variable case, with increasing �2
being varied instead of �1, the system would never reach an
autonomous oscillationary state.

Discussion and Conclusion
The imposition of an oscillatory influx of glucose on the reaction
mechanism shown in Fig. 1, initially in a state of no oscillations

Fig. 6. The frequency density vs. number of generations for the two-variable
case to reach the bifurcation. Shown are the constant influx (average, 167) (a)
and the oscillatory influx (average generation, 76) (b).

Fig. 4. The frequency density vs. number of generations to reach the bifur-
cation. Shown are the oscillatory influx (average 30) (a) and the constant influx
(average 59) (b).

Fig. 5. ATP�ADPratiovs. thenumberofgeneration in theGAnecessary to reach
the bifurcation for the two-variable case. (a) Bifurcation at the 178th generation
for the constant influx. (b) Bifurcation occurs at the 79th generation for the
oscillatory influx. The highest value of the ATP�ADP ratio among 24 individuals
at each generation is plotted. At the bifurcation, the ATP�ADP ratio is 1.1 for the
oscillatory influx, much higher than the value, 1.0004, for the constant flux.
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(in a node or a focus), may have two evolutionary advantages
over the same system with a constant influx of glucose: (i) as
shown for the example discussed, a higher ATP�ADP ratio (see
the definition of the ATP�ADP ratio in Results of Computations)
is reached at the bifurcation; and (ii) the bifurcation is reached
more quickly. For the case of the variation of a single variable
with a constant influx of glucose, it takes, for the most probable
development, 59 generations to reach oscillatory conditions with
increased ATP�ADP ratio of 1.0004. For oscillatory input, this
number is reduced to 30 generations with higher ATP�ADP
ratio of 1.1.

In the variation of two variables, for the constant input case,
the number of generations necessary to reach the autonomous
oscillation is 167 generations with increased ATP�ADP ratio of
1.0004 and, for the oscillatory glucose input, 76 generations with
higher ATP�ADP ratio of 1.1. Furthermore, the more variables
are evolved, the more generations are necessary to reach au-

tonomous oscillations; about tripled (from 59 to 167) for the
constant input case and more than doubled (from 30 to 76) for
the oscillatory glucose input. These results are obtained from the
deterministic kinetic calculation and hence, with the application
of the GA, show the driving force toward the bifurcation.

Both advantages suggest that the evolutionary development of
oscillatory reactions, at least in glycolysis, may have occurred at
shores because of the periodic action of water waves. The faster
development of oscillations with periodic wave impact (differ-
ences of time scales of many mutations) assures the spread of
that development away from those shores. But the individuals at
the shore have a higher ATP�ADP ratio than those not at the
shore and growth at the shore may therefore expected to be
higher, as found by observation (1).
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