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Abstract
Background: Proteins that evolve from a common ancestor can change functionality over time,
and it is important to be able identify residues that cause this change. In this paper we show how
a supervised multivariate statistical method, Between Group Analysis (BGA), can be used to
identify these residues from families of proteins with different substrate specifities using multiple
sequence alignments.

Results: We demonstrate the usefulness of this method on three different test cases. Two of these
test cases, the Lactate/Malate dehydrogenase family and Nucleotidyl Cyclases, consist of two
functional groups. The other family, Serine Proteases consists of three groups. BGA was used to
analyse and visualise these three families using two different encoding schemes for the amino acids.

Conclusion: This overall combination of methods in this paper is powerful and flexible while being
computationally very fast and simple. BGA is especially useful because it can be used to analyse any
number of functional classes. In the examples we used in this paper, we have only used 2 or 3
classes for demonstration purposes but any number can be used and visualised.

Background
Proteins that evolve from a common ancestor can change
functionality over time. For example, different related
enzymes can bind to different substrates. Identifying the
residues that cause these changes in specificity is impor-
tant as this could allow one to alter the substrate specifi-
city [1] or to predict the effect of mutations on the protein.
The most common method for identifying SDP (specifi-
city determining positions) starts with the construction of
a multiple sequence alignment of the homologous pro-
teins. Often the branching order of a phylogenetic tree
exactly matches the known functional split between the
proteins. Several methods have been used to identify the
SDP's using only the tree and alignment [2,3], or com-
bined with prediction of ancestral sequences [4] or with

analysis of structures [5-7]. The evolutionary trace (ET)
method, for example, identifies SDPs responsible for sub-
group specificity by partitioning the tree or dendrogram
into an increasing number of subgroups of similar
sequences with subsequent analysis of their three-dimen-
sional (3D) structures [5]

In cases when the functional split does not correspond to
a clear phylogenetic split in the tree, other methods for
identifying the SDPs have to be used. This situation can
arise in highly divergent families, as proteins have multi-
ple features that co-evolve along with specificity, such as
the sub-cellar location or interaction with other proteins
which may give a larger phylogenetic signal than the func-

Published: 23 April 2007

BMC Bioinformatics 2007, 8:135 doi:10.1186/1471-2105-8-135

Received: 14 December 2006
Accepted: 23 April 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/135

© 2007 Wallace and Higgins; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/135
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17451607
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2007, 8:135 http://www.biomedcentral.com/1471-2105/8/135
tional difference [8]. These methods normally require a
multiple alignment, and a classification for the sequences.

Livingstone and Barton implemented a method called
AMAPS that highlighted positions in an alignment that
had different amino acid properties conserved between
different sub-groups [9]. A similar idea is implemented in
the Conserved Property Difference Locator method [10]
which is available as a web server [11]. Mutual informa-
tion has also been used as a measure to identify residues
that confer specificity [12]. It is used to measure of how
often a particular position in a sequence is conserved in
one sub-family, and varies in another. Improvements
were made to this algorithm which included taking into
account the non-uniformity of amino acid substitutions
via amino acid substitution matrices and a method for
automatically setting cut-off thresholds [13]. The method
of Hannenhalli and Russell [8] identifies the functional
residues by comparing hidden Markov model profiles
generated for each subgroup and calculating the relative
entropy for each position. Positions with high relative
entropy have very different amino acid distributions
between the subgroups, and as such are considered possi-
ble SDPs. Pirovano et al. [14] showed that relative entropy
exhibited undesirable asymptotic behaviour, and then
reformulated it as "sequence harmony". Sequence logos
[15] have also been used to visualise differences between
two subfamilies [16,17].

A variety of multivariate statistical approaches have been
applied to sequence analysis over the years. Principal
coordinates analysis [18] was used to plot protein
sequences in a low dimensional space that preserved the
distances between them [19]. Later, principal component
analysis (PCA) was used on multiple sequence alignments
to identify possible functional residues [20]. The columns
in the alignment were converted into a vector of binary
variables of length 20, which represented the absence/
presence of an amino acid at this position. PCA analysis
of this matrix was then used to project the sequences onto
2 or 3 dimensions, which allowed identification of possi-
ble sequence clusters. The residue variables were also pro-
jected onto the same space, so that group specific residues
could be identified. This method was implemented as a
package called SequenceSpace. More recently this method
has been automated so that the user does not have to
manually identify the sequence groups [2] and made
available as a web server [21]. Correspondence analysis
(CA) has also been used to identify SDPs [22]. CA is used
to decompose a chi-squared table between residues and
sequences and has the attraction of automatically plotting
both in the same space. The correspondences between res-
idues and sequences (or groups of sequences) can then be
seen from their proximity on the scatter plots.

CA and PCA are usually considered to be "unsupervised"
techniques, to use the terminology of the field of machine
learning and classification. This means that groups of
objects that are of a-priori interest are not specified in
advance. The axes are derived as those that account for
maximum variance among the objects when these are
plotted on them. Often, this is sufficient to obtain the
information that one is interested in. The groups of inter-
est may separate out in a useful manner along the first 2
or 3 axes or they may not; it will depend on the data set.
Particular splits in the data may not show up in a useful
manner on the plots. The most interesting splits can be
masked by stronger trends of a less interesting nature such
as amino acid composition. The analysis can be "super-
vised" by specifying groups and forcing the analysis to
focus on these. In the case of Pazos et al [22], the relation-
ships between the groups of sequences and residues are
determined by an analysis of CA plots. Groups of
sequences are represented as mean vectors and the resi-
dues that are closest to each vector are the ones that are
most related to that group of sequences.

In this paper, we demonstrate the use of Between Group
Analysis (BGA) for identifying SDPs from a sequence
alignment. BGA is a supervised multivariate analysis
method for sample discrimination and class prediction
[23] and has been recently used to identify genes of inter-
est from microarray data sets [24]. BGA is supervised by
labelling each object (sequence) in advance as belonging
to one of a small number of groups and forcing the axes
to be those that split these groups as much as possible.
Technically, the analysis is accomplished by finding those
axes that maximise the between group variances. Infor-
mally, this is accomplished by treating the group centro-
ids as the objects to be analysed and by carrying out a CA
or PCA on these centroids. This produces results that are
similar in appearance to those derived from multiple dis-
criminant analysis but with the bonus of being robust
when the number of variables exceeds the number of
objects. BGA carried out using PCA is very similar to par-
tial least squares discriminant analysis (PLS DA). In prac-
tice, BGA is carried out in two stages. These are
automatically done using the MADE4 package [25].
Firstly, an ordination is computed using either PCA or CA
on a data set in which the different groups are defined.
BGA then finds linear combinations of the axes that max-
imise between-group variances and minimise within-
group variances. This combination is very flexible as it can
be used to examine any number of pre-specified groups. It
has a further advantage in that it can be combined with a
variety of data types from binary to continuous because of
the way in which it can use PCA or CA.
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Results
Lactate/Malate dehydrogenases
The results for the Lactate/Malate dehydrogenase case
using the two different amino acid encoding schemes are
shown in Figure 4. Each set of results is displayed using
three vertical lines, each of which is a view of the single
axis of the analysis. The sequences are plotted on the line
on the left, the group centroids are in the middle and the
variables/residues are plotted on the right. Each sequence
is joined, by a line, to its group centroid. The ten most
extreme variables at each end of the axis are displayed in
the same order as they appear on the axis. In both sets of
results, the variables at the top of the axis are most associ-
ated with the MDH group of sequences while the residues
at the bottom are most associated with the LDH group.

In both sets of results there is a very clear separation of the
two groups of sequences. This is a useful indicator to tell
if the method was able to successfully separate the two
groups. The inter-group separation is much more than the
intra-group separation. There are no obvious outliers in
either analysis.

Both sets of results correctly identify the Gln-Arg mutation
as being important. This is position 107 in the alignment,
which contains 7 Glutamine's and 1 Methionine in the
Lactate set of sequences but only Arginine in the Malate
set. It is the second most highly ranked position for the
LDH group in the analysis with the binary representation,
as well as the second position for the MDH group in the
method using the AAP encoding. Figure 5 shows the posi-
tions, highlighted in the alignment, that were identified
by the analysis using the AAP encoding.

The positions at the end of the axis are either strongly con-
served in one group but not the other, or are strongly con-
served in both groups but different from each other. If
each group has a different strongly conserved residue the
position will show up at both ends of the axis. This is true
for the top position in the AAP encoding scheme, 152,
which is a fully conserved D in the LDH group and N in
MDH. The top position in the Binary encoding scheme is
position 14, a fully conserved M in LDH and Q in MDH.
Positions that are strongly conserved in one group and not
the other will show up with a residue and position on the
end of the axis corresponding to the group of sequences
that they are conserved in, but there won't be a corre-
sponding variable at the other end. One example of this is

Phylogenetic tree of the nucleotidyl cyclases sequencesFigure 2
Phylogenetic tree of the nucleotidyl cyclases sequences. The 
guanylate sequences are coloured in blue.

Phylogenetic tree of lactate/malate dehydrogenases sequencesFigure 1
Phylogenetic tree of lactate/malate dehydrogenases 
sequences. The Lactate sequences are coloured in red.
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alignment position 106 which is an Arginine (R) in the
lactate sequences but can be either A or P in the Malate
case.

For this dataset, we compared our results with the SDP-
pred web server [26]. SDPpred predicted 15 residue posi-
tions as being important and these are shown in Table 2.
13 of these positions were also found in the top 10 resi-
dues at in the BGA analysis. The two positions that were
predicted by SDPpred and not by BGA were position 9
and 21. Three positions were predicted by the BGA and
not by SDPpred. They were E at position 64, D at 67 and
E at position 44.

Nucleotidyl cyclases
The results for the Nucleotidyl cyclases are shown in Fig-
ure 6, using the two different representation schemes. In
both plots there is clear separation of guanylate cyclases
(GUC) and adenylate cyclases (ADC).). The two positions
(158 and 68), Glu-Lys (E->K) and Cys-Asp (C->D) that are

sufficient to change the specificity are both identified by
the method.

The analysis using the binary representation identifies all
of the residues identified by Hannenhalli and Russell [8].
It also identified a position, 156 in the alignment, which
only ever contains R in the GUC sequences, is mostly Q in
the ADC but can be an R. This means that if there is a
glutamine in that position it is likely to be an adenylate
cyclase. Figure 7shows the positions, highlighted in the
alignment, that were identified by the analysis using the
binary encoding. The results were also compared with the
SDPpred web server. The results are shown in Table 3.
SDPpred predicted 5 positions as being important, all of
which the BGA method identified.

Serine Proteases
Figure 8 demonstrates the effect of sequence weighting for
the trypsin-like serine proteases. The unweighted results
are shown in Figure 8B), while the analysis incorporating
the sequence weighting is in Figure 8A). Axis 1 separates
the trypsins from the chymotrypsins and the elastases.

Axis 1 of the Between Group Analysis for the Lactate/Malate Dehydrogenase test case using the binary encoding (A) and the AAP encoding (B)Figure 4
Axis 1 of the Between Group Analysis for the Lactate/Malate 
Dehydrogenase test case using the binary encoding (A) and 
the AAP encoding (B). In each example the sequence split is 
shown on the left, the residues are plotted on the right. The 
top 10 residues at either end of the axis are shown. Any res-
idues that are plotted at the same coordinate are enclosed in 
a text box. Each variable consists of a number, which is the 
alignment position, followed by a residue type or factor, 
depending on which encoding system was used.

Phylogenetic tree of serine protease sequencesFigure 3
Phylogenetic tree of serine protease sequences. The 
elastases are highligthed in red and the chymotrypsins are in 
blue.
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Table 1: The five factors for each of the amino acids as calculated by Altchely et al [28]

Factor A Factor B Factor C Factor D Factor E

A -0.591 -1.302 -0.733 1.57 -0.146
C -1.343 0.465 -0.862 -1.020 -0.255
D 1.05 0.302 -3.656 -0.259 -3.242
E 1.357 -1.453 1.477 0.113 -0.837
F -1.006 -0.590 1.891 -0.397 0.412
G -0.384 1.652 1.33 1.045 2.064
H 0.336 -0.417 -1.673 -1.474 -0.078
I -1.239 -0.547 2.131 0.393 0.816
K 1.831 -0.561 0.533 -0.277 1.648
L -1.019 -0.987 -1.505 1.266 -0.912
M -0.663 -1.524 2.219 -1.005 1.212
N 0.945 0.828 1.299 -0.169 0.933
P 0.189 2.081 -1.628 0.421 -1.392
Q 0.931 -0.179 -3.005 -0.503 -1.853
R 1.538 -0.055 1.502 0.44 2.897
S -0.228 1.399 -4.760 0.67 -2.647
T -0.032 0.326 2.213 0.908 1.313
V -1.337 -0.279 -0.544 1.242 -1.262
W -0.595 0.009 0.672 -2.128 -0.184
Y 0.26 0.83 3.097 -0.838 1.512

Alignment of a sample of the lactate/malate dehydrogenase sequences with positions highlighted that the analysis using the AAP residues identified as being important for specifityFigure 5
Alignment of a sample of the lactate/malate dehydrogenase sequences with positions highlighted that the analysis using the AAP 
residues identified as being important for specifity. The alignment was drawn with JalView [42].
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Axis 2 separates the chymotrypsins from the elastases. The
effect is most noticeable for the chymotrypsins. The intra
group separation for the chymotrypsins is smaller in the
weighted example than the unweighted example. There is
also a noticeable difference for the trypsin sequences.
When no weighting is applied there are five trypsin
sequences in the same half of the graph as the chymot-

rypsin group, while after applying the weights, there is
only one. There is no noticeable difference in the two
examples for the elastase sequences. The results for serine
proteases using the binary representation are shown in
Figure 9. As correspondence analysis was used as ordina-
tion technique for this analysis, both the sequences and
the variables are plotted in the same space. The variables
associated with a particular group of sequences are plotted
in the same direction as the group centroid with the vari-
ables most associated with the group plotted furthest
along this direction. Axis 1 of the CA separates the trypsin
and the chymotrypsin sequences, and axis 2 separates the
elastase sequences from trypsin and chymotrypsin
sequences.

The most striking aspect of the results is that many resi-
dues are strongly associated with the elastase group. There
are 7 residues plotted in the same position, furthest along
axis 1. They are 130V, 137I, 145Y, 168Q, 219G, 229H,
255V, and they are all fully conserved for the elastases and
not for the other two groups. The residue most associated
with trypsin is D in position 218, which was also identi-
fied by Hannenhalli and Russell [8] as is the next residue,
A in position 254. These two residues are defined as part
of the binding pocket [27]. The other residue in the
pocket, G, in position 246 in the alignment is located at
the negative end of axis 1, on the opposite end of the
elastase group. This is because it is column 246, in this
alignment, for the elastase is blank, whereas the other two
groups have a G in this position. This residue highlights
the critical importance of the alignment for this type of
analysis, as this position didn't show up as significant in
the Hannenhalli and Russell [8] analysis. In the alignment
used by Hannenhalli and Russell [8] this position isn't
blank for the elastases. It in fact contains 50% of G, and as
a result didn't show up as significant. Position 254 is also

Axis 1 of the Between Group Analysis for the Nucleotidyl cyclases test caseFigure 6
Axis 1 of the Between Group Analysis for the Nucleotidyl 
cyclases test case. Details as Figure 4

Table 2: Results from SDPpred web server [26] for the Lactate/Malate dehydrogenase sequences ranked by Z-Score

Ranking Position Mutual Information Z-Score

1 152 4.44E-01 10.41
2 107 4.46E-01 8.44
3 61 4.61E-01 7.99
4 106 4.60E-01 7.13
5 16 4.43E-01 6.26
6 21 4.53E-01 6.19
7 157 3.67E-01 6.18
8 12 3.31E-01 6.18
9 14 4.56E-01 6.1
10 43 4.34E-01 6.05
11 127 4.40E-01 5.93
12 153 4.42E-01 5.63
13 111 3.54E-01 5.46
14 162 4.41E-01 5.23
15 9 3.87E-01 5.09
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strongly associated with the chymotrypsin group, with a C
at that position. The elastases have a fully conserved N in
this position too, however this doesn't show up strongly
in this analysis, as there is also an N present in one of the
chymotrypsins.

Similar results can be seen when PCA is used as the ordi-
nation technique with the AAP encoding, as shown in Fig-
ure 10. Positions 218 and 254 strongly split the
chymotrypsins and the trypsins. Interestingly, factor A at
position 253 is strongly associated with the chymotrypsin
group.

Discussions and Conclusion
The inter relationship between amino acid residues and
the functional properties of a protein is of great impor-
tance in understanding how that protein acts. Investigat-
ing how amino acids vary or are conserved at particular
positions, depending on the function of the protein pro-
vides valuable insight into this relationship. One
approach is to take a collection of sequences from homol-
ogous proteins and to represent them as a multiple align-
ment. This is followed by clustering the sequences into
functional or phylogenetic groups and a search for resi-
due/property correlations [2]. Unfortunately, it is then

Table 3: Results from SDPpred web server [26] for the Nucleotidyl cyclases sequences ranked by Z-Score.

Ranking Position Mutual Information Z-Score

1 158 6.64E-01 19.87
2 162 6.49E-01 18.95
3 67 6.09E-01 18.25
4 68 6.38E-01 17.22
5 20 6.25E-01 16.63

Alignment of a sample of Nucleotidyl cyclases sequences with positions highlighted that the analysis using the binary variables identified as being important for specifityFigure 7
Alignment of a sample of Nucleotidyl cyclases sequences with positions highlighted that the analysis using the binary variables 
identified as being important for specifity. The alignment was drawn with JalView [42].
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challenging to disentangle patterns of residue occurrence
that are due to functional differences between the groups
and patterns that are merely due to the process of amino
acid substitution over time down different phylogenetic
lineages. The fact that phylogenetic and functional group-
ings often disagree makes the situation even more diffi-
cult.

Multivariate analysis provides a logical alternative to tra-
ditional hierarchical clustering and has been used a
number of times to analyse residue/property relationships
[20,22]. This has proven to be useful for informal data
exploration and visualisation. Most recently, Pazos et al
[22] showed how to use Correspondence Analysis for this
purpose, as an alternative to the more traditional PCA.
They also showed how to analyse specific trends, of a pri-
ori interest, in the data. In this paper, we took this a stage
further and showed how to use BGA as a general-purpose
technique for protein alignment data exploration. We can
combine it with CA in which case it becomes a way of car-
rying out a supervised CA, for any number of groups. With
two groups, you get a single discriminating axis, which
can be used like a discriminant function for classifying
new sequences. This also ranks the variables (amino acids
at each position) in terms of their discriminating power.

BGA can also be combined with PCA in which case there
is a choice of how to encode the alignment information
and measure amino acid occurrence in columns. Strict
binary coding with CA enforces a strict view of presence or
absence and is useful for emphasising clear trends in the
data. It is, however, vulnerable to being misled by outlier

amino acid occurrences. For example, if one sequence has
one unusual amino acid in one position, the analysis will
interpret this as potentially useful discriminating informa-
tion. This is greatly improved by the use of pseudocounts.
PCA has the advantage of allowing quantitative amino
acid information to be used, such as amino acid physico-
chemical properties [28]. In both case, sequence weight-
ing is easy to apply to BGA using the MADE4 and ADE4
packages. This overall combination is powerful and flexi-
ble while being computationally very fast and simple.
Finally, BGA is especially useful because it can be used to
analyse any number of functional classes. In the examples
we used in this paper, we have only used 2 or 3 classes for
demonstration purposes but any number can be used and
visualised.

In summary the method presented here is complementary
to the other methods for identifying SDP's. It produces
similar results, but provides an alternative method for
viewing the results. This makes the method very suitable
for data exploration.

Methods
Software
A combination of R packages from the Bioconductor
package [29] were used to read in a sequence alignment,
transform it into a data matrix, and to carry out the
Between Group Analysis. They were:

ADE4
A general purpose data analysis package for ecological
data sets [30]. It contains a very large variety of clustering,
ordination and discriminant data analysis methods.

MADE4
A package that facilitates the analysis of microarray data
using the ADE4 package [25]. It also includes graphical
and visualisation tools which, for example, are used to
display the results of a BGA analysis.

Seqinr
A package for reading different types of sequence files
including Fasta and ClustalW format into R [31]

Amino Acid Encoding Schemes
Two different encoding schemes were used to represent
the multiple alignments for BGA.

Binary Encoding
Each column in the sequence alignment is represented by
a binary vector of length 20 which represents the presence
or absence of a particular amino acid at this position [20].
This results in a data matrix of dimension N×L×20 where
N is the number of sequences and L is the length of the
alignment. Pseudocounts can also be included.

Demonstration of the effect of sequence weighting using the AAP encodingFigure 8
Demonstration of the effect of sequence weighting using the 
AAP encoding. The example using sequences weights is A). 
The unweighted example is B). The chymotrypsin sequences 
are plotted in red, trypsin sequences in green and the 
elastase are plotted in blue.
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Amino Acid Property (AAP) Encoding
Each residue in the alignment is represented by a vector of
five continuous variables as given by Atchley et al [28].
They applied a multivariate statistic approach to reduce
the information in 494 amino acid attributes into a set of
five factors for each amino acid. These factors are shown
in Table 1

Factor A is termed the polarity index. It correlates well
with a large variety of descriptors including the number of
hydrogen bond donors, polarity versus nonpolarity, and
hydrophobicity versus hydrophilicity. Factor B is a sec-
ondary structure index. It represents the propensity of an
amino acid to be in a particular type of secondary struc-
ture, such as a coil, turn or bend versus the frequency of it

in an α-helix. Factor C is correlated with molecular size,
volume and molecular weight. Factor D reflects the
number of codons coding for an amino acid and amino
acid composition. These attributes are related to various
physical properties including refractivity and heat capac-
ity. Factor E is related to the electrostatic charge.

Columns in the alignment containing more than 80%
gaps were removed. When using the AAP encoding, the
remaining gaps were replaced with the average value for
the subfamily in that column.

PCA is the most suitable ordination technique for the AAP
encoding as it can be used to ordinate data that contains
continuous variables. CA, on the other hand, can only be

Axis 1 and 2 of the BGA results using CA for the serine protease alignment using the binary encoding showing both residues and sequencesFigure 9
Axis 1 and 2 of the BGA results using CA for the serine protease alignment using the binary encoding showing both residues 
and sequences. Extreme residues are labelled. The trypsin sequences are plotted in green, chymotrypsin sequences in red and 
elastase sequences in blue, while residues are plotted in black. Positions that are thought to be in the binding pocket are circled 
in red.
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used to ordinate data that contains positive integer values,
such as the binary representation of a sequence align-
ment.

Sequence Weights
A sequence-weighting scheme is useful to minimize the
redundancy and emphasize the diversity each of the sub-
family alignments. Position-based sequence weights [32]
were calculated for the sequences in each of the sub-fami-
lies and used as weights in the BGA calculation. These
weights were used, as they are intuitive, easy to calculate
and have previously been shown to perform well for pro-
file searches.

The sequence weight is calculated using equation 1. The
sequence weight is the sum of all the residue weights for a
particular sequence. The residue weights are calculated by
counting the number of different residue types (r) that are
present at position i in the alignment, and the number of
times that the particular residue in the sequence type
appears (s). The inverse of the product of these two num-
bers is the residue weight. Unique residues in conserved
columns are awarded the most weight.

Pseudocounts
In this analysis it was very useful to add the pseudocounts
to the binary encoding. This helps reduce the impact of
small sample sizes if one group has very few sequences.
Without pseudocounts, if a residue, at one position, is
present once in one group and not present at all in a sec-
ond group of sequences then the analysis will conclude
this is an important residue at this position.

Pseudocounts have been widely used in calculating posi-
tion specific weight matrix scores (PSSM). Again, they
have been found to be useful with small sample sizes.
When there are very few sequences present more pseudo-
counts should be added, but when there are many
sequences much fewer are needed. The pseudocount fre-
quency, gi, for an amino acid i in a column of a subfamily
alignment was calculated using the method of Henikoff
and Henikoff [33] as shown in equation 2 where qij is the
amino acid pair substitution probability for amino acid i
and j, fi is the observed frequency of amino acid i, N is the

Sequence Weight
r si ii

 =
∗( )∑ 1

(1)

Axis 1 and axis 2 of the BGA results using PCA with the AAP encodingFigure 10
Axis 1 and axis 2 of the BGA results using PCA with the AAP encoding. Sequences are shown in A). Residues are shown in B).
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total number of residues in the column and r is the
number of residue types in the column. Qi is the actual
amino acid frequency of amino acid i in the column after
adding in pseudocounts. This method uses the amount of
residue diversity in a column, r, to determine how many
pseudocounts, β, to add. Pseudocounts were only used
with the Binary Encoding scheme.

BGA
The BGA was carried out in R using the MADE4 package.
Firstly, the alignment file was read into R using the seqinr
commands. The sequence weights were then calculated,
and the groups defined.

The sequences were converted into a matrix using either
the binary or AAP encoding schemes. Columns with more
than 80% gaps were excluded. For the AAP encoding the
remaining gaps were filled in with the average of the sub-
group. Pseudocounts were added to the matrix calculated
with the binary encoding.

The matrix, group definition, and type of ordination tech-
nique were then passed to the BGA function in Made4. If
this ordination technique is CA then the matrix is pre-
processed by multiplication with the sequence weights,
but if the ordination technique is PCA then the sequence
weights are passed in as row weights. The results are plot-
ted using the MADE4 function.

Test Cases
Three different test cases were chosen to demonstrate the
method. They are Lactate/Malate dehydrogenases, Nucle-
otidyl cyclases and Serine Proteases. They have been used
as examples by Hannenhalli and Russell [8] and Pazos et
al [22] as well as others.

Lactate/Malate dehydrogenases
Lactate/Malate dehydrogenases share a similar substrate-
binding domain. PFAM accession number, PF00056,
"Lactate/Malate dehydrogenases, NAD binding domain".
They are highly divergent and as such it is difficult to dis-
tinguish between lactate and malate subtypes. A single
mutation Gln-Arg (position 102 in pdb 9ldta) is known to
switch specifity from lactate to malate [34]. This example
has been used by Hannenhalli and Russell [8] and Pazos
et al [22]. In this study the alignment generated by Pazos
et al was obtained from their website [35]. In this align-
ment there are 35 malate and 8 lactate sequences. The
phylogenetic tree of the Lactate/Malate dehydrogenase
sequences used by Pazos et al is shown in Figure 1. There
is no simple phylogenetic separation between the two

groups of sequences. There is a group of malate sequences
that are more closely related to the lactate sequences than
the rest of the malate sequences.

Nucleotidyl cyclases
Nucleotidyl cyclases are a family of cytosolic proteins that
catalyse the reaction that transforms a nucleotide triphos-
phate into a cyclic nucleotide monophosphate. The cycla-
ses act on either guanylate (GUC) or adenylate (ADC).
The alignment used in this example is the same one used
by Hannenhalli and Russell [8] and contains 41 adenylate
and 29 guanylate sequences. The phylogenetic tree in Fig-
ure 2 was calculated from the alignment using the Neigh-
bor-Joining method [36] implemented in ClustalW [37].
The tree was rooted using the add_root programme sup-
plied by Manolo Gouy. Two point mutations, Glu-Lys and
Cys-Asp, are sufficient to change the specificity of the
enzyme from GUC to ADC [38]. These are positions 938
and 1018 of the protein sequence corresponding to the
3D structure of adenylate cyclase, 1ab8 [39].

Serine Proteases
Trypsin-like serine proteases are a large family of enzymes
that cleave peptide bonds [40]. They have similar catalytic
mechanisms but have different preferences for the bonds
that they preferentially cleave. Trypsins cleave C-terminal
to the positively charged amino acid residues, arginine
and lysine. Chymotrypsins cleave bond that are flanked
by large aromatic residues. Elastases cleave peptide bonds
that are next to small-uncharged amino acid residues. The
difference in specifity is caused by changes in the binding
pocket [27]. An aspartic acid found in trypsin (Asp189) is
usually replaced by a small residue in chymotrypsins (Ser)
and elastases (Gly). Glycine at positions 216 and 226 in
trypsin (also in chymotrypsins) is usually a valine or thre-
onine in elastases [8]. In this study all of the sequences
with EC numbers corresponding to trypsin, chymot-
rypsin, and elastase were extracted from the full alignment
of PF00089 from PFAM [41]. This consisted of 117
trypsins, 17 chymotrypsins, and 7 elastases and these were
realigned using ClustalW. Figure 3 gives the tree for this
alignment, which was calculated using ClustalW and the
Neighbor-Joining method. The elastase sequences all
group together, while there is a set of chymotrypsin
sequences, which are group closer to trypsin sequences
than other chymotrypsins
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