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The structures and inhibitory activities of 88 quinolones, previously studied as potential in vitro inhibitors
of 14 selected strains ofMycobacterium avium complex, were examined in an effort to identify a quinolone with
optimal activity towards all strains. A MULTICASE structure-activity relationship analysis of the inhibitory
activities of these 88 quinolones against 14 strains of M. avium was performed and led to the identification of
a number of structural constraints required to overcome the resistance of most of the strains. Our data
suggested that the increased resistance of the strains was probably not due to a specific resistance mechanism
but rather due to gradual limitation of the constraints imposed on the structure of the quinolones. This
increasing structural selectivity could be produced either at the level of cell membrane penetration or at the
level of interaction with the DNA gyrase receptor site. On the basis of these findings, a number of new

quinolones holding the promise of superior activity are currently being evaluated in vitro and in vivo to
determine the clinical relevance of our observations.

In the study reported in the accompanying paper, 88
structurally different quinolones were evaluated for their
potential in vitro activities against 14 selected strains of
Mycobacterium avium-M. intracellulare complex (9). These
strains reacted differently to the quinolones; some were
inhibited by the majority of the drugs, while others were
substantially resistant to them. Our analysis permitted us to
classify the strains as to their general susceptibilities to
inhibition by quinolones. It was found that a continuum
existed between the least and most active drugs. In this
paper, we report the results of a structure-activity relation-
ship (SAR) study of these results with the MULTIple
Computer Automated Structure Evaluation (MULTICASE)
program (5) to gain an understanding of the structural
requirements needed to be fulfilled in order to design either
a drug that would be active against even the most resistant
strains or a combination of drugs that would achieve the
same results.
The MULTICASE methodology. The MULTICASE

method is a hierarchical computer automated structure eval-
uation program (5). Although it shares many features with its
predecessor CASE (Computer Automated Structure Evalu-
ation program) (4), it differs from CASE in a great many
ways. Both of these methods automatically identify molec-
ular substructures that have a high probability of being
relevant to or responsible for observed biological activity.
Both methods require a learning data base which contains
the structures and activities of a set of molecules to initiate
the analysis.

In both the CASE and MULTICASE approaches, the
structures of each of the compounds of the data base are
fragmented into all possible linear substructures, which can
be as simple as two heavy atoms or as complex as needed.
All the fragments generated from all the active and inactive
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compounds are then submitted to a discriminant analysis in
order to assess the significance of each of the fragments and
to identify the most relevant "biological functionalities." In
both approaches, some properties, such as the partition
coefficient between n-octanol and water (log P) (8), aqueous
solubility, quantum mechanics parameters, and graph indi-
ces, are computed for each molecule (5-8).

Activating features (biophores). In the CASE approach, the
significant substructures, the log P, the quantum mechanics
parameters, and graph indices are used as potential param-
eters for a regression analysis to generate a linear quantita-
tive SAR (QSAR). Subsequently, the QSAR equation can be
used to quantitatively determine the relevance of the param-
eters to the observed biological activity. It can also be used
to predict the activity of new, untested compounds. In the
MULTICASE approach, the algorithm performs the analy-
sis in a hierarchical way rather than in a one-step regression
analysis. In the first part, the MULTICASE program iden-
tifies only true biophores, i.e., those fragments found to have
an unquestionable relation to activity. This is done by first
selecting the substructure that has the highest probability of
being responsible for activity, as judged by the binomial
probability that its observed distribution among active and
inactive molecules is not due to chance. Those molecules
containing this substructure are then eliminated from the
data set, and the remaining compounds are submitted to a
new analysis. This procedure is then repeated until either (i)
the entire set is eliminated (i.e., enough structural features
have been found to account for the activity of the entire data
set) or (ii) all statistically relevant substructures have been
identified and the remaining data cannot be explained by
statistically significant descriptors.
The molecules are thus separated into subclasses based on

the presence of each of the biophores. For each subclass, a

new analysis is performed to produce the modulators capa-
ble of modifying the activity of each of the biophores. The
system is thus hierarchical in that modulators are important
only in the context of molecules containing the primary
biophore. These modulators may offset the activity of the
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FIG. 1. The MULTICASE program. QM, quantum mechanics.

biophore by decreasing the activity, in which case they will
be called biophobes, or by increasing it, in which case they
will be called synergistic. In the latter case, it is possible that
the modulator itself is an essential part of the biophore. This
is particularly true if most of the compounds containing the
biophore also contain the modulator. It should be noted that
unless the biophore is embedded in the modulator, the
relative positions of the biophore and its modulator are not
recognized by the program.

Deactivating features (biophobes). We often see in our
studies some compounds that contain a biophore yet show
little or no activity. The MULTICASE algorithm rational-
izes this as follows: (i) an active compound has to have a
biophore embedded in its structure and (ii) a compound that
does not show any activity either lacks any activating feature
(absence of a biophore) or has one or more biophores but
also contains a strongly deactivating feature. These deacti-
vating features are called biophobes.
When a new molecule is submitted for testing, the MUL-

TICASE program will search its structure for the existence
of any known biophores. If it does not find one, the molecule
will be called inactive by default. However, if it does find
one, it will then search for the presence of modulators to
arrive at a projected value for the biophore's potency.

Overall, it can be said that MULTICASE deals with
several sets of congeneric systems. The main difference

between these and conventional congeneric data bases is
that the commonality among the molecules is based on a
rational evaluation of their structures rather than on an
arbitrary choice of common structural features. Figure 1
illustrates the operation of the MULTICASE program.

MATERUILS AND METHODS

The data bases were generated from MICs of 88 agents
tested against 14 strains with various resistances (9). The
conventional approach to construct a data base for SAR or
QSAR study is to take the minimum concentration of each
compound required to inhibit the growth of 50% of strains as
the activity input (6). However, we felt that we would gain
more understanding of the biological events if we were to
treat each strain as a separate data base and use actual
MICs.

In testing an agent multiple times, the reproducibility of
the observed MICs can vary up to fourfold. Conventional
QSAR approaches would not derive stable models if such
widely varying activity values from a single strain were to be
used as input. However, both CASE and MULTICASE
have the ability to accommodate some inaccuracies in the
experimental data since they use a statistical discriminant
analysis to distinguish between the substructures that are
relevant and those that are irrelevant to the observed activ-
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TABLE 1. Distributions of active and inactive agents in the 14
data bases and importance of top biophores in

the various data bases

No. (%) of agents % of active agents
Strain active at 16 Fg/ml containing the top

biophore

TMC 1403 56 (63.6) 95
PI 2/8 56 (63.6) 95
1695757 48 (54.5) 69
1779564 46 (52.2) 70
PI 44/4 41 (46.6) 45
1958339 38 (43.2) 53
PI 2/6 29 (32.9) 45
TMC 1461 29 (32.9) 37
34540W 27 (30.7) 48
PI 12/39 22 (25.0) 41
1760694 22 (25.0) 53
1988557 21 (23.9) 45
1915112 19 (21.6) 53
1772733 19 (21.6) 53

ity. Therefore, they can accommodate these variations and
provide useful information about the key structural features
which determine the activity of the quinolones against
strains with different susceptibilities.

RESULTS AND DISCUSSION

Distribution of active and inactive agents. We evaluated 14
data bases, one for each of the strains tested, against 88
quinolones. It is assumed that a quinolone with a MIC of
232.0 ,ug/ml is unlikely to achieve good activity in macro-
phages or in vivo. Hence, all quinolones with MICs of 232.0
p,g/ml were regarded as inactive in our analysis, while those
with MICs of <16 ,ug/ml are regarded as active. Table 1
shows the distribution of active and inactive agents for the 14
data bases, using the endpoints defined above.
As can be seen, strains TMC 1403 and PI 2/8 are the two

most susceptible strains; more than 63% of the 88 quinolones

Biophore# I (A:1=53:11, prob=I00Y)

Cm

CH2 -Nn

tested are active against these two strains. Strains 1695757
and 1779564 are very susceptible strains; more than 50% of
the 88 compounds are active against these two strains.
Strains 1958339 and PI 44/4 have medium susceptibility;
about 43% of the 88 compounds are found to be active
against these two strains. Strains PI 2/6, TMC 1461, and
34540W are resistant strains; only about 30% of the 88
compounds are active against these strains. The five remain-
ing strains, 1988557, PI 12/39, 1760694, 1772733, and
1915112, are very resistant; only one-fifth to one-fourth of
the 88 compounds are active against these strains.
MULTICASE analysis. Biophores were identified by

MULTICASE analyses for each of the 14 data bases derived
from the 14 strains. The biophores identified as relevant to
one of the most susceptible strains, TMC 1403, and those
relevant to one of the most resistant strains, 1760694, are
shown in Fig. 2 and 3, respectively.
Comparisons between the top biophores. The most signifi-

cant activating fragments from all 14 data bases identified by
the MULTICASE program, referred to as the top biophores,
are shown in Fig. 4. As shown in Table 1, they account for
the activities of 37 to 95% (average, 57%) of the active
compounds in the data bases. An interesting observation is
that for the two data bases corresponding to the most
susceptible strains, TMC 1403 and PI 2/8, the top biophore
(Fig. 4, structure I; referred to hereafter as biophore 4-I) is
found in 95% of the active compounds in the data base. This
indicates that wide structural variations are tolerated and
that the drug receptor is not very selective in these strains.
The top biophores for the data bases corresponding to the
two very susceptible strains, 1695757 and 1779564, still
account for more than two-thirds of the active compounds in
the data bases. However, for the next 10 less susceptible
strains, the top biophores identified can only explain about
half of the active compounds. This probably indicates that
the in vitro activity of the quinolones against the most
susceptible strains is controlled by a single factor. It is not
clear whether this factor is the penetration of the quinolones
through the cell wall or the binding affinity to DNA gyrase
(1-3, 10-12), but the top biophore (4-I) identified for the two

N2N-CH

Biophore # 2 (A:=10:0, prob99%/o)

S

uN~

CH2

Biophore # 3 (A:I=9:0, prob=98%) Biophore # 4 (A:1=2:0, prob=60o)
FIG. 2. Biophores identified by the MULTICASE program for the data base corresponding to strains TMC 1403 and PI 2/8. Biophores are

shown by boldface lines and boldface characters in the molecules. The other parts of the molecules, unless explicitly shown, are unspecified.
A:I, ratio of active to inactive compounds; prob, probability that the fragment is indeed responsible for the observed activity.
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FIG. 3. Biophores identified by the MULTICASE program for the data base corresponding to strain 1760694. Biophores are shown by

boldface lines and boldface characters in the molecules. The other parts of the molecules, unless explicitly shown, are unspecified. A:I, ratio
of active to inactive compounds; prob, probability that the fragment is indeed responsible for the observed activity.

most susceptible strains should be highly correlated with this
determining factor.

Interestingly, when we compared the top biophores for all
of the strains, from susceptible to resistant, we found that as
the susceptibility of the strains decreases, the structure of
the top biophore becomes more constrained (Fig. 4). This is
seen by the fact that as the strains become resistant, the top
biophores become more complex but retain all the structural
features needed to achieve activity in the more susceptible
strains. Indeed, biophore 4-I is embedded in biophores 4-II
to 4-VI. Biophore 4-II is embedded in 4-III to 4-VI, biophore
III is embedded in 4-IV to 4-VI, etc. At no time do we
observe a sudden change in the nature of the biophore that
could be associated with the initiation of a new mechanism
triggered by the increased resistance.
The top biophore (4-T) for the most susceptible strains,

TMC 1403 and PI 2/8, shows that the most important feature
determining the activity of a quinolone against M. avium-M.
intracellulare complex is the presence of a fluorine at posi-
tion C-6 and the existence of a CH2 group attached to a

tertiary nitrogen at position C-7. If a quinolone bears these
structural features, it will have an 83% chance of being
active. The other substituents of the quinolone backbone
(Rl, R2, R5, and R8) are not as important. However, they
may still play some role in increasing or decreasing the
activity of a compound. This is in line with previous studies
which have shown that the fluoro group at position C-6
seems to improve both the DNA gyrase complex binding (2-
to 17-fold) and cell penetration (1- to 70-fold) (1). In all 64
compounds containing the top biophore (4-I), the tertiary
nitrogen atom at position 7 appears 63 times in a ring system
with more than four members. PD 136576 (no. 14 in Fig. 2 of
reference 11), the only compound with a linear C-7 substit-
uent, is inactive. It was observed in previous studies that
quinolones with small or linear C-7 substituents generally
possess only moderate to weak biological activity (1). This
seems to be confirmed by our results. Although it is not clear
to us what role the tertiary nitrogen in a ring system at the
C-7 position plays, it seems that this is a necessary require-
ment for a quinolone to achieve some activity against M.
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Top Biophore
for strains TMC 1403 and PI 2/8
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for strains 1695757 and 1779564
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for strains PI 2/6 and TMC 1461
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Top Biophore
for strain 34540W
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for strains 198855, PI 12/39,

1915112,1772733,1760694

(V) (VI)
FIG. 4. Top biophores identified by MULTICASE for the data bases.

avium strains. The top biophore (4-II) for strains 1695757
and 1779564, as expected, imposes the same structural
requirements as biophore 4-I. In addition, biophore 4-II
specifies that position 8 should bear a substituent. This
biophore also suggests that N-1 and C-2 should not be fused
into a ring.
The top biophore (4-ITT) for strain 1958339 clearly shows

that a fluorine at position 8 is normally better than any other
known substituent. All the compounds bearing this biophore
satisfy all the requirements imposed by the top biophores 4-I
and 4-II for the four most susceptible strains. The top
biophore (4-IV) for the next two less susceptible strains, PI
2/6 and TMC 1461, indicates that a cyclopropyl group is the
preferred substituent at the N-1 position. All the compounds
containing the top biophore (4-V) for the next less suscepti-
ble strain (34540W) satisfy all the requirements imposed by
the previous biophores for the more susceptible strains. In
addition, biophore 4-V indicates that position 5 should not
bear a substituent.

The same fragment was identified as the top biophore
(4-VI) for the five most resistant strains (1988557, PI 12/39,
1915112, 1772733, and 1760694). This biophore emphasizes
the importance and the nature of the group attached to the
tertiary nitrogen at position 7. When compared with the top
biophore (4-V) for strain 34540W, it seems that the top
biophore (4-VI) for these five most resistant strains does not
create any requirement about a substituent at a C-5. How-
ever, examination of the R5 group shows that 9 of the 13
compounds containing the biophore have a hydrogen at C-5.
The other types of groups attached to position 5 are N(CH3)2
(in one inactive compound), CH3 (in two active compounds),
and NH2 (in one very active compound). This indicates that
NH2 and CH3 groups are acceptable for C-5 substitution.
Overall, we find that molecules containing the biophore 4-VI
should be effective against all the strains of M. avium-M.
intracellulare complex, including the most resistant strains.

It is clear from the above observations that as the strains
become more resistant, the biophore required for activity
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R7 N N R2
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FIG. 5. One deactivating feature found in all 14 data bases. The
biophobe is shown by italics and dotted lines. Other parts of the
molecule, unless explicitly specified, can be any group. The ratio of
active to inactive compounds was 0:7.

becomes more restrictive. This may indicate that the drug
receptor site is becoming more selective as the strains
become more resistant. However, whether this selectivity is
produced by the penetration requirement or by the interac-
tion with the DNA gyrase (1-3, 10-12) is still an open
question. Nevertheless, it appears that the increased resis-
tance is not due to the appearance of a new phenomenon but
rather to a gradual limitation of the constraints imposed on

the structure.
Biophobes. A biophobe (deactivating fragment) was found

in all 14 data bases, as shown in Fig. 5. This inactivating
feature was found in seven compounds, all of which are

inactive against all the strains. Another deactivating feature
was found in the data bases of resistant strains, such as

strains PI 2/6, TMC 1403, 34540W, 1988557, PI 12/39,
1760694, 1915112, and 1772733, as shown in Fig. 6. This
biophobe appears in 16 compounds, all of which are inactive
against resistant strains. Figure 7 shows that a quinolone
with an sp2 nitrogen at position 8 and an ethyl group attached
to N-1 will be unlikely to show any activity against the less
susceptible strains. We also found that one fragment, shown
in Fig. 7, gradually becomes significantly deactivating as the
susceptibility of the strains decreases. This fragment shows
that the nature of the Rl group becomes increasingly impor-
tant in preventing the activity of a quinolone against more

resistant strains. The presence of this fragment suggests that
a quinolone with an ethyl group at position 1 would be
unlikely to achieve substantial activity against resistant
strains. PD 115311 (no. 5 in Fig. 2 of reference 9) is the only
compound in the data base which has an ethyl as its Rl group
but still shows some activity against the resistant strains.
QSARs. MULTICASE allows QSARs as well as qualita-

tive SARs to be found. The QSARs resulting from this

R5 0 0

R6 OOH

N' N R

CH2

CH3

FIG. 6. A deactivating feature found in eight data bases. The
biophobe is shown by italics and dotted lines. Other parts of the
molecule, unless explicitly specified, can be any group. The ratio of
active to inactive compounds was 0:16.

analysis can then be used to provide quantitative activity
predictions for untested compounds. However, before any
predictions can be made, the validity of the derived models
must be established in order to build confidence that the
models have predictive value (5). Indeed, evaluation of the
prediction potential of a SAR or a QSAR model is one of the
most important aspects of SAR studies. The quality of a
QSAR model cannot be established by the fact that the data
base can be satisfactorily retrofitted.
One way to evaluate the prediction potential of a QSAR

model is to randomly separate the data into two sets, one
learning set and one test set. Normally the learning set
contains many more molecules than the test set. The learn-
ing set then is used to establish a QSAR model, and the
activities of the molecules of the test set are calculated. The
predictive value of the model can then be judged by evalu-
ating how well the model predicted the activities of the
molecules of the test set.

In this study, we proceeded to evaluate the predictive
power of the QSAR models as we were testing the agents.
We originally selected one-third of the available compounds
(the first 33 compounds of Fig. 2 of reference 9). When
submitted to MULTICASE analysis, 14 QSAR models cor-
responding to the 14 strains were obtained (model I).
The results of comparisons between the recalculated and

the observed MICs for the 33 compounds in the learning data
bases are shown in Table 2. The results in Table 2 essentially
indicate how well the data had been retrofitted by the QSAR
equations. As can be seen, between 85 and 100% of the
compounds, the average being 97% for all the strains, have
been correctly recalculated. Notice that the concordances
for three strains, 1779564, 1958339, and PI 12/39, are signif-
icantly lower than those for other strains.
We then used these relationships (model I) to predict the

activities of the remaining untested 55 compounds. A com-
parison between the predicted and the observed MICs for
the 55 compounds is shown in Table 3.
As can be seen, the concordance between the predicted

and the experimental results for the new compounds is lower
than that observed (Table 2) for the compounds in the
learning data base. This is to be expected since the com-
pounds in the learning data base had been used by the
program to establish the QSAR parameters. Of the 55
compounds of the test set, the activities of 58 to 87% of the
agents (average, 74%) were correctly predicted by the MUL-
TICASE program. Considering the small size of the learning
data base (only 33 compounds), the results are considered
satisfactory and show the learning ability of the MULTI-
CASE program. Examination of Table 2 also shows that the
concordance for active compounds decreases as the suscep-
tibilities of the strains decrease. In contrast, the concor-
dance for the inactive compounds increases as the suscepti-
bilities of the strains decrease. This is to be expected since
the number of active compounds in the learning data base
becomes fewer as the susceptibilities of the strains decrease.
With only very few active compounds in the learning data
bases for strains 1915112 and 1772733, it is impossible for the
program to gain enough knowledge to make good predictions
for active compounds. The same argument can be applied to
the most susceptible strains, TMC 1403 and PI 2/8 S4, for
which there were insufficient inactive compounds in the
learning data bases. It seems that 20 active and 20 inactive
compounds are needed in a learning data base for the
program to be able to give reliable predictions for both active
and inactive molecules. The reason for the poor predictions
for strains 1779564 and 1958339 is not clear.
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FIG. 7. A fragment that becomes a very significant deactivating feature as the susceptibility of the strain decreases. The fragment is shown
by italics and dotted lines. Other parts of the molecule, unless explicitly specified, can be any group. A:I, ratio of active to inactive
compounds.

Another one-third of the 88 compounds were then selected
(a total of 29 compounds, from PD 107522 to PD 143289 of
Fig. 2 of reference 9) for analysis (model II). These com-

pounds were selected on the basis that MULTICASE issued
a warning signal for them, meaning that they contain sub-
structures that did not exist in the original learning set. A
new MULTICASE analysis that now included the 62 com-
pounds (the original 33 plus the new 29) in the learning data
bases was then performed. Table 4 shows the summary of
comparisons between the calculated and observed MICs for
these 62 compounds. As can be seen, 99% concordance was
found for the retrofit. Model II was then used to predict the
activities of the remaining untested 26 molecules. Table 5
shows the results of a comparison between the predicted and
subsequently measured MICs for these 26 compounds.
On average, a 76% concordance for the 14 strains was

found (range, 69 to 85%). It seems that the prediction results
of model II are only slightly better than those of model I
(73%). However, if one compares the prediction results of
models II and I for the last 26 compounds, one finds that
model I can, on average, correctly predict the activities of
only 69% of the 26 compounds. In contrast, model II can
correctly predict the activities of 76% of the 26 compounds.
As can be seen, some improvement of the predictive power
was achieved by expanding the learning data bases, which
indicates that the program has learned to some extent from
the additional 29 compounds with new substructures existing
in them. After the in vitro MICs of the last 26 compounds

TABLE 2. Comparisons between recalculated and observed
MICs of the 33 agents of the learning data bases (model I)

No. of agents
Strain ~~~~~~~~~~~~~OverallStrain Obs(+)/ Obs(+)/ Obs(-)/ Obs(-)/ Cpe (%)

calc(+)a caIc(-)b calc(+)c calc(-)d

TMC 1403 22/22 22/0 11/1 11/10 97
PI 2/8 22/22 22/0 11/1 11/10 97
1695757 17/17 17/0 16/0 16/16 100
1779564 17/14 17/3 16/2 16/14 85
PI 44/4 8/8 8/0 25/0 25/25 100
1958339 12/12 12/12 21/4 21/17 88
PI 2/6 12/11 12/0 21/0 21/21 97
TMC 1461 11/11 11/0 22/0 22/22 100
34540W 10/10 10/0 23/0 23/23 100
PI 12/39 10/7 10/3 23/1 23/22 88
1760694 8/8 8/0 25/0 25/25 100
1988557 9/9 9/0 24/0 24/24 100
1915112 7/7 7/0 26/0 26/26 100
1772733 6/6 6/0 27/0 27/27 100

a The number of agents which were both observed and predicted to be
active.

b The number of agents which were observed to be active but were
predicted to be inactive.

c The number of agents which were observed to be inactive but were
predicted to be active.

d The number of agents which were both observed and predicted to be
inactive.

e The overall percentage correctly predicted for each strain.
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TABLE 3. Comparisons between the predicted and observed
MICs of the 55 agents not used for Table 2

No. of agents
OverallStrain Obs(+)/ Obs(+)/ Obs(-)/ Obs(-)/ Cpe (%)

pred(+)a pred(-)" pred(+)c pred(-)d

TMC 1403 34/30 34/4 21/12 21/9 71
PI 2/8 34/30 34/4 21/14 21/7 67
1695757 31/26 31/5 24/12 24/12 69
1779564 28/23 28/5 27/16 27/11 62
PI 44/4 29/15 29/14 26/6 26/24 71
1958339 22/15 22/7 33/16 33/17 58
PI 2/6 16/13 16/3 39/12 39/27 73
TMC 1461 18/16 18/2 37/12 37/25 75
34540W 17/14 17/3 38/9 38/29 78
PI 12/39 12/8 12/4 43/3 43/40 87
1760694 15/12 15/3 40/9 40/31 78
1988557 13/8 13/5 42/4 42/38 84
1915112 12/8 12/4 43/7 43/36 80
1772733 13/8 13/5 42/7 42/35 78

a See footnote a of Table 2.
b See footnote b of Table 2.
c See footnote c of Table 2.
d See footnote d of Table 2.e See footnote e of Table 2.

(from PD 111752 to PD 144881 of Fig. 2 of reference 9) were
added, the final model (model III) was established by includ-
ing all 88 compounds in the learning data bases. Although we
do not have any additional compounds available to evaluate
the predictive power of the final model, we expect that the
average concordance between the predicted and observed
MICs for new compounds should be greater than the 76%
average agreement found by model II.
These results show that the MULTICASE program not

only was able to explain the data in the learning set but also
has the potential for predicting the activities of new, un-
tested compounds. This gives us confidence that the results
of our analysis provide a solid base to evaluate new struc-
tures and help select promising compounds for synthesis.

TABLE 4. Comparisons between observed and calculated
MICs of 62 agents (model II)

No. of agents
OverallStrain Obs(+)/ Obs(+)/ Obs(-)/ Obs(-)/ cpe (%)

pred(+)a pred(-)' pred(+)c pred(-)d

TMC 1403 37/37 37/0 25/2 25/23 97
PI 2/8 37/36 37/1 25/0 25/25 98
1695757 31/31 31/0 31/1 31/1 98
1779564 30/30 30/0 32/0 32/32 100
PI 44/4 21/21 21/0 41/0 41/41 100
1958339 24/24 24/0 38/1 38/37 98
PI 2/6 19/19 19/0 43/0 43/43 100
TMC 1461 18/18 18/0 44/0 44/44 100
34540W 18/18 18/0 44/1 44/43 98
PI 12/39 14/14 14/0 48/0 48/48 100
1760694 13/13 13/0 49/0 49/49 100
1988557 14/14 14/0 48/0 48/48 100
1915112 12/12 12/0 50/0 50/50 100
1772733 11/11 11/0 51/0 51/51 100

a See footnote a of Table 2.
b See footnote b of Table 2.
c See footnote c of Table 2.
d See footnote d of Table 2.
e See footnote e of Table 2.

TABLE 5. Comparisons between predicted and observed MICs
of the 26 agents not used for Table 4 (model II)

No. of agents
Strain OverallStrain Obs(+)/ Obs(+)/ Obs(-)/ Obs(-)/ CFP (%)

pred(+)a pred(-)b pred(+)c pred(-)d

TMC 1403 19/18 19/1 7/4 7/3 81
PI 2/8 19/18 19/1 7/4 7/3 81
1695757 17/16 17/1 9/5 9/4 77
1779564 15/14 15/1 11/6 11/5 73
PI 44/4 16/12 16/4 10/3 10/7 73
1958339 14/10 14/4 12/3 12/9 73
PI 2/6 10/7 10/3 16/5 16/11 69
TMC 1461 11/9 11/2 15/3 15/12 81
34540W 9/7 9/2 17/6 17/11 69
PI 12/39 7/6 7/1 19/5 19/14 77
1760694 9/9 9/0 17/6 17/11 77
1988557 8/6 8/2 18/5 18/13 73
1915112 7/5 7/2 19/4 19/15 77
1772733 8/6 8/2 18/2 18/16 85

a See footnote a of Table 2.
b See footnote b of Table 2.
c See footnote c of Table 2.
d See footnote d of Table 2.
' See footnote e of Table 2.

Indeed, if a newly designed compound is predicted to have
good MICs against most of the strains, it could be selected
for synthesis and experimental evaluations.

Conclusions. Our in vitro anti-M. avium activity study of
88 quinolones has enabled us to identify a number of
quinolones with in vitro activities better than or comparable
to that of ciprofloxacin, the most effective known agent
against M. avium-M. intracellulare complex. At this stage it
is not clear whether these structures can achieve high
activities in macrophages and in vivo. A SAR study using the
MULTICASE program allowed us to identify a number of
key structural features relevant to the activity of quinolones
against M. avium-M. intracellulare complex. Moreover, we
found that as the susceptibility of these strains decreases,
the key structural features determining the activity become
more restrictive. QSAR studies showed that the derived
QSAR models can correctly explain 97% of the data of the
learning data bases. Incremental validation studies indicate
that the resulting QSAR models, on average, may correctly
predict the activity of up to 80% of new, untested com-
pounds.
On the basis of these results, the structures of other potent

quinolones can be proposed. We are in the process of
evaluating the in vitro and in vivo activities of a number of
such agents to determine the relevance of our observations
to clinical application.
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