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Abstract

Obesity is essentially an excessive accumulation of triacylglycerols in fatty tissue that is the net result of excessive energy intake 
compared to energy usage. Severe forms of the disease are most likely to have a predominantly genetic basis and this is probably 
polygenic. The ‘thrifty gene’ hypothesis also describes the disturbance that a modern environment, including higher energy 
intake and decreased physical activity, has on otherwise advantageous genetic variations. While the physical consequences of 
obesity, such as arthritis, are debilitating and costly, the metabolic consequences are the drivers behind the modern epidemics 
of insulin resistance, diabetes, fatty liver disease, coronary artery disease, hypertension and polycystic ovary syndrome. The 
pathophysiological mechanisms behind these diseases are probably a combination of the toxic metabolic effects of free fatty 
acids and adipokines - the numerous messengers that adipose tissue has been discovered to produce.

Introduction

Obesity is a condition of increased adipose tissue mass.1 
Obesity can also be defined as an increase in body weight 
beyond the limits of physical requirement, as the result of 
an excessive accumulation of fat. Accumulation of fat, or 
triacylglycerol, is essentially the only way that body weight can 
become excessive, as other energy storage (e.g. carbohydrate 
glycogen or protein in liver and muscle) does not have the 
potential of adipose tissue to exceed the limits of requirement. 
Although anabolic steroids can increase lean body mass and 
therefore body mass, this has only been described in those 
already malnourished.2

Adipose tissue is a tissue entity that can, through hyperplasia 
and hypertrophy, vary enormously between individuals, more 
so than any other tissue. However it is misleading to think of it 
as a single entity, as there are subtypes of adipose tissue (e.g. 
visceral and subcutaneous) which appear to have different 
implications for health.3

Adipose tissue is not purely a storage tissue for triacylglycerols, 
it acts as an endocrine organ also,4,5 releasing numerous 
chemical messengers (adipokines) that communicate and 
affect other tissues.
 

This review considers the changes in clinical biochemistry 
measurements that are associated with obesity, and the 
insights into the pathophysiology behind this most important 
health issue in western and developing countries.

Definitions

The definition of obesity cannot be simply made in terms of 
body weight because we should expect short people to be 
lighter than tall people. Therefore we need to standardise 
body weight against body height. The simplest expression 
for this is the body mass index (BMI) calculated as weight 
(kg) divided by height squared (m2). The critical importance 
of this weight for height adjustment is illustrated in its origins 
from life insurance tables.6 A simple prediction of life risk 
was interpreted as a weight that was 20% above the average 
for frame size, which was equivalent to a BMI of 27.8 (kg/
m2).7 The World Health Organisation (WHO) guidelines of 
1985 defined obesity as a BMI >30.0 for men and >28.6 
for women.8 Although women have lower bone and muscle 
mass, they usually have slightly more subcutaneous fat but 
these subtleties are often ignored in standardised approaches. 
Similarly, both muscle mass and bone mass decrease with 
age and so like sex, age should be considered as a variable of 
interest in many obesity studies and standards. The definitions 
were further refined by the WHO with a BMI over 25 being 
defined as ‘overweight’ and over 30 as being ‘obese’.9 Finally, 
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there are racial differences in body composition that should 
also be taken into account.10

It should be also stated that the ratio of waist to hip 
circumference (normally below 0.95 in men and 0.85 in 
women) is generally a better prognostic indicator for disease 
than BMI11-13 especially when the BMI is less than 35, and 
there may be advantages in applying both measurements.14 

Acquired Causes of Obesity

The prevalence of overweight and obesity varies from 
country to country but in Western countries like Australia, it 
is becoming true that most of the population can be affected.15 
The prevalence is also increasing in children.16 The variation 
from country to country and from time to time implies that 
environmental factors are the major determinant of disease 
prevalence. While obesity is thought to be the second most 
preventable cause of death behind smoking, a recent study 
suggests that the health care costs of obesity exceed those of 
smoking.17

Fundamentally, obesity is the result of excessive energy 
intake compared to energy expenditure. In children, increased 
energy intake as sugar18 or fat19 has been linked to obesity, as 
has decreased physical activity in children.20 However even in 
children this is not a simple problem as other factors such as 
low weight in infancy can also predict later obesity.21

Cushing’s syndrome may cause obesity. It is also associated 
with truncal or visceral obesity, which can be difficult to 
differentiate from simple obesity. This distinction is one of 
the main purposes of tests such as low dose dexamethasone 
suppression tests used to differentiate Cushing’s syndrome 
from obesity.

Although slight decreases in energy expenditure in clinical or 
subclinical hypothyroidism may contribute to weight gain,22 
hypothyroidism is a rare cause of obesity and much of the 
weight gain is due to water retention which is reversible after 
thyroid hormone treatment. Insulinoma can cause massive 
weight gain due to the excessive energy intake consumed to 
avoid hypoglycaemia but is an extremely rare condition and 
therefore a very uncommon cause of obesity.

Normally signals from the gut and adipose tissue are integrated 
in the central nervous system to affect appetite and energy 
homeostasis and limit weight gain. Pathological obesity may 
result from the failure of these homeostatic mechanisms23 
although our understanding of these processes is still relatively 
rudimentary.

Genetic Causes of Obesity

The idea that some people are born with a tendency to obesity 
is not new and Hippocrates stated that “sudden death is more 
common in those who are naturally fat than in the lean”. But 
why would nature allow such genes to exist? The basic premise 
of the ‘thrifty gene’ hypothesis24,25 is that certain populations 
may have genes that determine increased fat storage, which 
in times of famine represent a survival advantage, but in a 
modern environment result in obesity and type 2 diabetes.26 
Identification of such thrifty gene candidates may help provide 
insight into the pathogenetic processes of the numerous 
physical inactivity-mediated disorders.27

Underweight newborns become overweight children who 
become overweight adults28,29 although this natural progression 
is being questioned.30 There is a suggestion that homeostatic 
set points for adipose tissue mass and insulin sensitivity may 
be set both by genetic factors and by energy metabolism in 
utero (Barker hypothesis). 31

Twin studies have shown important (up to 75%) genetic 
explanation to BMI.32,33 With the exception of the rare 
mutations that cause severe morbid obesity, it seems that 
numerous genes, each with modest effect, contribute to an 
individual’s predisposition toward the more common forms 
of obesity.34 Some genetic syndromes often have obesity as 
part of a larger syndrome of manifestations and these include 
Prader-Willi, Angelman and Wilson-Turner syndromes.

Genome-wide scans for obesity susceptibility genes have 
been performed in several populations of diverse ethnic 
backgrounds, and many have been replicated in corresponding 
studies.35 Although there have been hundreds of loci with high 
log of the odds scores, some of the most promising include 
1p36 (D1S468 a tumour necrosis factor alpha (TNFα) receptor 
gene), 2q14 (D2S410 a gene associated with high triglyceride 
levels) and 6q27 (a locus associated with transient neonatal 
diabetes mellitus).36 In contrast, candidate gene approaches 
look for mutations in genes that are presumed to be relevant.

Leptin Associated Genes

Leptin is secreted from adipocytes into the circulation, 
traverses into the central nervous system and binds to leptin 
receptors in the hypothalamic arcuate nucleus. This stimulates 
the production of pro-opiomelanocortin (POMC). The two 
products of POMC are alpha-melanocyte stimulating hormone 
(alpha-MSH) and adrenocorticotropin (ACTH). Alpha-
MSH binds to melanocortin-4 receptors in the hypothalamic 
paraventricular nucleus which cause a decrease in food intake. 
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It appears that a genetically lean individual will gain an extra 
7 to 8 kg before leptin increases sufficiently to stop weight 
gain. Individuals who gain more must be unresponsive to the 
hormone either because it cannot enter the brain sufficiently or 
because there is a mutation in one of the many steps of leptin 
action.37 Mutations of this system (leptin,38 leptin receptor,39 
POMC,40 alpha MSH receptor41) are generally uncommon or 
rare but can cause obesity. Although it was hoped that leptin 
deficiency caused obesity, we now know that obesity usually 
has high leptin levels and leptin resistance is likely.42 

Beta-3 Adrenergic Receptor (ADRB3) Gene

This is expressed in adipose tissue and is involved in 
the regulation of lipid metabolism and thermogenesis. A 
missense mutation (Trp64Arg) has a high frequency in Pima 
Indians43 and has been frequently associated with obesity in 
other populations.44-46 The interaction of this receptor with 
other receptors may also affect its ability to couple with its 
mediators such as G-proteins.

Peroxisome Proliferator Activated Peptide Receptor Gamma 
(PPAR-γ) Gene

The importance of this receptor in obesity is supported 
by the efficacy of thiazolidinediones in the treatment of 
visceral obesity. These drugs, also known as glitazones, bind 
avidly to the PPAR-γ receptor47 leading to improved insulin 
sensitivity with major changes in fat metabolism including a 
reduction in free fatty acids (FFA)48 by improved peripheral 
and subcutaneous uptake.49 They also decrease insulin levels 
presumably by reducing FFA, reducing the release of TNF-
α and restoring adiponectin levels.50 Note that this is not 
the same receptor as PPAR-α which also potentiates FFA 
catabolism in the liver but is the molecular target of the lipid-
lowering fibrates (e.g. gemfibrozil).51

PPAR-γ is a nuclear receptor that is important for adipogenesis 
and insulin signalling. The Pro12Ala mutation is common and 
results in a decreased ability to bind to PPAR-γ responsive 
genes. The mutation has effects on BMI that are variable but 
it could be that its greatest effect is on individuals that are 
already predisposed to obesity.52 Similarly individuals with the 
ADRB3 Trp64Arg mutation are far more likely to be obese if 
they also have the Pro12Ala PPAR-γ mutation.53 Other genes 
associated with the PPAR-γ, including its coactivator-1 (PGC-
1), have also been found to have many alleles associated with 
obesity.54

Adiponectin Gene

This adipocyte derived peptide has had many regulatory 
actions on energy homeostasis, glucose and lipid metabolism 
and anti-inflammatory pathways described. High levels of 
adiponectin generally lead to weight loss. Polymorphisms of 
the adiponectin gene have also been associated with obesity 
and insulin sensitivity.55

Physical Pathology of Obesity

Osteoarthritis is one of the major costs of obesity. Osteoarthritis 
in the knees and ankles may be directly related to the 
trauma associated with the degree of excess body weight.56  
Non-weight bearing joints may still be affected by altered 
cartilage and bone metabolism.

Obstructive sleep apnoea is a physically defined entity 
characterised by the absence of airflow in the presence 
of thoracoabdominal movements. 70% of patients with 
obstructive sleep apnoea are obese57 and this may be due to 
neck fat and fat deposits in the pharyngeal area.58 Decreases in 
residual lung volume are associated with increased abdominal 
pressure on the diaphragm.59 There is variable lowering of 
nocturnal oxygen saturation, which is usually mild, and 
measurement of oxygen saturation has limited diagnostic 
use.60 When underlying pulmonary disease is absent, only 
major degrees of obesity affect pulmonary function. While 
only 5% of all obese patients have obstructive sleep apnoea, 
almost half have loud snoring and a third have excess daytime 
sleepiness. Obstructive sleep apnoea has been associated 
with all of the diseases of obesity including hypertension and 
coronary artery disease (CAD). Pulmonary hypertension is 
also possible due to vasoconstriction of pulmonary arterial 
bed during apnoea that extends into the waking hours. But 
although obstructive sleep apnoea has been suggested as a 
cause of pulmonary hypertension, it is not recognised as a risk 
factor on its own.

Finally one of the consequences of obesity is community 
stigma where public disapproval may affect education, 
employment, income, marital status and health care. These 
are significant detrimental effects on the quality of life and 
are associated with higher incidence of depression.

Obesity and Insulin Resistance

The risk of diabetes increases by 9% for each kg gained in self 
reported weight61 and generally starts to increase at a BMI of 
2262 and is 40 times higher at a BMI over 35.63,64

Biochemistry of Obesity
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Insulin resistance is widely recognized as a fundamental defect 
seen in obesity and type 2 diabetes. The development of type 
2 diabetes is strongly associated with overweight and obesity 
in both genders and all ethnic groups. Over 90% of diabetics 
are overweight or obese.65 Weight gain and insulin resistance 
usually precede the onset of diabetes. Current theories indicate 
that type 2 diabetes develops when pancreatic beta cell output 
can no longer satisfy the demands imposed by increased 
insulin resistance.66

The FFA Paradigm Linking Obesity to Insulin Resistance

The predominant paradigm used to explain insulin resistance 
is the elevated FFA concentrations in visceral obesity. The 
importance of a portal source of FFA and its direct access to 
the function of the liver could explain the insulin resistance 
of the liver with central obesity.67 Increased adipose tissue 
stores, a disturbed insulin-mediated regulation of lipolysis 
and subnormal skeletal muscle FFA uptake under conditions 
of high lipolytic rate may further increase circulating FFA 
concentrations.68 In addition, a disturbance of FFA uptake by 
adipose tissue post-prandially is also a critical determinant of 
plasma FFA concentration.

Elevated cellular levels of FFA can produce insulin resistance 
in skeletal muscle and liver, as well as reduce beta-cell 
function, and this has been referred to as lipotoxicity.69 
Several lines of evidence indicate that hepatic FFA and 
triglyceride accumulation are a causative factor involved 
in hepatic insulin resistance.70 Evidence is increasing that 
insulin-resistant muscle is characterised by a lowered ability 
to oxidise FFA. Perturbations in FFA metabolism occur 
during accumulation of skeletal muscle triglyceride and may 
also be implicated in the pathogenesis of insulin resistance.71 
An imbalance between FFA uptake and FFA oxidation may in 
turn be a factor promoting accumulation of lipid intermediates 
and triacylglycerols within skeletal muscle, which is strongly 
associated with skeletal muscle insulin resistance.72 FFA 
can block insulin-signalling pathways and lead to insulin 
resistance.73 Unsaturated FFA may serve as a nutrient sensor 
to determine whether FFA are to be stored or oxidized and 
thereby reduce the risk of developing fatty liver and insulin 
resistance.74 Chronically elevated FFA contribute to beta 
cell dysfunction by significantly increasing the basal rate 
of insulin secretion.75,76 However it is also believed that the 
beta-cell changes found in diabetes are better correlated with 
increased glucose levels than with FFA levels, thus supporting 
an importance of glucotoxicity.77

 

The Adipokine Paradigm Linking Obesity to Insulin 
Resistance

This paradigm focuses on adipose tissue as an endocrine 
organ.78 Recent studies have suggested that adipokines 
(adipose tissue-derived hormones and inflammatory 
cytokines) play essential roles in overall insulin sensitivity and 
the dysfunctions of adipose tissue which can lead to systemic 
insulin resistance.79 This concept is not independent of FFA 
theories as there still seems to be a relationship between FFA 
levels and adipokines particularly in individuals who are 
overweight or insulin resistant.80

Cytokines

Cytokines produced by visceral adipose tissue are thought 
to be of possible major importance with the most studied of 
these adipose cytokines being TNF-α.81 TNF-α is produced by 
adipose tissue82 and its expression is elevated in the adipose 
tissue in multiple experimental models of obesity. TNF-
α inhibits the synthesis of several other adipocyte-specific 
proteins including adiponectin and enhances the release of 
FFA from adipose tissue.83 Neutralisation of TNF-α in one of 
these models improves insulin sensitivity by increasing the 
activity of the insulin receptor tyrosine kinase, specifically in 
muscle and fat tissues. On a cellular level, TNF-α is a potent 
inhibitor of the insulin-stimulated tyrosine phosphorylation 
on the beta-chain of the insulin receptor and insulin receptor 
substrate-1, suggesting a defect at or near the tyrosine kinase 
activity of the insulin receptor. Given the clear link between 
obesity, insulin resistance, and diabetes, these results strongly 
suggest that TNF-α may play a crucial role in the systemic 
insulin resistance of NIDDM. TNF-α can stimulate IL-6, 
which, in turn, stimulates the acute phase reactant production 
of CRP, Plasminogen activator inhibitor 1 (PAI-1) and 
fibrinogen from the hepatocyte.84 Fibronectin is also elevated 
and shows some correlation with insulin, but not C-peptide or 
measures of body weight.85

Leptin

Leptin was discovered in 1994. The ‘ob/ob’ mouse lacks 
the ability to produce or respond to leptin resulting in 
severe obesity.86 Leptin decreases neuropeptide Y in the 
hypothalamus and should suppress appetite. Fat mass is the 
primary determinant of serum leptin in humans with energy 
intake and gender also having significant effects.87 Gender 
influences leptin production and reactivity,88 presumably 
through the reproductive hormones.89 Catecholamines 
also influence leptin production and the leptin signal to the 
appetite centre.90 Additional regulators of leptin production 
include glucocorticoids, cytokines and agonists of PPAR-γ.  

Sikaris KA



Clin Biochem Rev Vol 25 August 2004  I  169

Leptin is not only produced by adipose tissue but is also 
produced in several other places including placenta, bone 
marrow, stomach, muscle and perhaps brain, thus increasing 
the number of potential regulatory roles for this hormone.91

Adiponectin

Adiponectin is a novel adipose tissue-specific protein that has 
structural homology to collagen VIII and X and complement 
factor C1q, and circulates in human plasma at high levels.92 
Adiponectin expression and/or secretion is increased by 
insulin like growth factor-1 and decreased by glucocorticoids 
and beta-adrenergic agonists. Adiponectin expression and 
secretion is increased by activators of PPAR-γ.93 Adiponectin 
exhibits potent anti-inflammatory and anti-atherosclerotic 
effects94 including inhibiting the expression of TNF-α 
induced endothelial adhesion molecules, macrophage-to-
foam cell transformation, TNF-α expression in macrophages 
and adipose tissues, and smooth muscle cell proliferation.95 
Production is reduced in insulin resistance indicating that the 
degree of hypo-adiponectinaemia is more closely related to 
the degree of insulin resistance and hyperinsulinaemia than to 
the degree of adiposity or glucose intolerance.96 Adiponectin’s 
effects seem to be peripherally mediated and the evidence of 
an association between adiponectin and the metabolic and 
cardiovascular complications of obesity is growing all the 
time.97

 PAI-1

PAI-1 is the primary physiological inhibitor of plasminogen 
activation in blood and is known to contribute to thrombus 
formation and to the development and the clinical course of 
acute and chronic cardiovascular diseases. Plasma levels of 
PAI-1 are regulated on a genetic basis but, more importantly 
visceral fat accumulation is considered as a major regulator of 
PAI-1. Expression by adipose tissue could be responsible for 
the elevated plasma PAI-1 level observed in insulin resistance. 
While adiponectin has anti-atherogenic properties, it is also 
inversely related to PAI-198 which is closely involved in the 
development of atherosclerosis. Elevated PAI-1 level is a core 
feature of insulin-resistance99 and pro-inflammatory cytokines 
may have an important role in PAI-1 over-expression.100 It is 
suggested that PAI-1 may not merely increase in response to 
obesity and insulin resistance, but may have a direct causal 
role in obesity and insulin resistance.101

Adipsin

Adipsin is a serine protease that is secreted by adipocytes and 
belongs to the alternative complement pathway (complement 

D).102 It is deficient in mouse models of obesity however this 
may be a secondary phenomenon.103

Resistin

Resistin is an adipokine with putative pro-diabetogenic 
properties.104 Although there is evidence that circulating 
levels are proportional to the degree of adiposity, levels are 
not related to the degree of insulin resistance.105,106

Metabolic Syndrome Criteria

The metabolic syndrome (previously known as syndrome 
X) has insulin resistance as its hallmark as indicated in the 
WHO classification of metabolic syndrome107 (Table 1). The 
third report of The National Cholesterol Education Program 
(NCEP) Expert Panel also developed criteria108 (Table 2) 
which are similar, but can lead to differences in classification 
of various populations.109,110

 
Although hyperuricaemia is also related to insulin resistance 
and was included in the original syndrome, the relation 
between serum urate and the risk of coronary heart disease 
depends heavily upon the presence of pre-existing myocardial 
infarction and widespread underlying atherosclerosis as well 
as the clustering of risk factors.111,112

Advanced Tests of Insulin Resistance

The so-called ‘gold-standard’ test of insulin resistance is the 
euglycaemic clamp which requires the infusion of glucose and 
insulin, and is therefore only useful for intensive physiological 
studies on small numbers of subjects. Furthermore, caution 
should be exercised when making comparisons between 
studies due to variations in infusion protocols, sampling 
procedures and hormone assays used. The minimal model 
approach is a frequently sampled IV glucose tolerance test 
but is also best suited to a research setting as it still requires 
up to 30 blood samples.

Simple Tests of Insulin Resistance

The simplest test is a fasting or random glucose level, however 
this is insensitive particularly as we do not know how much 
insulin is being secreted to maintain that glucose level.

The next simplest test is an insulin level. The main problem 
here is that insulin levels are highly variable from minute to 
minute, let alone after meals. This is no longer due to insulin 
assay imprecision but due to the pulsatile release of insulin 
coupled with its short half-life. A single fasting level is still 
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so variable that it may easily be misleading and many suggest 
that at least three fasting levels should be taken and averaged 
to obtain a better estimate of the usual fasting insulin level.

Simple estimates of insulin sensitivity and pancreatic beta-
cell function using fasting insulin and glucose levels serve 
as surrogate measures of insulin sensitivity and secretion.113 
A very simple tool is the fasting insulin to glucose ratio. A 
level greater than 4.5 (using SI units) has been described as 
being useful in the diagnosis of insulin resistance polycystic 
ovary syndrome114 and greater than 7.0 in girls with premature 
adrenarche.115

An alternative calculation based on fasting insulin and glucose 
is the ‘Homeostatic Model Assessment’ (HOMA), as it is 
assumed that the fasting state is homeostatic. This calculation 
is essentially the product of fasting insulin and glucose 
concentrations and is more useful than either measure on its 
own. Note that it will also be influenced by the variability of 
single fasting insulin estimates as well as the insulin assay 
chosen. The HOMA calculation can be configured to be a 
measure of resistance (HOMA-R) or sensitivity (HOMA-
S). It is more appropriate for large epidemiological studies 
however it is important to be aware that advanced tests of 
insulin resistance measure stimulated insulin resistance 
whereas HOMA gives an estimate of basal insulin resistance. 
Normal HOMA-R levels are awkward to define across age 
groups.116

The quantitative insulin sensitivity check index (QUICKI),117 
was designed to give a more linear relationship with clamp 
estimates than the HOMA (which is inversely and reciprocally 
related to clamp values). Both QUICKI and inverse of 
HOMA-R are useful measures118 and suitable for diagnosis of 
insulin resistance in clinical and epidemiological practice119 
and only fail in unusual clinical scenarios.120 However, a 
normal QUICKI reference interval needs to be established for 
each laboratory with an appropriate control group because of 
significant inter-laboratory variations in insulin values as well 
as differences in various populations.121

My own view is that most of the variation of both the HOMA 
and QUICKI correlates to fasting insulin variation and therefore 
up to 90% of the information can be obtained from the fasting 
insulin level alone. Insulin levels can also be measured during 
an oral glucose tolerance test and I have found them practically 
useful in assessing normoglycaemic individuals at high risk 
of insulin resistance. No single test of insulin resistance will 
be appropriate under all circumstances122 and the tests should 
not be assumed to give equivalent assessments.123,124

Clinical Associations of Obesity

Liver Disease

Fat accumulation in the liver is independent of body mass 
index, intra-abdominal and overall obesity but characterized 
by several features of insulin resistance in normal weight and 

Table 1. WHO Criteria for Metabolic Syndrome:
Insulin resistance (Hyperinsulinaemia and/or Fasting Glucose >=6.1) + 2 of the following factors:

MEN WOMEN
Body Mass Index >= 30 kg/m2 >= 30 kg/m2

Or Waist Hip Ratio >0.9 >0.85
Triglycerides >1.7 mmol/L >1.7mmol/L
HDL Cholesterol <0.9 mmol/L <1.0 mmol/L
Microalbuminuria >2.5mg/mmol creatinine >2.5mg/mmol creatinine
Blood Pressure >=140/90 mmHg >=140/90 mmHg

Table 2. NCEP Criteria for Metabolic Syndrome:
3 of the following factors:

MEN WOMEN
Waist Circumference >= 102cm >=88cm
Triglycerides >=1.7 mmol/L >=1.7mmol/L
HDL Cholesterol <=1.0 mmol/L <=1.3 mmol/L
Fasting Glucose >=6.1 mmol/L >=6.1 mmol/L
Blood Pressure >=130/85 mmHg >=130/85 mmHg
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moderately overweight subjects.125 Increased hepatic VLDL 
production is associated with insulin resistance and the high 
rate of triglyceride turnover is often greater than the ability 
to secrete. Insulin resistance may also result in an inability to 
suppress apo B degradation.126 Hepatic steatosis (fatty liver) 
consists of small or large intracytoplasmic lipid droplets 
especially around terminal hepatic veins (zone 3).127

Impaired triglyceride export and an insufficient increase in free 
FFA mitochondrial beta oxidation could aggravate the situation 
leading to the presence of oxidisable lipids in hepatocytes 
and could also trigger lipid peroxidation, mitochondrial 
dysfunction and cytokine production.128 Non-alcoholic 
steatohepatitis (NASH) is a combination of steatosis with 
necro-inflammatory changes including enlarged hepatocytes, 
apoptotic bodies, Mallory bodies and giant mitochondria 
with loss of cristae. Peripheral insulin resistance, increased 
FFA beta-oxidation, and hepatic oxidative stress are present 
in both fatty liver and NASH, but NASH alone is associated 
with mitochondrial structural defects.129 Inflammation appears 
with lymphocytic and neutrophilic infiltrates usually around 
altered hepatocytes or in the portal areas.

Fibrosis and cirrhosis may occur around the terminal hepatic 
veins and then form bridges between terminal hepatic veins 
or between adjacent portal tracts. Fatty liver and NASH is 
increasingly being recognised as an important cause of liver 
related morbidity and mortality130 and is believed by many to 
be one of the most common causes of cryptogenic cirrhosis.131 
The morbidly obese can be expected to have fatty liver 
changes including portal inflammation and fibrosis in 30% 
and cirrhosis in 3%.132

Although ferritin levels have also been found to be predictive 
of fatty liver133 it is important to recognise that ferritin levels 
will be increased when ALT levels are elevated and may be 
secondary to fatty liver rather than related to cause.

Laboratory abnormalities in fatty liver include a 2 to 4-
fold elevation of serum transaminase levels with other liver 
function test results usually normal.134 NASH is becoming the 
most common reason for referral for investigation of abnormal 
liver function tests. Central adiposity, hyperleptinaemia, 
and hyperinsulinaemia were the major determinants of the 
association of overweight with elevated serum ALT activity.135 
Performing oral glucose tolerance testing in cases with fatty 
liver disease may be useful for early screening of diabetes 
mellitus.136

Body weight, rather than alcohol consumption, may be the 
major factor in determining the serum level of liver enzymes. 

Even when body weight is not generally considered to be 
overweight, slight to moderate gains in weight are associated 
with increases in serum liver enzymes.137 Laboratories should 
determine age-adjusted reference intervals for enzymes 
in children, and gender-adjusted reference intervals for 
transaminases, gamma-glutamyltransferase, and total bilirubin 
in adults.138 These reference intervals for ALT may include 
variations due to BMI139 with body weight explaining 12% of 
the normal variation of ALT.140

The clinical adage “fat, female, fertile and forty” indicates 
that gallstone incidence is higher in the overweight and in fact 
very high in obesity.141 Cholesterol production increases as 
body fat increases142 (10 kg body weight gain is equivalent 
to an extra egg a day) and high concentrations of cholesterol 
relative to bile acids will increase the likelihood of gallstone 
precipitation. 

Coronary Artery Disease
 
BMI increases the risk of CAD, and weight gain from any 
initial BMI further increases the risk (especially weight gain 
of 20 kg or more).

Dyslipidaemia may be the most important relationship of BMI 
to CAD.143 Obesity increases VLDL (triglycerides) through 
increased production and decreased clearance of triglyceride 
rich lipoproteins due to lack of stimulation of lipoprotein 
lipase.144 Obesity also lowers HDL in men and women of 
all ages145-147 and ethnicities.148 While LDL levels are not 
consistently elevated in obesity, LDL is smaller and denser149 
and more atherogenic.

Cholesterol ester transport protein (CETP) exchanges 
triglycerides from VLDL to LDL in exchange for cholesterol 
esters. This results in triglyceride rich LDL particles that are 
rapidly lipolysed by hepatic lipase leaving smaller denser 
LDL particles. Small dense LDL can more easily be oxidised 
or glycated possibly leading to less identification by the LDL 
receptor and decreased clearance. Possibly small dense LDL 
is also more likely to get through endothelial fenestrations.

CETP also exchanges triglycerides from VLDL to HDL 
in exchange for cholesterol esters. This similarly results in 
triglyceride rich HDL particles that are rapidly lipolysed 
by hepatic lipase allowing HDL to be cleared from the 
circulation.

High fasting triglyceride levels (i.e. VLDL) predict the 
presence of small dense LDL in diabetes,150-152  non-diabetics153 
and hypopituitarism.154 Remarkably the value of triglyceride 
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that predicts the small dense LDL phenotype is about 1.5 
mmol/L, the same level used in the definitions of metabolic 
syndrome. More specifically the logarithm of the triglyceride 
concentration is inversely related to particle size.155 The total 
cholesterol to HDLC ratio is more predictive than the LDLC 
to HDLC ratio because it mathematically includes also the 
component Trig/HDL which is crucially abnormal in insulin 
resistance and predicts the presence of small dense LDL.

Hypertension
 
Hypertension is present in about half of all overweight 
individuals156 and obesity alone accounts for about 70% of 
essential hypertension.157 Cardiac weight increases with 
increasing body weight, but heart weight as a percentage of 
total body weight is lower than in normal weight controls. 
In obesity, the increase in cardiac output is not explained by 
the presence of the new adipose tissue, but may be due to 
increased sympathetic activity. Adrenaline (from the adrenal 
medulla) tends to be normal to low in obesity and there is 
a decreased response of adrenaline to hypoglycaemia and 
exercise.158 However, noradrenaline levels (from sympathetic 
nerve endings) tend to be higher.159 Hypertension in the 
overweight is associated with increased sympathetic 
activity160,161 and sympathetic blockers have greater effect 
in obesity.162 The causes of sympathetic overactivity include 
hyperinsulinaemia, increased intrarenal pressures, hepatic 
FFA, angiotensin II, leptin, central chemoreceptor sensitivity 
and impaired baroreceptor reflex.163 

Sodium reabsorption is increased with high fat diets164 and 
the renin/angiotensin/aldosterone system (RAAS) is activated 
in obesity despite volume expansion and sodium retention.165 
Aldosterone tends to be higher in obese individuals while 
renin is often relatively normal and there is a positive 
correlation between BMI and the aldosterone to renin ratio.166 
Adipose has long been expected to produce a factor that 
directly affects RAAS and recently all the components of the  
renin-angiotensin system have been found to be fully 
represented in the adipose tissue. Furthermore, they appear to be  
up-regulated in obesity and circulating angiotensinogen levels 
are enhanced167 due to elevated adipose angiotensinogen gene 
expression in obesity.168-170

Other findings of interest include the decreased levels of atrial 
and ventricular natriuretic peptides (natural antagonists of the 
RAAS) which may also help to explain the susceptibility of 
the obese to hypertensive disorders.171

Renal hyper-filtration together with glucose intolerance, 
hyperlipidaemia and hypertension can lead to obesity related 
focal segmental glomerulosclerosis.

Polycystic Ovary Syndrome (PCOS)
 
PCOS has been described as ‘the thief of womanhood’ as it is 
commonly associated with oligomenorrhoea and hirsutism.172 
Multiple ovarian cysts are actually a common ultrasound 
finding (up to 20% in 18-25 y/o) however this finding is 
usually not associated with infertility, although it may be 
associated with hirsutism.173 It is  generally the association of 
obesity with multiple ovarian cysts that leads to infertility.174

A universally accepted definition of PCOS does not exist, 
however most modern definitions acknowledge the association 
of insulin resistance together with hyperandrogenism and 
infertility. Up to 30% of all PCOS women have impaired 
glucose tolerance and an additional 7.5% have diabetes 
while even 10.3% of non-obese women with PCOS have 
impaired glucose tolerance and 1.5% have diabetes.175 16% of 
PCOS women develop diabetes by the age of menopause.176 
Conversely, up to 27% of pre-menopausal women with type 2 
diabetes will also have PCOS.177

Sex hormone binding globulin (SHBG) is usually low in 
PCOS. The most important hormone that SHBG binds is 
testosterone. The presence of increased total testosterone in 
PCOS is uncommon compared to the prevalence of increased 
free testosterone estimates.178 Free testosterone is believed 
to be the biologically active form but is difficult to measure, 
however it is clear that if there is little binding protein, more 
testosterone must be free and active. SHBG levels can be 
increased by oestrogen or thyroxine,179 however low levels 
are usually due to androgens or insulin.180 Levels of SHBG do 
not correlate with androgen levels but rather with body mass 
index181,182 and insulin resistance.183,184 SHBG is predictive of 
NIDDM in women185,186 and similarly predictive of overall 
mortality in post-menopausal women.187 Abnormal lipid 
levels are seen in 70% of women with PCOS particularly if 
they are obese.188

Increased LH pulse frequency and amplitude occurs in 
PCOS. This may be in part due to the effects of elevated free 
testosterone.189 The normal LH/FSH ratio is below 2.0, whereas 
in PCOS it usually rises to over 2.5. Marked elevations of 
both LH and FSH are seen normally in mid-cycle when this 
ratio is less discriminatory.

Other Endocrine Effects of Obesity

Obesity has no effect on TSH, FT4, TRH, thyroglobulin or 
total T4. Reverse T3 (rT3) has been negatively correlated 
to BMI but it is already known that overfeeding can lead to 
increased levels of T3 (where rT3 is decreased) and this is the 
most likely relationship.190
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Growth hormone (GH) levels are lower in obesity.191 The 
circadian rhythm is maintained but GH responsiveness is 
also diminished and there are fewer GH pulses with lower 
amplitude.192 Chronic hyperinsulinaemia in obesity may 
stimulate IGF-1 production but simultaneously suppress 
hepatic IGFBP-1 and IGFBP-2 production, which may result 
in inhibition of IGF-1 bioactivity.193 Changes in IGF-1 levels 
may also be responsible for the lower GH levels, through 
negative feedback.194 

Cortisol production is increased, but as there is also increased 
metabolism, basal levels of cortisol (and ACTH) are normal 
in obesity. Abnormalities in the pituitary adrenal axis have 
been described. However we need to distinguish between 
simple obesity and the obesity associated with Cushing’s 
syndrome, otherwise it is difficult to assess the importance of 
differing responses in cortisol and ACTH stimulatory tests in 
obesity.195

Fat distribution develops in adolescence and androgens and 
oestrogens produced by the gonads and adrenals as well as 
the peripheral conversion of androstenedione to estrone in 
fat cells are pivotal in body fat distribution. Oestradiol and 
oestrone levels are increased in obese men probably due 
to the increased peripheral conversion of testosterone and 
androstenedione to estradiol and estrone. Despite the high 
levels there is generally no evidence of feminisation. 

Total testosterone levels are lower in obese men, largely due 
to decreases in SHBG.196 However, free testosterone levels 
seem to be normal and libido, testicular size, potency and 
spermatogenesis are also usually normal. Obesity has been 
proven to affect other aspects of sexual function as it is 
independently associated with erectile dysfunction and may 
improve with weight loss.197 LH levels are usually normal198 
however gross obesity may cause low LH levels.199 Low free 
testosterone levels may occur200 as evidenced in sleep apnoea 
syndrome,201 and this may be mediated by the significantly 
increased oestrogens in obese men. 

Finally vitamin D levels are also lower in obesity202,203 leading 
to higher PTH levels.204 Social isolation and an indoor 
existence may be significant factors.

Conclusion

The rate of obesity is increasing throughout the world. 
Environmental changes continue to occur in developed 
and developing countries creating a global pandemic with 
enormous implication of morbidity and mortality in the coming 
decades. It seems that each of us will have a polygenetic risk 

to developing obesity and can only hope that the improving 
understanding of the causes and complex relationships 
of obesity will lead to better prevention and treatments. 
The clinical biochemistry laboratory often provides useful 
evidence for clinicians and patients when the overt signs of 
the condition are either hidden or denied. Until then we only 
need to look around us for motivation in our personal battles 
with this disease!
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