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Abstract
Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease.
Here we report a public database of common variation in the human genome: more than one million
single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been
obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which
essentially all information about common DNA variation has been extracted. These data document
the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low
haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We
show how the HapMap resource can guide the design and analysis of genetic association studies,
shed light on structural variation and recombination, and identify loci that may have been subject to
natural selection during human evolution.

Despite the ever-accelerating pace of biomedical research, the root causes of common human
diseases remain largely unknown, preventative measures are generally inadequate, and
available treatments are seldom curative. Family history is one of the strongest risk factors for
nearly all diseases—including cardiovascular disease, cancer, diabetes, autoimmunity,
psychiatric illnesses and many others—providing the tantalizing but elusive clue that inherited
genetic variation has an important role in the pathogenesis of disease. Identifying the causal
genes and variants would represent an important step in the path towards improved prevention,
diagnosis and treatment of disease.

More than a thousand genes for rare, highly heritable ‘mendelian’ disorders have been
identified, in which variation in a single gene is both necessary and sufficient to cause disease.
Common disorders, in contrast, have proven much more challenging to study, as they are
thought to be due to the combined effect of many different susceptibility DNA variants
interacting with environmental factors.

Studies of common diseases have fallen into two broad categories: family-based linkage studies
across the entire genome, and population-based association studies of individual candidate
genes. Although there have been notable successes, progress has been slow due to the inherent
limitations of the methods; linkage analysis has low power except when a single locus explains
a substantial fraction of disease, and association studies of one or a few candidate genes
examine only a small fraction of the ‘universe’ of sequence variation in each patient.

A comprehensive search for genetic influences on disease would involve examining all genetic
differences in a large number of affected individuals and controls. It may eventually become
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possible to accomplish this by complete genome resequencing. In the meantime, it is
increasingly practical to systematically test common genetic variants for their role in disease;
such variants explain much of the genetic diversity in our species, a consequence of the
historically small size and shared ancestry of the human population.

Recent experience bears out the hypothesis that common variants have an important role in
disease, with a partial list of validated examples including HLA (autoimmunity and
infection)1, APOE4 (Alzheimer’s disease, lipids)2, Factor VLeiden (deep vein thrombosis)3,
PPARG (encoding PPARγ; type 2 diabetes)4,5, KCNJ11 (type 2 diabetes)6, PTPN22
(rheumatoid arthritis and type 1 diabetes)7,8, insulin (type 1 diabetes)9, CTLA4 (autoimmune
thyroid disease, type 1 diabetes)10, NOD2 (inflammatory bowel disease)11,12, complement
factor H (age-related macular degeneration)13–15 and RET (Hirsch-sprung disease)16,17,
among many others.

Systematic studies of common genetic variants are facilitated by the fact that individuals who
carry a particular SNP allele at one site often predictably carry specific alleles at other nearby
variant sites. This correlation is known as linkage disequilibrium (LD); a particular
combination of alleles along a chromosome is termed a haplotype.

LD exists because of the shared ancestry of contemporary chromosomes. When a new causal
variant arises through mutation—whether a single nucleotide change, insertion/deletion, or
structural alteration—it is initially tethered to a unique chromosome on which it occurred,
marked by a distinct combination of genetic variants. Recombination and mutation
subsequently act to erode this association, but do so slowly (each occurring at an average rate
of about 10−8 per base pair (bp) per generation) as compared to the number of generations
(typically 104 to 105) since the mutational event.

The correlations between causal mutations and the haplotypes on which they arose have long
served as a tool for human genetic research: first finding association to a haplotype, and then
subsequently identifying the causal mutation(s) that it carries. This was pioneered in studies
of the HLA region, extended to identify causal genes for mendelian diseases (for example,
cystic fibrosis18 and diastrophic dysplasia19), and most recently for complex disorders such
as age-related macular degeneration13–15.

Early information documented the existence of LD in the human genome20,21; however, these
studies were limited (for technical reasons) to a small number of regions with incomplete data,
and general patterns were challenging to discern. With the sequencing of the human genome
and development of high-throughput genomic methods, it became clear that the human genome
generally displays more LD22 than under simple population genetic models23, and that LD is
more varied across regions, and more segmentally structured24–30, than had previously been
supposed. These observations indicated that LD-based methods would generally have great
value (because nearby SNPs were typically correlated with many of their neighbours), and also
that LD relationships would need to be empirically determined across the genome by studying
polymorphisms at high density in population samples.

The International HapMap Project was launched in October 2002 to create a public, genome-
wide database of common human sequence variation, providing information needed as a guide
to genetic studies of clinical phenotypes31. The project had become practical by the confluence
of the following: (1) the availability of the human genome sequence; (2) databases of common
SNPs (subsequently enriched by this project) from which genotyping assays could be designed;
(3) insights into human LD; (4) development of inexpensive, accurate technologies for high-
throughput SNP genotyping; (5) web-based tools for storing and sharing data; and (6)
frameworks to address associated ethical and cultural issues32. The project follows the data
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release principles of an international community resource project (http://www.wellcome.ac.uk/
doc_WTD003208.html), sharing information rapidly and without restriction on its use.

The HapMap data were generated with the primary aim of guiding the design and analysis of
medical genetic studies. In addition, the advent of genome-wide variation resources such as
the HapMap opens a new era in population genetics, offering an unprecedented opportunity to
investigate the evolutionary forces that have shaped variation in natural populations.

The Phase I HapMap
Phase I of the HapMap Project set as a goal genotyping at least one common SNP every 5
kilobases (kb) across the genome in each of 269 DNA samples. For the sake of practicality,
and motivated by the allele frequency distribution of variants in the human genome, a minor
allele frequency (MAF) of 0.05 or greater was targeted for study. (For simplicity, in this paper
we will use the term ‘common’ to mean a SNP with MAF ≥ 0.05.) The project has a Phase II,
which is attempting genotyping of an additional 4.6 million SNPs in each of the HapMap
samples.

To compare the genome-wide resource to a more complete database of common variation—
one in which all common SNPs and many rarer ones have been discovered and tested—a
representative collection of ten regions, each 500 kb in length, was selected from the ENCODE
(Encyclopedia of DNA Elements) Project33. Each 500-kb region was sequenced in 48
individuals, and all SNPs in these regions (discovered or in dbSNP) were genotyped in the
complete set of 269 DNA samples.

The specific samples examined are: (1) 90 individuals (30 parent–offspring trios) from the
Yoruba in Ibadan, Nigeria (abbreviation YRI); (2) 90 individuals (30 trios) in Utah, USA, from
the Centre d’Etude du Polymorphisme Humain collection (abbreviation CEU); (3) 45 Han
Chinese in Beijing, China (abbreviation CHB); (4) 44 Japanese in Tokyo, Japan (abbreviation
JPT).

Because none of the samples was collected to be representative of a larger population such as
‘Yoruba’, ‘Northern and Western European’, ‘Han Chinese’, or ‘Japanese’ (let alone of all
populations from ‘Africa’, ‘Europe’, or ‘Asia’), we recommend using a specific local identifier
(for example, ‘Yoruba in Ibadan, Nigeria’) to describe the samples initially. Because the CHB
and JPT allele frequencies are generally very similar, some analyses below combine these data
sets. When doing so, we refer to three ‘analysis panels’ (YRI, CEU, CHB+JPT) to avoid
confusing this analytical approach with the concept of a ‘population’.

Important details about the design of the HapMap Project are presented in the Methods,
including: (1) organization of the project; (2) selection of DNA samples for study; (3)
increasing the number and annotation of SNPs in the public SNP map (dbSNP) from 2.6 million
to 9.2 million (Fig. 1); (4) targeted sequencing of the ten ENCODE regions, including
evaluations of false-positive and false-negative rates; (5) genotyping for the genome-wide map;
(6) intense efforts that monitored and established the high quality of the data; and (7) data
coordination and distribution through the project Data Coordination Center (DCC) (http://
www.hapmap.org).

Description of the data
The Phase I HapMap contains 1,007,329 SNPs that passed a set of quality control (QC) filters
(see Methods) in each of the three analysis panels, and are polymorphic across the 269 samples.
SNP genotyping was distributed across centres by chromosomal region, with several
technologies employed (Table 1). Each centre followed the same standard rules for SNP
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selection, quality control and data release; all SNPs were genotyped in the full set of 269
samples. Some centres genotyped more SNPs than required by the rules.

Extensive, blinded quality assessment (QA) exercises documented that these data are highly
accurate (99.7%) and complete (99.3%, see also Supplementary Table 1). All genotyping
centres produced high-quality data (accuracy more than 99% in the blind QA exercises,
Supplementary Tables 2 and 3), and missing data were not biased against heterozygotes. The
Supplementary Information contains the full details of these efforts.

Although SNP selection was generally agnostic to functional annotation, 11,500 non-
synonymous cSNPs (SNPs in coding regions of genes where the different SNP alleles code for
different amino acids in the protein) were successfully typed in Phase I. (An effort was made
to prioritize cSNPs in Phase I in choosing SNPs for each 5-kb region; all known non-
synonymous cSNPs were attempted as part of Phase II.)

Across the ten ENCODE regions (Table 2), the density of SNPs was approximately tenfold
higher as compared to the genome-wide map: 17,944 SNPs across the 5 megabases (Mb) (one
per 279 bp).

More than 1.3 million SNP genotyping assays were attempted (Table 3) to generate the Phase
I data on more than 1 million SNPs. The 0.3 million SNPs not part of the Phase I data set
include 73,652 that passed QC filters but were monomorphic in all 269 samples. The remaining
SNPs failed the QC filters in one or more analysis panels mostly because of inadequate
completeness, non-mendelian inheritance, deviations from Hardy–Weinberg equilibrium,
discrepant genotypes among duplicates, and data transmission discrepancies.

SNPs on the Phase I map are evenly spaced, except on Y and mtDNA
The Phase I data include a successful, common SNP every 5 kb across most of the genome in
each analysis panel (Supplementary Fig. 1): only 3.3% of inter-SNP distances are longer than
10 kb, spanning 11.9% of the genome (Fig. 2; see also Supplementary Fig. 2). One exception
is the X chromosome (Supplementary Fig. 1), where a much higher proportion of attempted
SNPs were rare or monomorphic, and thus the density of common SNPs is lower.

Two intentional exceptions to the regular spacing of SNPs on the physical map were the
mitochondrial chromosome (mtDNA), which does not undergo recombination, and the non-
recombining portion of chromosome Y. On the basis of the 168 successful, polymorphic SNPs,
each HapMap sample fell into one of 15 (of the 18 known) mtDNA haplogroups34 (Table 4).
A total of 84 SNPs that characterize the unique branches of the reference Y genealogical
tree35–37 were genotyped on the HapMap samples. These SNPs assigned each Y chromosome
to 8 (of the 18 major) Y haplogroups previously described (Table 4).

Highly accurate phasing of long-range chromosomal haplotypes
Despite having collected data in diploid individuals, the inclusion of parent–offspring trios and
the use of computational methods made it possible to determine long-range phased haplotypes
of extremely high quality for each individual. These computational algorithms take advantage
of the observation that because of LD, relatively few of the large number of possible haplotypes
consistent with the genotype data actually occur in population samples.

The project compared a variety of algorithms for phasing haplotypes from unrelated individuals
and trios38, and applied the algorithm that proved most accurate (an updated version of
PHASE39) separately to each analysis panel. (Phased haplotypes are available for download
at the Project website.) We estimate that ‘switch’ errors—where a segment of the maternal
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haplotype is incorrectly joined to the paternal—occur extraordinarily rarely in the trio samples
(every 8 Mb in CEU; 3.6 Mb in YRI). The switch rate is higher in the CHB+JPT samples (one
per 0.34 Mb) due to the lack of information from parent–offspring trios, but even for the
unrelated individuals, statistical reconstruction of haplotypes is remarkably accurate.

Estimating properties of SNP discovery and dbSNP
Extensive sequencing and genotyping in the ENCODE regions characterized the false-positive
and false-negative rates for dbSNP, as well as polymerase chain reaction (PCR)-based
resequencing (see Methods). These data reveal two important conclusions: first, that PCR-
based sequencing of diploid samples may be biased against very rare variants (that is, those
seen only as a single heterozygote), and second, that the vast majority of common variants are
either represented in dbSNP, or show tight correlation to other SNPs that are in dbSNP (Fig.
3).

Allele frequency distributions within population samples
The underlying allele frequency distributions for these samples are best estimated from the
ENCODE data, where deep sequencing reduces bias due to SNP ascertainment. Consistent
with previous studies, most SNPs observed in the ENCODE regions are rare: 46% had MAF
< 0.05, and 9% were seen in only a single individual (Fig. 4). Although most varying sites in
the population are rare, most heterozygous sites within any individual are due to common SNPs.
Specifically, in the ENCODE data, 90% of heterozygous sites in each individual were due to
common variants (Fig. 4). With ever-deeper sequencing of DNA samples the number of rare
variants will rise linearly, but the vast majority of heterozygous sites in each person will be
explained by a limited set of common SNPs now contained (or captured through LD) in existing
databases (Fig. 3).

Consistent with previous descriptions, the CEU, CHB and JPT samples show fewer low
frequency alleles when compared to the YRI samples (Fig. 5), a pattern thought to be due to
bottlenecks in the history of the non-YRI populations.

In contrast to the ENCODE data, the distribution of allele frequencies for the genome-wide
data is flat (Fig. 5), with much more similarity in the distributions observed in the three analysis
panels. These patterns are well explained by the inherent and intentional bias in the rules used
for SNP selection: we prioritized using validated SNPs in order to focus resources on common
(rather than rare or false positive) candidate SNPs from the public databases. For a fuller
discussion of ascertainment issues, including a shift in frequencies over time and an excess of
high-frequency derived alleles due to inclusion of chimpanzee data in determination of double-
hit status, see the Supplementary Information (Supplementary Fig. 3).

SNP allele frequencies across population samples
Of the 1.007 million SNPs successfully genotyped and polymorphic across the three analysis
panels, only a subset were polymorphic in any given panel: 85% in YRI, 79% in CEU, and
75% in CHB+JPT. The joint distribution of frequencies across populations is presented in Fig.
6 (for the ENCODE data) and Supplementary Fig. 4 (for the genome-wide map). We note the
similarity of allele frequencies in the CHB and JPT samples, which motivates analysing them
jointly as a single analysis panel in the remainder of this report.

A simple measure of population differentiation is Wright’s FST, which measures the fraction
of total genetic variation due to between-population differences40. Across the autosomes,
FST estimated from the full set of Phase I data is 0.12, with CEU and CHB+JPT showing the
lowest level of differentiation (FST = 0.07), and YRI and CHB+JPT the highest (FST = 0.12).
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These values are slightly higher than previous reports41, but differences in the types of variants
(SNPs versus microsatellites) and the samples studied make comparisons difficult.

As expected, we observed very few fixed differences (that is, cases in which alternate alleles
are seen exclusively in different analysis panels). Across the 1 million SNPs genotyped, only
11 have fixed differences between CEU and YRI, 21 between CEU and CHB+JPT, and 5
between YRI and CHB+JPT, for the autosomes.

The extent of differentiation is similar across the autosomes, but higher on the X chromosome
(FST = 0.21). Interestingly, 123 SNPs on the X chromosome were completely differentiated
between YRI and CHB+JPT, but only two between CEU and YRI and one between CEU and
CHB+JPT. This seems to be largely due to a single region near the centromere, possibly
indicating a history of natural selection at this locus (see below; M. L. Freedman et al., personal
communication).

Haplotype sharing across populations
We next examined the extent to which haplotypes are shared across populations. We used a
hidden Markov model in which each haplotype is modelled in turn as an imperfect mosaic of
other haplotypes (see Supplementary Information)42. In essence, the method infers
probabilistically which other haplotype in the sample is the closest relative (nearest neighbour)
at each position along the chromosome.

Unsurprisingly, the nearest neighbour most often is from the same analysis panel, but about
10% of haplotypes were found most closely to match a haplotype in another panel
(Supplementary Fig. 5). All individuals have at least some segments over which the nearest
neighbour is in a different analysis panel. These results indicate that although analysis panels
are characterized both by different haplotype frequencies and, to some extent, different
combinations of alleles, both common and rare haplotypes are often shared across populations.

Properties of LD in the human genome
Traditionally, descriptions of LD have focused on measures calculated between pairs of SNPs,
averaged as a function of physical distance. Examples of such analyses for the HapMap data
are presented in Supplementary Fig. 6. After adjusting for known confounders such as sample
size, allele frequency distribution, marker density, and length of sampled regions, these data
are highly similar to previously published surveys43.

Because LD varies markedly on scales of 1–100 kb, and is often discontinuous rather than
declining smoothly with distance, averages obscure important aspects of LD structure. A fuller
exploration of the fine-scale structure of LD offers both insight into the causes of LD and
understanding of its application to disease research.

LD patterns are simple in the absence of recombination
The most natural path to understanding LD structure is first to consider the simplest case in
which there is no recombination (or gene conversion), and then to add recombination to the
model. (For simplicity we ignore genotyping error and recurrent mutation in this discussion,
both of which seem to be rare in these data.)

In the absence of recombination, diversity arises solely through mutation. Because each SNP
arose on a particular branch of the genealogical tree relating the chromosomes in the current
populations, multiple haplotypes are observed. SNPs that arose on the same branch of the
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genealogy are perfectly correlated in the sample, whereas SNPs that occurred on different
branches have imperfect correlations, or no correlation at all.

We illustrate these concepts using empirical genotype data from 36 adjacent SNPs in an
ENCODE region (ENr131.2q37), selected because no obligate recombination events were
detectable among them in CEU (Fig. 7). (We note that the lack of obligate recombination events
in a small sample does not guarantee that no recombinants have occurred, but it provides a
good approximation for illustration.)

In principle, 36 such SNPs could give rise to 236 different haplotypes. Even with no
recombination, gene conversion or recurrent mutation, up to 37 different haplotypes could be
formed. Despite this great potential diversity, only seven haplotypes are observed (five seen
more than once) among the 120 parental CEU chromosomes studied, reflecting shared ancestry
since their most recent common ancestor among apparently unrelated individuals.

In such a setting, it is easy to interpret the two most common pairwise measures of LD: D′ and
r2. (See the Supplementary Information for fuller definitions of these measures.) D′ is defined
to be 1 in the absence of obligate recombination, declining only due to recombination or
recurrent mutation27. In contrast, r2 is simply the squared correlation coefficient between the
two SNPs. Thus, r2 is 1 when two SNPs arose on the same branch of the genealogy and remain
undisrupted by recombination, but has a value less than 1 when SNPs arose on different
branches, or if an initially strong correlation has been disrupted by crossing over.

In this region, D′ = 1 for all marker pairs, as there is no evidence of historical recombination.
In contrast, and despite great simplicity of haplotype structure, r2 values display a complex
pattern, varying from 0.0003 to 1.0, with no relationship to physical distance. This makes sense,
however, because without recombination, correlations among SNPs depend on the historical
order in which they arose, not the physical order of SNPs on the chromosome.

Most importantly, the seeming complexity of r2 values can be deconvolved in a simple manner:
only seven different SNP configurations exist in this region, with all but two chromosomes
matching five common haplotypes, which can be distinguished from each other by typing a
specific set of four SNPs. That is, only a small minority of sites need be examined to capture
fully the information in this region.

Variation in local recombination rates is a major determinant of LD
Recombination in the ancestors of the current population has typically disrupted the simple
picture presented above. In the human genome, as in yeast44, mouse45 and other genomes,
recombination rates typically vary dramatically on a fine scale, with hotspots of recombination
explaining much crossing over in each region28. The generality of this model has recently been
demonstrated through computational methods that allow estimation of recombination rates
(including hotspots and coldspots) from genotype data46,47.

The availability of nearly complete information about common DNA variation in the ENCODE
regions allowed a more precise estimation of recombination rates across large regions than in
any previous study. We estimated recombination rates and identified recombination hotspots
in the ENCODE data, using methods previously described46 (see Supplementary Information
for details). Hotspots are short regions (typically spanning about 2 kb) over which
recombination rates rise dramatically over local background rates.

Whereas the average recombination rate over 500 kb across the human genome is about 0.5
cM48, the estimated recombination rate across the 500-kb ENCODE regions varied nearly
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tenfold, from a minimum of 0.19 cM (ENm013.7q21.13) to a maximum of 1.25 cM
(ENr232.9q34.11). Even this tenfold variation obscures much more dramatic variation over a
finer scale: 88 hotspots of recombination were identified (Fig. 8; see also Supplementary Fig.
7)—that is, one per 57 kb—with hotspots detected in each of the ten regions (from 4 in 12q12
to 14 in 2q37.1). Across the 5 Mb, we estimate that about 80% of all recombination has taken
place in about 15% of the sequence (Fig. 9, see also refs 46, 49).

A block-like structure of human LD
With most human recombination occurring in recombination hotspots, the breakdown of LD
is often discontinuous. A ‘block-like’ structure of LD is visually apparent in Fig. 8 and
Supplementary Fig. 7: segments of consistently high D′ that break down where high
recombination rates, recombination hotspots and obligate recombination events50 all cluster.

When haplotype blocks are more formally defined in the ENCODE data (using a method based
on a composite of local D′ values30, or another based on the four gamete test51), most of the
sequence falls into long segments of strong LD that contain many SNPs and yet display limited
haplotype diversity (Table 5).

Specifically, addressing concerns that blocks might be an artefact of low marker density52, in
these nearly complete data most of the sequence falls into blocks of four or more SNPs (67%
in YRI to 87% in CEU) and the average sizes of such blocks are similar to initial
estimates30. Although the average block spans many SNPs (30–70), the average number of
common haplotypes in each block ranged only from 4.0 (CHB + JPT) to 5.6 (YRI), with nearly
all haplotypes in each block matching one of these few common haplotypes. These results
confirm the generality of inferences drawn from disease-mapping studies27 and genomic
surveys with smaller sample sizes29 and less complete data30.

Long-range haplotypes and local patterns of recombination
Although haplotypes often break at recombination hotspots (and block boundaries), this
tendency is not invariant. We identified all unique haplotypes with frequency more than 0.05
across the 269 individuals in the phased data, and compared them to the fine-scale
recombination map. Figure 10 shows a region of chromosome 19 over which many such
haplotypes break at identified recombination hotspots, but others continue. Thus, the tendency
towards co-localization of recombination sites does not imply that all haplotypes break at each
recombination site.

Some regions display remarkably extended haplotype structure based on a lack of
recombination (SupplementaryFig. 8a, b). Most striking, if unsurprising, are centromeric
regions, which lack recombination: haplotypes defined by more than 100 SNPs span several
megabases across the centromeres. The X chromosome has multiple regions with very
extensive haplotypes, whereas other chromosomes typically have a few such domains.

Most global measures of LD become more consistent when measured in genetic rather than
physical distance. For example, when plotted against physical distance, the extent of pairwise
LD varies by chromosome; when plotted against average recombination rate on each
chromosome (estimated from pedigree-based genetic maps) these differences largely disappear
(Supplementary Fig. 6). Similarly, the distribution of haplotype length across chromosomes is
less variable when measured in genetic rather than physical distance. For example, the median
length of haplotypes is 54.4 kb on chromosome 1 compared to 34.8 kb on chromosome 21.
When measured in genetic distance, however, haplotype length is much more similar: 0.104
cM on chromosome 1 compared to 0.111 cM on chromosome 21 (Supplementary Fig. 9).
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The exception is again the X chromosome, which has more extensive haplotype structure after
accounting for recombination rate (median haplotype length = 0.135 cM). Multiple factors
could explain different patterns on the X chromosome: lower SNP density, smaller sample
size, restriction of recombination to females and lower effective population size.

A view of LD focused on the putative causal SNP
Although genealogy and recombination provide insight into why nearby SNPs are often
correlated, it is the redundancies among SNPs that are of central importance for the design and
analysis of association studies. A truly comprehensive genetic association study must consider
all putative causal alleles and test each for its potential role in disease. If a causal variant is not
directly tested in the disease sample, its effect can nonetheless be indirectly tested if it is
correlated with a SNP or haplotype that has been directly tested.

The typical SNP is highly correlated with many of its neighbours
The ENCODE data reveal that SNPs are typically perfectly correlated to several nearby SNPs,
and partially correlated to many others.

We use the term proxy to mean a SNP that shows a strong correlation with one or more others.
When two variants are perfectly correlated, testing one is exactly equivalent to testing the other;
we refer to such collections of SNPs (with pairwise r2 = 1.0 in the HapMap samples) as ‘perfect
proxy sets’.

Considering only common SNPs (the target of study for the HapMap Project) in CEU in the
ENCODE data, one in five SNPs has 20 or more perfect proxies, and three in five have five or
more. In contrast, one in five has no perfect proxies. As expected, perfect proxy sets are smaller
in YRI, with twice as many SNPs (two in five) having no perfect proxy, and a quarter as many
(5%) having 20 or more (Figs 11 and 12). These patterns are largely consistent across the range
of frequencies studied by the project, with a trend towards fewer proxies at MAF < 0.10 (Fig.
11). Put another way, the average common SNP in ENCODE is perfectly redundant with three
other SNPs in the YRI samples, and nine to ten other SNPs in the other sample sets (Fig. 13).

Of course, to be detected through LD in an association study, correlation need not be complete
between the genotyped SNP and the causal variant. For example, under a multiplicative disease
model and a single-locus χ2 test, the sample size required to detect association to an allele
scales as 1/r2. That is, if the causal SNP has an r2 = 0.5 to one tested in the disease study, full
power can be maintained if the sample size is doubled.

The number of SNPs showing such substantial but incomplete correlation is much larger. For
example, using a looser threshold for declaring correlation (r2 ≥ 0.5), the average number of
proxies found for a common SNP in CHB+JPT is 43, and the average in YRI is 16 (Fig. 12).
These partial correlations can be exploited through haplotype analysis to increase power to
detect putative causal alleles, as discussed below.

Evaluating performance of the Phase I map
To estimate the proportion of all common SNPs captured by the Phase I map, we evaluated
redundancy among SNPs on the genome-wide map, and performed simulations based on the
more complete ENCODE data. The two methods give highly similar answers, and indicate that
Phase I should provide excellent power for CEU, CHB and JPT, and substantial power for
YRI. Phase II, moreover, will provide nearly complete power for all three analysis panels.
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Redundancies among SNPs in Phase I HapMap
Redundancy offers one measure that Phase I has sampled densely in comparison to the
underlying scale of correlation. Specifically, 50% (YRI) to 75% (CHB+JPT, CEU) of all SNPs
on the Phase I map are highly correlated (r2 ≥ 0.8) to one or more others on the map (Fig. 13;
see also Supplementary Fig. 10). Over 90% of all SNPs on the map have highly statistically
significant correlation to one or more neighbours. These partial correlations can be combined
to form haplotypes that are even better proxies for a SNP of interest.

Modelling Phase I HapMap from complete ENCODE data
A second approach to evaluating the completeness of the Phase I data involves thinning the
more complete ENCODE data to match Phase I for allele frequency and SNP density.
Simulated Phase I HapMaps were used to evaluate coverage in relation to the full set of common
SNPs (Table 6), and provided nearly identical estimates to those above: 45% (YRI) to 74%
(CHB+JPT, CEU) of all common SNPs are predicted to have a proxy with r2 ≥ 0.8 to a SNP
included in the Phase I HapMap (Supplementary Fig. 11).

Statistical power in association studies may be more closely approximated by the average
(maximal) correlation value between a SNP and its best proxy on the map, rather than by the
proportion exceeding an arbitrary (and stringent) threshold. The average values for maximal
r2 to a nearby SNP range from 0.67 (YRI) to 0.85 (CEU and CHB+JPT).

Modelling Phase II HapMap from complete ENCODE data
A similar procedure was used to generate simulated Phase II HapMaps from ENCODE data
(Table 6). Phase II is predicted to capture the majority of common variation in YRI: 81% of
all common SNPs should have a near perfect proxy (r2 ≥ 0.8) to a SNP on the map, with the
mean maximal r2 value of 0.90. Unsurprisingly, the CEU, CHB and JPT samples, already well
served by Phase I, are nearly perfectly captured: 94% of all common sites have a proxy on the
map with r2 ≥ 0.8, with an average maximal r2 value of 0.97.

These analyses indicate that the Phase I and Phase II HapMap resources should provide
excellent coverage for common variation in these population samples.

Selection of tag SNPs for association studies
A major impetus for developing the HapMap was to guide the design and prioritization of SNP
genotyping assays for disease association studies. We refer to the set of SNPs genotyped in a
disease study as tags. A given set of tags can be analysed for association with a phenotype
using a variety of statistical methods which we term tests, based either on the genotypes of
single SNPs or combinations of multiple SNPs.

The shared goal of all tag selection methods is to exploit redundancy among SNPs, maximizing
efficiency in the laboratory while minimizing loss of information24,27. This literature is
extensive and varied, despite its youth. Some methods require that a single SNP serve as a
proxy for other, untyped variants, whereas other methods allow combinations of alleles
(haplotypes) to serve as proxies; some make explicit use of LD blocks whereas others are
agnostic to such descriptions. Although it is not practical to implement all such methods at the
project website, the HapMap genotypes are freely available and investigators can apply their
method of choice to the data. To assist users, both a single-marker tagging method and a more
efficient multimarker method have been implemented at http://www.hapmap.org.
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Tagging using a simple pairwise method
To illustrate general principles of tagging, we first applied a simple and widely used pairwise
algorithm53,54: SNPs are selected for genotyping until all common SNPs are highly correlated
(r2 ≥ 0.8) to one or more members of the tag set.

Starting from the substantially complete ENCODE data, the density of common SNPs can be
reduced by 75–90% with essentially no loss of information (Fig. 14). That is, the genotyping
burden can be reduced from one common SNP every 500 bp to one SNP every 2 kb (YRI) to
5 kb (CEU and CHB+JPT). Because LD often extends for long distances, studies of short gene
segments tend to underestimate the redundancy across the genome43.

Although tags selected based on LD offer the greatest improvements in efficiency and
information capture, even randomly chosen subsets of SNPs offer considerable efficiencies
(Fig. 14).

The data also reveal a rule of diminishing returns: a small set of highly informative tags captures
a large fraction of all variation, with additional tags each capturing only one or a few proxies.
For example, in CHB+JPT the most informative 1% of all SNPs (one per 50 kb) is able to
proxy (at r2 ≥ 0.8) for 40% of all common SNPs, whereas a substantial proportion of SNPs
have no proxies at all.

These observations are encouraging with respect to genome-wide association studies. A set of
SNPs typed every 5–10 kb across the genome (within the range of current technology) can
capture nearly all common variation in the genome in the CEU and CHB+JPT samples, with
more SNPs required in the YRI samples.

Tagging from the genome-wide map
Whereas analysis of the complete ENCODE data set reveals the maximal efficiency likely to
be possible with this tag selection strategy, analysis of the Phase I map illuminates the extent
to which the current resource can be used for near-term studies. Specifically, using the same
pairwise tagging approach above, 260,000 (CHB+JPT) to 474,000 (YRI) SNPs are required
to capture all common SNPs in the Phase I data set (Table 7). That is, being incomplete and
thus less redundant, the Phase I data are much less compressible by tag SNP selection than are
the ENCODE data. Nevertheless, even at this level a half to a third of all SNPs can be selected
as proxies for the remainder (and, by inference, the bulk of other common SNPs in the genome).

Increasing the efficiency of tag SNPs
Although the pairwise method is simple, complete and straightforward, efficiency can be
improved with a number of simple changes. First, relaxing the threshold on r2 for tag SNP
selection substantially reduces the number of tag SNPs selected, with only a modest decrease
in the correlations among SNPs (Table 7). For example, reducing the r2 threshold from 0.8 to
0.5 decreases the number of tag SNPs selected from the HapMap by 39% in CHB+JPT (260,000
to 159,000) and 32% in YRI (474,000 to 325,000). The average r2 value between tags and
other (unselected) SNPs falls much less dramatically than the number of tags selected,
increasing efficiency. Whether such a loss of power is justified by the disproportionate
reduction in work is a choice each investigator will need to make.

A second enhancement exploits multimarker haplotypes. Many investigators have discussed
using multiple SNPs (in haplotypes and regression models) to serve as proxies for untyped
sites55–58, which may reduce the number of tags required and increase the power of analyses
performed. Figure 14 illustrates the point with one such method55, showing that a multimarker
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method allows greater coverage for a fixed set of markers (or, alternatively, fewer markers to
achieve the same coverage). Although a full consideration of this issue is beyond the scope of
this paper, the availability of these and other data should allow the comparison and application
of such methods.

A third approach to increasing efficiency is to prioritize tags based on the number of other
SNPs captured. Whereas 260,000 SNPs are required to provide r2 ≥ 0.8 for all SNPs in the
Phase I HapMap (CHB+JPT), the best 10,000 such SNPs (4%) capture 22% of all common
variable sites with r2 ≥ 0.8 (Table 8). Such prioritization can be applied using different weights
for SNPs based on genomic annotation (for example, non-synonymous coding SNPs, SNPs in
conserved non-coding sequence, and candidate genes of biological interest).

Tag transferability across populations
The most complete set of tags would be those based on all 269 samples; however, many studies
may be performed in individuals more closely related to one particular HapMap population,
and efficiency may be gained by selecting tags only from that population sample. (Selecting
tags in a HapMap population sample that is known to be more distantly related than is another,
for example, using CEU to pick tags for a study of Japanese, seems inefficient.)

An important question is how tags selected in one or more analysis panels will transfer to
disease studies performed in these or other populations. Our data do not address this question
directly, although the known similarity of allele and haplotype frequencies across populations
within continents41 is encouraging. More data are clearly needed, however.

Tag selection based on initial genotyping
Whereas the discussions above assume de novo selection of SNPs, many investigators will
have already performed initial studies, and wish to design follow-on experiments. The HapMap
data can be used to highlight SNPs that might potentially explain a positive association signal,
or those that were poorly captured (and thus still need to be tested) after a negative scan. In
cases where multiple SNPs are both associated with the trait and with each other, the HapMap
data can be queried to identify whether samples from any other analysis panel show a
breakdown of LD in that region, and thus the possibility of narrowing the span over which the
causal variant may reside.

Applications to the analysis of association data
Beyond guiding selection of tag SNPs, HapMap data can inform the subsequent analysis and
interpretation in disease association studies.

Analysis of an existing genotype data set
The HapMap can be used to inform association testing, regardless of how tags were selected.
Specifically, as long as the SNPs genotyped in a disease study have also been typed in the
HapMap samples, it is possible to identify which SNPs are well captured by the genotyped
SNPs (either singly, or in haplotype combinations), and which are not55.

This is of particular importance for genome-wide association studies performed using array-
based, standardized genotyping reagents, which do not allow investigators to choose their own
sets of tag SNPs. The Affymetrix 120K SNP array data included in Phase I of the HapMap
provides a simple example: in CEU 48% of HapMap SNPs have substantial pairwise
correlation (r2 ≥ 0.5) to one or more of the 120K SNPs on the array. An additional 13%,
however, are not correlated to a single SNP, but are to a specific haplotype of two members of
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the 120K panel. By identifying such haplotype predictors in the HapMap, and testing them (in
addition to the single SNPs) in a disease study, it is likely that power will be increased (I. Pe’er
et al., manuscript in preparation).

Evaluating statistical significance and interpreting results
An important challenge in genome-wide association testing is to develop statistical procedures
that minimize false positives without greatly sacrificing true positives. The challenge is
amplified by the correlated nature of polymorphism data, which makes simple frequentist
approaches that assume independence (such as Bonferonni correction) highly conservative. To
illustrate this point, we used the ENCODE data to estimate the ‘effective number of
independent tests’ (the statistical burden of testing all common (MAF ≥ 0.05) variation) across
large genomic regions. Specifically, we re-sampled from the phased ENCODE chromosomes
to create mock case-control panels in which all common SNPs were observed, but there was
not a causal allele. The resulting χ2 distribution for association indicates that complete testing
of common variation in each 500-kb region is equivalent to performing about 150 independent
statistical tests (in CEU and CHB+JPT) and about 350 tests (in YRI). Although it will probably
be desirable to perform such empirical estimates of significance within each disease study,
these results illustrate how Bonferonni correction overestimates the statistical penalty of
performing many correlated tests.

Study of less common alleles
We have focused primarily on the hypothesis that a single, common causal allele exists, and
needs to be tested for association to disease. Of course, in many cases the causal allele(s) will
be less common, and might be missed by such an approach.

It is possible to perform additional haplotype tests, beyond those that capture known
polymorphisms, in the hope of capturing less common or unrepresented alleles56. Such
haplotype analysis has a long history and proven value in mendelian genetics; the causal
mutation is generally rare and unexamined during initial genotyping, but is frequently
recognized by its presence on a long, unique haplotype of common alleles18,19,59–62.

Admixture mapping
Although not designed specifically to enable admixture mapping63, the HapMap has helped
lay the groundwork for this approach. Admixture mapping requires a map of SNPs that are
highly differentiated in frequency across population groups. By typing many SNPs in samples
from multiple geographical regions, the data have helped to identify such SNPs for the design
of genome-wide admixture mapping panels64,65 and can be further used to identify candidate
SNPs with large allele frequency differences for follow-up of positive admixture scan
results66.

Loss of heterozygosity in tumours
Loss of heterozygosity (LOH) in tumour tissue can be a powerful indicator of the location of
tumour suppressor genes, and genome-wide, fine-scale LOH analysis has been empowered by
genome-wide SNP arrays67. Germline DNA is not always available from the same subjects,
however, and even if available, typing of germline DNA doubles project costs. In lower density
scans for LOH (with markers far apart relative to the scale of LD), long runs of homozygosity
in tumours are nearly always indicative of LOH. However, at higher densities runs of
homozygosity can be due to haplotype homozygosity in the inherited germline DNA, rather
than LOH.
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The HapMap data can help minimize this difficulty; previous probabilities for homozygosity
based on known frequencies of haplotypes in the HapMap data can be used to distinguish
homozygosity due to haplotype sharing rather than LOH68.

Identifying structural variants in HapMap data
Structural variations—segments where DNA is deleted, duplicated, or rearranged—are
common69,70 and have an important role in diseases71–73. The HapMap can provide some
insight into structural variation because, in many cases, structural variants reveal themselves
through signatures in SNP genotype data. In particular, polymorphic deletions are important
to discover, because loss of genetic material is of obvious functional relevance, and results in
aberrant patterns of SNP genotypes. These include apparent non-mendelian inheritance of SNP
alleles, null genotypes and deviations from Hardy–Weinberg equilibrium. However, such
SNPs are routinely discarded as technical failures of genotyping.

Thus, we scanned the unfiltered Phase I HapMap data using an approach developed and
validated to identify polymorphic deletions from clusters of SNPs with aberrant genotype
patterns (calibrated across the multiple centres and genotyping platforms74). In total, 541
candidate deletion polymorphisms were identified, of which 150 were common enough to be
observed as homozygotes.

The properties of these candidate deletions, including experimental validation of 90 candidates,
are described in ref. 74. Validated polymorphisms include 10 that remove coding exons of
genes, such that in many cases individuals are homozygous null for the encoded transcript.
Analysis of confirmed deletions often shows strong LD with nearby SNPs, indicating that LD-
based approaches can be useful for detecting disease associations due to structural (as well as
SNP) variants.

Polymorphic inversions may also be reflected in the HapMap data as long regions where
multiple SNPs are perfectly correlated: because recombination between an inverted and non-
inverted copy is lethal, the inverted and non-inverted copies of the region evolve independently.
A striking example corresponds to the known inversion polymorphism on chromosome 17,
present in 20% of the CEU chromosomes, that has been associated with fertility and total
recombination rate in females among Icelanders75. Long LD may also arise, however, due to
a low recombination rate or certain forms of natural selection, as discussed below.

Insights into recombination and natural selection
In addition to its intended function as a resource for disease studies, the HapMap data provide
clues about the biology of recombination and history of natural selection.

A genome-wide map of recombination rates at a fine scale
On the basis of the HapMap data, we created a fine-scale genetic map spanning the human
genome (Supplementary Fig. 12), including 21,617 identified recombination hotspots (one per
122 kb).

Both the number and intensity of hotspots contribute to overall variation in recombination rate.
For example, we selected 25 regions of 5 Mb as having the highest (>2.75 cM Mb−1) and lowest
(<0.5 cM Mb−1) rates of recombination in the deCODE (pedigree-based) genetic map48. We
detected recombination hotspots in all regions, even the lowest. But in the high cM Mb−1

regions hotspots are more closely spaced (one per 84 kb) and have a higher average intensity
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(0.124 cM) as compared to the low cM Mb−1 regions (one every 208 kb, and 0.051 cM,
respectively).

Estimates of recombination rates and identified hotspots are robust to the specific markers and
samples studied. Specifically, we compared these results to a similar analysis76 of the data of
ref. 77 (with about 1.6 million SNPs genotyped in 71 individuals). We find nearly complete
correlation in rate estimates at a coarse scale (5 Mb) between these two surveys (r2 = 0.99) and
to the pedigree map (r2 = 0.95). Very substantial correlation is found at finer scales: r2 = 0.8
at 50 kb and r2 = 0.59 at 5 kb. Moreover, of the 21,617 hotspots identified using the HapMap
data, 78% (16,923) were also identified using the data of ref. 77.

The ability to detect events depends on marker density, with the larger number of SNPs studied
by ref. 77 increasing power to detect hotspots, and presumably precision of rate estimates.
There are, however, substantial genomic regions where the HapMap data have a higher SNP
density. For example, more hotspots are detected on chromosomes 9 and 19 from the HapMap
data. We expect that Phase II of HapMap will provide a genome-wide recombination map of
substantially greater precision than either ref. 77, or Phase I, at fine scales.

Little is yet known about the molecular determinants of recombination hotspots. In an analysis
of the data of ref. 77, another study (ref. 76) found significant evidence for an excess of the
THE1A/B retrotransposon-like elements within recombination hotspots, and more strikingly
for a sixfold increase of a particular motif (CCTCCCT) within copies of the element in hotspots,
compared to copies of the element outside hotspots. In analysing the HapMap data, we
confirmed these findings (Supplementary Fig. 13). Furthermore, THE1B elements with the
motif are particularly enriched within 1.5 kb of the centre of the hotspots compared to flanking
sequence (P < 10−16).

Correlations of LD with genomic features
Variation in recombination rate is important, in large part, because of its impact on LD. We
thus examined genome-wide LD for correlation to recombination rates, sequence composition
and gene features.

We confirmed previous observations that LD is generally low near telomeres, elevated near
centromeres, and correlated with chromosome length (Fig. 15; see also Supplementary Figs
8b and 14)48,78–80. These patterns are due to recombination rate variation as discussed above.
We also confirmed previously described relationships between LD and G+C content78,81,
82, sequence polymorphism83 and repeat composition78,82.

We observe, for the first time, that LD tracks with both the density and functional classification
of genes. We examined quartiles of the genome based on extent of LD, and looked for
correlations to gene density. Surprisingly, we find that both the top and bottom quartiles of the
genome have greater gene density as compared to the middle quartiles (6.7 as compared to 6.1
genes per Mb), as well as percentage of bases in codons (1.24% as compared to 1.08%). We
have no explanation for this observation.

Although the majority of gene classes are equally divided between these two extreme quartiles
of the genome, some classes of genes show a marked skew in their distribution64,84,85. Genes
involved in immune responses and neurophysiological processes are more often located in
regions of low LD, whereas genes involved in DNA and RNA metabolism, response to DNA
damage and the cell cycle are preferentially located in regions of strong linkage disequilibrium.
It is intriguing to speculate that the extent of LD (and sequence diversity) might track with
gene function due to natural selection, with increased diversity being favoured in genes
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involved in interface with the environment such as the immune response86, and
disadvantageous for core cell biological processes such as DNA repair and packaging87,88.

Natural selection
The preceding observation highlights the hypothesis that signatures of natural selection are
present in the HapMap data. The availability of genome-wide variation data makes it possible
to scan the genome for such signatures to discover genes that were subject to selection during
human evolution89; the HapMap data also provide a genome-wide empirical distribution
against which previous claims of selection can be evaluated (rather than relying solely on
theoretical computer simulations).

Natural selection influences patterns of genetic variation in various ways, such as through the
removal of deleterious mutations, the fixation of advantageous variants, and the maintenance
of multiple alleles through balancing selection. Each form of selection may have occurred
uniformly across the world (and thus be represented in all human populations) or have been
geographically localized (and thus differ among populations).

Nearly all methods for recognizing natural selection rely on the collection of complete sequence
data. The HapMap Project’s focus on common variation—and the process of SNP selection
that achieved a preponderance of high-frequency alleles (Fig. 5)—thus prevents their
straightforward application. Adjusting for the effect of SNP choice is complex, moreover,
because SNP choice varied over time as dbSNP evolved, and was implemented locally at each
centre.

For these reasons, we focus here on two types of analysis. First, we examined the distributions
of signatures of selection across the genome. Although the absolute value of these measures
is difficult to interpret (owing to SNP ascertainment), the most extreme cases in a genome-
wide distribution are important candidates to evaluate for selection. Second, we compared
across functional categories, because SNP choice was largely agnostic to such features, and
thus systematic differences may be a sign of selection.

The outcomes of these analyses confirm a number of previous hypotheses about selection and
identify new loci as candidates for selection.

Evidence for selective sweeps in particular genomic regions
First we consider population differentiation, generally accepted as a clue to past selection in
one of the populations. The HapMap data reveal 926 SNPs with allele frequencies that differ
across the analysis panels in a manner as extreme as the well-accepted example of selection at
the Duffy (FY) locus (Supplementary Fig. 8c). Of these 926 SNPs, 32 are non-synonymous
coding SNPs and many others occur in transcribed regions, making them strong candidates for
functional polymorphisms that have experienced geographically restricted selection pressures
(see Table 9 and Supplementary Information for details). In particular, the ALMS1 gene on
chromosome 2 has six amino acid polymorphisms that show very strong population
differentiation.

Another signature of an allele having risen to fixation through selection is that all other diversity
in the region is eliminated (known as a selective sweep). We identified extreme outliers in the
joint distribution of heterozygosity (as assessed from shotgun sequencing SNP discovery
projects) and either population differentiation or skewing of allele frequency towards rare
alleles in each analysis panel (Supplementary Fig. 15). We identified 19 such genomic regions
(13 on autosomes, 6 on the X chromosome) as candidates for future study (Supplementary
Table 4); these include candidates for population-specific sweeps and sweeps in the ancestral
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population. Encouragingly, this analysis includes among its top-scoring results the LCT gene,
which influences the ability to digest dairy products90 and has been shown to be subject to
past natural selection91.

Long haplotypes as candidates for natural selection
Selective sweeps that fail to fix in the population, as well as balancing selection, lead to
haplotypes that are relatively high in frequency and long in duration. In the HLA region (which
is widely believed to have been influenced by balancing selection) multiple haplotypes of 500
SNPs that extend more than 1 cM in length are observed with a frequency in the HapMap
samples of more than 1%. We identified other such occurrences of long haplotypes across the
genome (Supplementary Fig. 8 and Supplementary Tables 5 and 6).

An approach to long haplotypes designed specifically to identify regions having undergone
partial selective sweeps is the long range haplotype (LRH) test91,92, which compares the
length of each haplo-type to that of others at the locus, matched across the genome based on
frequency. Previously identified outliers to the genome-wide distribution for the LRH test (Fig.
16) that have been identified as candidates for selection include the LCT gene in the CEU
sample (empirical P-value = 1.3 × 10−9), which was an outlier for the heterozygosity/allele
frequency test above, and the HBB gene (empirical P-value = 1.39 × 10−5) in the YRI sample.
However, most of the strongest signals in the LRH test (Table 10) were not previously
hypothesized as undergoing selection.

These four tests overlap only partially in the hypotheses they address—heterozygosity, for
example, is sensitive to older sweeps, whereas the haplotype tests are most powerful for partial
sweeps—but encouragingly some candidate regions are found by more than one test. In
particular, six regions are identified both by long haplotypes and by low heterozygosity, and
three regions (LCT on chromosome 2, and two regions on the X chromosome at 20 and 65 Mb)
are identified by three different tests.

Confirming purifying selection at conserved non-coding elements
Finally, we used the HapMap data to test an important hypothesis from comparative genomics.
Genomic sequencing has shown that about 5% of the human sequence is highly conserved
across species, yet less than half of this sequence spans known functional elements such as
exons45. It is widely assumed that conserved non-genic sequences lack diversity because of
selective constraint (that is, purifying selection), but such regions may simply be coldspots for
mutation, and thus be of little value as candidates for functional study.

Analysis of allele frequencies helps to resolve this uncertainty. Functional constraint, but not
a low mutation rate, results in a downward skew in allele frequencies for conserved sequences
as compared to neutral sequences93,94. We find that conserved non-genic sequences display
a greater skew towards rare alleles than do intergenic regions, as predicted under purifying
selection. This skew is less extreme than that observed for exons (Supplementary Fig. 16),
reflecting either stronger purifying selection or the prioritization of coding SNPs for genotyping
by the HapMap centres regardless of validation status. This novel evidence for ongoing
constraint shows that conserved non-genic sequences are not mutational coldspots, and thus
remain of high interest for functional study.

Conclusions
The International HapMap Project set out to create a resource that would accelerate the
identification of genetic factors that influence medical traits. Analyses reported here confirm
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the generality of hotspots of recombination, long segments of strong LD, and limited haplotype
diversity. Most important is the extensive redundancy among nearby SNPs, providing (1) the
potential to extract extensive information about genomic variation without complete
resequencing, and (2) efficiencies through selection of tag SNPs and optimized association
analyses. Beyond the biomedical context, these data have made it possible to identify deletion
variants in the genome, explore the nature of fine-scale recombination and identify regions that
may have been subject to natural selection.

The HapMap Project (along with a previous genome-wide assessment of LD77) is a natural
extension of the Human Genome Project. Where the reference sequence constructed by the
Human Genome Project is informative about the vast majority of bases that are invariant across
individuals, the HapMap focuses on DNA sequence differences among individuals. Our
understanding of SNP variation and LD around common variants in the sampled populations
is reasonably complete; the current picture is unlikely to change with additional data. In other
aspects—such as the fine details of local correlation among SNPs, rarer alleles, structural
variants, and inter-population differences—these resources are only a first step on the path
towards a complete characterization of genetic variation of the human population. Planned
extensions of the Phase I map include Phase II of HapMap, with genotyping of another 4.6
million SNPs attempted in the HapMap samples, and detailed genotyping of the HapMap
ENCODE regions in additional members of each HapMap population sampled, as well as in
samples from additional populations. These results should guide understanding of the
robustness and transferability of LD inferences and tag SNPs selected from the current set of
HapMap samples.

An important application of the HapMap data is to help make possible comprehensive, genome-
wide association studies. There are now laboratory tools that make it practical to undertake
such studies, and initial results are encouraging13. Given the low prior probability of causality
for each SNP in the genome, however, rigorous standards of statistical significance will be
needed to avoid a flood of false-positive results. Multiple replications in large samples provide
the most straightforward path to identifying robust and broadly relevant associations. Given
the potential for confusion if associations of uncertain validity are widely reported (and a
persistent tendency towards genetic determinism in public discourse), we urge conservatism
and restraint in the public dissemination and interpretation of such studies, especially if non-
medical phenotypes are explored. It is time to create mechanisms by which all results of
association studies, positive and negative, are reported and discussed without bias.

The success of the HapMap will be measured in terms of the genetic discoveries enabled, and
improved knowledge of disease aetiology. Specifically, identifying which genes and pathways
are causal in humans has the potential to provide a new and solid foundation for biomedical
research. This is equally true whether the variants that lead to the discovery of those genes are
themselves rare or common, or of large or small effect. The impact on diagnostics and targeted
prevention, however, will depend on how predictive each given allele may be. Where genetic
mechanisms underlie treatment responses, both more efficient trials and individualized
preventive and treatment strategies may become practical95.

Success identifying alleles conferring susceptibility or resistance to common diseases will also
provide a deeper understanding of the architecture of disease: how many genes are involved
in each case, whether and how alleles interact with one another96 and with environmental
exposures to shape clinical phenotypes. In this regard, it will be important to invest heavily in
the discovery and characterization of relevant lifestyle factors, environmental exposures,
detailed characterization of clinical phenotypes, and the ability to obtain such information in
longitudinal studies of adequate size. Where environmental and behavioural factors vary across
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studies, replication will be hard to come by (as will clinical utility) unless we can learn to
capture these variables with the same precision and completeness as genotypic variation.
Technological innovation and international collaboration in these realms will probably be
required (as they have been in the Human Genome Project and the HapMap) to advance the
shared goal of understanding, and ultimately preventing, common human diseases.

METHODS
The project was undertaken by investigators from Japan, the United Kingdom, Canada, China,
Nigeria and the United States, and from multiple disciplines: sample collection, sequencing
and genotyping, bioinformatics, population genetics, statistics, and the ethical, legal, and social
implications of genetic research. The Supplementary Information contains information about
project participants and organization.

Choice of DNA samples
Any choice of DNA samples represents a compromise: a single population offers simplicity,
but cannot be representative, whereas grid-sampling is representative of the current worldwide
population, but is neither practical nor captures historical genetic diversity. The project chose
to include DNA samples based on well-known patterns of allele frequencies across
populations41, reflecting historical genetic diversity31,32.

For practical reasons, the project focused on SNPs present at a minor allele frequency (MAF)
≥ 0.05 in each analysis panel, and thus studied a sufficient number of individuals to provide
good power for this frequency range31. Cell lines and DNA are available at the Coriell Institute
for Medical Research (http://locus.umdnj.edu/nigms/products/hapmap.html).

Community engagement was employed to explain the project, and to learn how the project was
viewed, in the communities where samples were collected31,32. Papers describing the
community engagement processes are being prepared.

One JPT sample was replaced for technical reasons, but not in time for inclusion in this report.
We surveyed cryptic relatedness among the study participants, and identified a small number
of pairs with unexpectedly high allele sharing (Supplementary Information). As the total level
of sharing is not great, and as a subset of analyses performed without these individuals were
unchanged, we include these individuals in the data and analyses presented here.

Genome-wide SNP discovery
The project required a dense map of SNPs, ideally containing information about validation and
frequency of each candidate SNP. When the project started, the public SNP database (dbSNP)
contained 2.6 million candidate SNPs, few of which were annotated with the required
information.

To generate more SNPs and obtain validation information, shotgun sequencing of DNA from
whole-genome libraries and flow-sorted chromosomes was performed31, augmented by
analysis of sequence traces produced by Applied Biosystems97,98, and information on 1.6
million SNPs genotyped by Perlegen Sciences77, including 425,000 not in dbSNP when
released (Supplementary Table 7). The HapMap Project contributed about 6 million new SNPs
to dbSNP.

At the time of writing (October 2005) dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/)
contains 9.2 million candidate human SNPs, of which 3.6 million have been validated by both
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alleles having been seen two or more times during discovery (‘double-hit’ SNPs), and 2.4
million have genotype data (Fig. 1).

Comprehensive study of common variation across 5 Mb of DNA
To study patterns of genetic variation as comprehensively as possible, we selected ten 500-kb
regions from the ENCODE Project33. These ten regions were chosen in aggregate to
approximate the genome-wide average for G+C content, recombination rate, percentage of
sequence conserved relative to mouse sequence, and gene density (Table 2).

In each such region additional sequencing and genotyping were performed to obtain a much
more complete inventory of common variation. Specifically, bidirectional PCR-based
sequencing was performed across each 500-kb region in 48 individuals (16 YRI, 16 CEU, 8
CHB, 8 JPT). Although the intent was for these same DNA samples to be included in Phase I,
eight Yoruba and one Han Chinese sample used in sequencing were not among the 269 samples
genotyped. (The nine samples are available from Coriell.)

All variants found by sequencing, and any others in dbSNP (build 121) not found by
sequencing, were genotyped in all 269 HapMap samples. If the first attempt at genotyping was
unsuccessful, a second platform was tried for each SNP.

False-positive and false-negative rates in PCR-based SNP discovery
The false-positive rate of SNP discovery by PCR-based resequencing was estimated at 7–11%
(for the two sequencing centres), based on genotyping of each candidate SNP in the same
samples used for discovery.

The false-negative rate of SNP discovery by PCR resequencing was estimated at 6%, using as
the denominator a set of SNPs previously in dbSNP and confirmed by genotyping in the specific
individuals sequenced. The false-negative rate was considerably higher, however, for
singletons (SNPs seen only as a single heterozygote): 15% of singletons covered by high-
quality sequence data were not detected by the trace analysis, and another 25% were missed
due to a failure to obtain a high-quality sequence over the relevant base in the one heterozygous
individual (D. J. Richter et al., personal communication).

False-positive and false-negative rates in dbSNP
The false positive rate (candidate SNPs that cannot be confirmed as variable sites) estimated
for dbSNP was 17%. This represents an upper bound, because dbSNP entries that are
monomorphic in the 269 HapMap samples could be rare variants, or polymorphic in other
samples. We note that as the catalogue of dbSNP gets deeper, the rate at which candidate SNPs
are monomorphic in any given sample is observed to rise (Supplementary Table 8). This is
expected because the number of rare SNPs and false positives scales with depth of sequencing,
whereas the number of true common variants will plateau.

SNP genotyping for the genome-wide map
Genotyping assays were designed from dbSNP, with priority given to SNPs validated by
previous genotyping data or both alleles having been seen more than once in discovery. Data
from the Chimpanzee Genome Sequencing Project99 were used in SNP validation if they
confirmed the ancestral status of a human allele seen only once in discovery (Supplementary
Information). Non-synonymous coding SNPs were also prioritized for genotyping. Two whole-
genome, array-based genotyping reagents were used efficiently to increase SNP density:
40,000 SNPs from Illumina, and 120,000 SNPs from Affymetrix100.
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To monitor progress, the genome was partitioned into 5-kb bins, with genotyping continuing
through iterative rounds until a set of predetermined ‘stopping rules’ was satisfied in each
analysis panel. (1) Minor allele frequency: in each analysis panel a common SNP (MAF ≥
0.05) was obtained in each 5-kb bin. (2) Spacing: the distance between adjacent SNPs was 2–
8 kb, with at least 9 SNPs across 50 kb. (3) ‘HapMappable’ genome: with available technologies
it is challenging to study centromeres, telomeres, gaps in genome sequence, and segmental
duplications. The project identified such regions101 (Supplementary Table 9), spanning 4.4%
of the finished human genome sequence, in which only a single attempt to develop a genotyping
assay was required. (4) Three strikes, you’re out: if the above rules were not satisfied after
three attempts to develop an assay in a given 5-kb region, or if all available SNPs in dbSNP
had been tried, genotyping was considered complete for Phase I. Two attempts were considered
sufficient if one attempt was of a SNP previously shown to have MAF ≥ 0.05 in the appropriate
population sample in a previous genome-wide survey77. (5) Quality control: ongoing and
standardized quality control (QC) filters and three rounds of quality assessment (QA) were
used to ensure and document the high quality of the genotype data.

QC filters were systematically performed, with each SNP tested for completeness (>80%),
consistency across five duplicate genotypes (≤1 discrepancy), mendelian inheritance in 60 trios
(≤1 discrepancy in each of YRI and CEU), and Hardy–Weinberg equilibrium (P > 0.001102).
SNPs in the Phase I data set passed all the QC filters in all the analysis panels and were
polymorphic in the HapMap samples. Failing SNPs were released (with a special flag), as they
can help to identify polymorphisms under primers, insertions/deletions, paralogous loci and
natural selection.

Three QA exercises were carried out. First, a calibration exercise to ‘benchmark’ each platform
and laboratory protocol. Second, a mid-project evaluation of each genotyping centre. Third, a
blind analysis of a random sample of the complete Phase I data set. A number of SNPs were
genotyped more than once during the project, or by other investigators, providing additional
information about data quality. See the Supplementary Information for full information about
the QA exercises.

An exhaustive approach was taken to mtDNA. Alignment of more than 1,000 publicly available
mtDNA sequences of African (n = 87), European (n = 928) and Asian (n = 238) geographical
origin34 was used to identify 210 common variants (MAF ≥ 0.05 in at least one continental
region) that were attempted in the samples.

Data release
Data deposited at the Data Coordination Center and released at http://www.hapmap.org, a
Japanese mirror site http://hapmap.jst.go.jp/ and dbSNP include ascertainment status of each
SNP at the time of selection, primer sequences, protocols for genotyping, genotypes for each
sample, allele frequencies, and, for SNPs that failed QC filters, a code indicating the mode(s)
of failure.

Initially, because of concern that third parties might seek patents on HapMap data, users were
required to agree to a web-based ‘click-wrap license’, assenting that they would not prevent
others from using the data (http://www.hapma-p.org/cgi-perl/registration). In December 2004
this license was dropped, and all data were released without restriction into the public domain.
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Figure 1. Number of SNPs in dbSNP over time
The cumulative number of non-redundant SNPs (each mapped to a single location in the
genome) is shown as a solid line, as well as the number of SNPs validated by genotyping (dotted
line) and double-hit status (dashed line). Years are divided into quarters (Q1–Q4).

Page 31

Nature. Author manuscript; available in PMC 2007 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Distribution of inter-SNP distances
The distributions are shown for each analysis panel for the HapMappable genome (defined in
the Methods), for all common SNPs (with MAF ≥ 0.05).
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Figure 3. Allele frequency and completeness of dbSNP for the ENCODE regions
a–c, The fraction of SNPs in dbSNP, or with a proxy in dbSNP, are shown as a function of
minor allele frequency for each analysis panel (a, YRI; b, CEU; c, CHB+JPT). Singletons refer
to heterozygotes observed in a single individual, and are broken out from other SNPs with
MAF < 0.05. Because all ENCODE SNPs have been deposited in dbSNP, for this figure we
define a SNP as ‘in dbSNP’ if it would be in dbSNP build 125 independent of the HapMap
ENCODE resequencing project. All remaining SNPs (not in dbSNP) were discovered only by
ENCODE resequencing; they are categorized by their correlation (r2) to those in dbSNP. Note
that the number of SNPs in each frequency bin differs among analysis panels, because not all
SNPs are polymorphic in all analysis panels.
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Figure 4. Minor allele frequency distribution of SNPs in the ENCODE data, and their contribution
to heterozygosity
This figure shows the polymorphic SNPs from the HapMap ENCODE regions according to
minor allele frequency (blue), with the lowest minor allele frequency bin (<0.05) separated
into singletons (SNPs heterozygous in one individual only, shown in grey) and SNPs with more
than one heterozygous individual. For this analysis, MAF is averaged across the analysis
panels. The sum of the contribution of each MAF bin to the overall heterozygosity of the
ENCODE regions is also shown (orange).
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Figure 5. Allele frequency distributions for autosomal SNPs
For each analysis panel we plotted (bars) the MAF distribution of all the Phase I SNPs with a
frequency greater than zero. The solid line shows the MAF distribution for the ENCODE SNPs,
and the dashed line shows the MAF distribution expected for the standard neutral population
model with constant population size and random mating without ascertainment bias.
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Figure 6. Comparison of allele frequencies in the ENCODE data for all pairs of analysis panels and
between the CHB and JPT sample sets
For each polymorphic SNP we identified the minor allele across all panels (a–d) and then
calculated the frequency of this allele in each analysis panel/sample set. The colour in each bin
represents the number of SNPs that display each given set of allele frequencies. The purple
regions show that very few SNPs are common in one panel but rare in another. The red regions
show that there are many SNPs that have similar low frequencies in each pair of analysis panels/
sample sets.
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Figure 7. Genealogical relationships among haplotypes and r2 values in a region without obligate
recombination events
The region of chromosome 2 (234,876,004–234,884,481 bp; NCBI build 34) within
ENr131.2q37 contains 36 SNPs, with zero obligate recombination events in the CEU samples.
The left part of the plot shows the seven different haplotypes observed over this region (alleles
are indicated only at SNPs), with their respective counts in the data. Underneath each of these
haplotypes is a binary representation of the same data, with coloured circles at SNP positions
where a haplotype has the less common allele at that site. Groups of SNPs all captured by a
single tag SNP (with r2 ≥ 0.8) using a pairwise tagging algorithm53,54 have the same colour.
Seven tag SNPs corresponding to the seven different colours capture all the SNPs in this region.
On the right these SNPs are mapped to the genealogical tree relating the seven haplotypes for
the data in this region.
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Figure 8. Comparison of linkage disequilibrium and recombination for two ENCODE regions
For each region (ENr131.2q37.1 and ENm014.7q31.33), D′ plots for the YRI, CEU and CHB
+JPT analysis panels are shown: white, D′ < 1 and LOD < 2; blue, D′ = 1 and LOD < 2; pink,
D′ < 1 and LOD ≥ 2; red, D′ = 1 and LOD ≥ 2. Below each of these plots is shown the intervals
where distinct obligate recombination events must have occurred (blue and green indicate
adjacent intervals). Stacked intervals represent regions where there are multiple recombination
events in the sample history. The bottom plot shows estimated recombination rates, with
hotspots shown as red triangles46.
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Figure 9. The distribution of recombination events over the ENCODE regions
Proportion of sequence containing a given fraction of all recombination for the ten ENCODE
regions (coloured lines) and combined (black line). For each line, SNP intervals are placed in
decreasing order of estimated recombination rate46, combined across analysis panels, and the
cumulative recombination fraction is plotted against the cumulative proportion of sequence. If
recombination rates were constant, each line would lie exactly along the diagonal, and so lines
further to the right reveal the fraction of regions where recombination is more strongly locally
concentrated.
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Figure 10. The relationship among recombination rates, haplotype lengths and gene locations
Recombination rates in cM Mb−1 (blue). Non-redundant haplotypes with frequency of at least
5% in the combined sample (bars) and genes (black segments) are shown in an example gene-
dense region of chromosome 19 (19q13). Haplotypes are coloured by the number of detectable
recombination events they span, with red indicating many events and blue few.
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Figure 11.
The number of proxy SNPs (r2 ≥ 0.8) as a function of MAF in the ENCODE data.
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Figure 12.
The number of proxies per SNP in the ENCODE data as a function of the threshold for
correlation (r2).
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Figure 13.
Relationship in the Phase I HapMap between the threshold for declaring correlation between
proxies and the proportion of all SNPs captured.
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Figure 14. Tag SNP information capture
The proportion of common SNPs captured with r2 ≥ 0.8 as a function of the average tag SNP
spacing is shown for the phased ENCODE data, plotted (left to right) for tag SNPs prioritized
by Tagger (multimarker and pairwise) and for tag SNPs picked at random. Results were
averaged over all the ENCODE regions.
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Figure 15. Length of LD spans
We fitted a simple model for the decay of linkage disequilibrium103 to windows of 1 million
bases distributed throughout the genome. The results of model fitting are summarized for the
CHB+JPT analysis panel, by plotting the fitted r2 value for SNPs separated by 30 kb. The
overall pattern of variation was very similar in the other analysis panels84 (see Supplementary
Information).
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Figure 16. The distribution of the long range haplotype (LRH92) test statistic for natural selection
In the YRI analysis panel, diversity around the HBB gene is highlighted by the red point. In
the CEU analysis panel, diversity within the LCT gene region is similarly highlighted.
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Table 1
Genotyping centres

Centre Chromosomes Technology

RIKEN 5, 11, 14, 15, 16, 17, 19 Third Wave Invader
Wellcome Trust Sanger Institute 1, 6, 10, 13, 20 Illumina BeadArray
McGill University and Génome Québec Innovation
Centre

2, 4p Illumina BeadArray

Chinese HapMap Consortium* 3, 8p, 21 Sequenom MassExtend, Illumina BeadArray
Illumina 8q, 9, 18q, 22, X Illumina BeadArray
Broad Institute of Harvard and MIT 4q, 7q, 18p, Y, mtDNA Sequenom MassExtend, Illumina BeadArray
Baylor College of Medicine with ParAllele
BioScience

12 ParAllele MIP

University of California, San Francisco, with
Washington University in St Louis

7p PerkinElmer AcycloPrime-FP

Perlegen Sciences 5 Mb (ENCODE) on 2, 4, 7, 8, 9, 12,
18 in CEU

High-density oligonucleotide array

*
The Chinese HapMap Consortium consists of the Beijing Genomics Institute, the Chinese National Human Genome Center at Beijing, the University of

Hong Kong, the Hong Kong University of Science and Technology, the Chinese University of Hong Kong, and the Chinese National Human Genome
Center at Shanghai.
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Table 3
HapMap Phase I genotyping success measures

Analysis panel

SNP categories YRI CEU CHB + JPT

Assays submitted 1,273,716 1,302,849 1,273,703
Passed QC filters 1,123,296 (88%) 1,157,650 (89%) 1,134,726 (89%)

Did not pass QC filters* 150,420 (12%) 145,199 (11%) 138,977 (11%)
 > 20% missing data 98,116 (65%) 107,626 (74%) 93,710 (67%)
 > 1 duplicate inconsistent 7,575 (5%) 6,254 (4%) 10,725 (8%)
 > 1 mendelian error 22,815 (15%) 13,600 (9%) 0 (0%)
 < 0.001 Hardy–Weinberg P-value 12,052 (8%) 9,721 (7%) 16,176 (12%)
 Other failures† 23,478 (16%) 17,692 (12%) 23,722 (17%)

Non-redundant (unique) SNPs 1,076,392 1,104,980 1,087,305
 Monomorphic 156,290 (15%) 234,482 (21%) 268,325 (25%)
 Polymorphic 920,102 (85%) 870,498 (79%) 818,980 (75%)

All analysis panels

Unique QC-passed SNPs 1,156,772
 Passed in one analysis panel 52,204 (5%)
 Passed in two analysis panels 97,231 (8%)
 Passed in three analysis panels 1,007,337 (87%)

Monomorphic across three analysis
panels

75,997

Polymorphic in all three analysis
panels

682,397

MAF ≥ 0.05 in at least one of three
analysis panels

877,351

*
Out of 95 samples in CEU, YRI; 94 samples in CHB + JPT.

†
‘Other failures’ includes SNPs with discrepancies during the data transmission process. Some SNPs failed in more than one way, so these percentages

add up to more than 100%.
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Table 4
mtDNA and Y chromosome haplogroups

DNA sample*

MtDNA haplogroup YRI (60) CEU (60) CHB (45) JPT (44)

L1 0.22 – – –
L2 0.35 – – –
L3 0.43 – – –
A – – 0.13 0.04
B – – 0.33 0.30
C – – 0.09 0.07
D – – 0.22 0.34
M/E – – 0.22 0.25
H – 0.45 – –
V – 0.07 – –
J – 0.08 – –
T – 0.12 – –
K – 0.03 – –
U – 0.23 – –
W – 0.02 – –

DNA sample*

Y chromosome haplogroup YRI (30) CEU (30) CHB (22) JPT (22)

E1 0.07 – – –
E3a 0.93 – – –
F, H, K – 0.03 0.23 0.14
I – 0.27 – –
R1 – 0.70 – –
C – – 0.09 0.09
D – – – 0.45
NO – – 0.68 0.32

*
Number of chromosomes sampled is given in parentheses.

Page 51

Nature. Author manuscript; available in PMC 2007 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Table 5
Haplotype blocks in ENCODE regions, according to two methods

Parameter YRI CEU CHB + JPT

Method based on a composite of local D’ values30
 Average number of SNPs per
block

30.3 70.1 54.4

 Average length per block (kb) 7.3 16.3 13.2
 Fraction of genome spanned by
blocks (%)

67 87 81

 Average number of haplotypes
(MAF ≥ 0.05) per block

5.57 4.66 4.01

 Fraction of chromosomes due to
haplotypes with MAF ≥ 0.05 (%)

94 93 95

Method based on the four gamete test51
 Average number of SNPs per
block

19.9 24.3 24.3

 Average length per block (kb) 4.8 5.9 5.9
 Fraction of genome spanned by
blocks (%)

86 84 84

 Average number of haplotypes
(MAF ≥ 0.05) per block

5.12 3.63 3.63

 Fraction of chromosomes due to
haplotypes with MAF ≥ 0.05 (%)

91 95 95
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Table 6
Coverage of simulated Phase I and Phase II HapMap to capture all common SNPs in the ten ENCODE regions

Analysis panel Per cent maximum r2≥ 0.8 Mean maximum r2

Phase I HapMap
 YRI 45 0.67
 CEU 74 0.85
 CHB+JPT 72 0.83
Phase II HapMap
 YRI 81 0.90
 CEU 94 0.97
 CHB+JPT 94 0.97

Simulated Phase I HapMaps were generated from the phased ENCODE data (release 16c1) by randomly picking SNPs that appear in dbSNP build 121
(excluding ‘non-rs’ SNPs in release 16a) for every 5-kb bin until a common SNP was picked (allowing up to three attempts per bin). The Phase II HapMap
was simulated by picking SNPs at random to achieve an overall density of 1 SNP per 1 kb. These numbers are averages over 20 independent iterations
for all ENCODE regions in all three analysis panels.
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Table 7
Number of selected tag SNPs to capture all observed common SNPs in the Phase I HapMap

r2threshold* YRI CEU CHB +JPT

r2 ≥ 0.5 324,865 178,501 159,029
r2 ≥ 0.8 474,409 293,835 259,779
r2 = 1.0 604,886 447,579 434,476

Tag SNPs were picked to capture common SNPs in HapMap release 16c1 using the software program Haploview.

*
Pairwise tagging at different r2 thresholds.
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Table 8
Proportion of common SNPs in Phase I captured by sets of tag SNPs

Common SNPs captured (%)

Tag SNP set size YRI CEU CHB +JPT

10,000 12.3 20.4 21.9
20,000 19.1 30.9 33.2
50,000 32.7 50.4 53.6
100,000 47.2 68.5 72.2
250,000 70.1 94.1 98.5

As in Table 7, tag SNPs were picked to capture common SNPs in HapMap release 16c1 using Haploview, selecting SNPs in order of the fraction of sites

captured. Common SNPs were captured by fixed-size sets of pairwise tags at r2 ≥ 0.8.
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Table 9
High-differentiation non-synonymous SNPs

Chromosome Position (base number) Gene* SNP

1 54,772,383 THEA rs1702003
1 156,000,000 FY rs12075
1 244,000,000 Q8NGY8_human† rs7555046
2 3,184,917 COLEC11 rs7567833
2 73,563,622 ALMS1 rs3813227
2 73,589,553 ALMS1 rs6546837
2 73,591,645 ALMS1 rs6724782
2 73,592,163 ALMS1 rs6546839
2 73,629,222 ALMS1 rs2056486
2 73,629,311 ALMS1 rs10193972
2 109,000,000 EDAR rs3827760
3 182,000,000 FXR1 rs11499
3 185,000,000 MCF2L2 rs7639705
4 41,844,599 SLC30A9 rs1047626
4 46,567,077 ENSG00000172895.1 rs5825
4 101,000,000 ADH1B rs1229984
8 10,517,787 RP1L1 rs6601495
8 146,000,000 SLC39A4 rs1871534
10 50,402,145 ERCC6 rs4253047
10 71,002,210 NEUROG3 rs4536103
11 46,701,579 F2 rs5896
15 46,213,776 SLC24A5 rs1426654
15 61,724,262 HERC1 rs7162473
16 30,996,126 ZNF646 rs749670
16 46,815,699 ABCC11 rs17822931
17 26,322,430 RNF135 rs7225888
17 26,399,303 ENSG00000184253.2 rs6505228
18 66,022,323 RTTN rs3911730
19 5,782,891 FUT6 rs364637
19 47,723,209 CEACAM1 rs8110904
22 18,164,095 GNB1L rs2073770
X 65,608,007 EDA2R rs1385699

*
Where no standard gene abbreviation exists, the ENSEMBL gene ID has been given.

†
It is unclear from current annotations whether this is a pseudogene.
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Table 10
Candidate loci in which selection occurred

Chromosome Position (base
number) at

centre

Genes in region Population Haplotype frequency Empirical P-
value

2 137,224,699 LCT CEU 0.65 1.25 × 10−9

5 22,296,347 CDH12, PMCHL1 YRI 0.25 5.77 × 10−8

7 79,904,387 CD36 YRI 0.24 2.72 × 10−6

7 73,747,934 PMS2L5, WBSCR16 CEU 0.76 3.37 × 10−6

12 109,892,896 CUTL2 CEU 0.36 7.95 × 10−9

15 78,558,508 ARNT2 YRI 0.32 6.92 × 10−7

16 75,661,011 Desert YRI 0.46 5.01 × 10−7

17 3,945,580 ITGAE, GSG2,
HSA277841,

CAMKK1, P2RX1

YRI 0.70 9.26 × 10−7

18 24,502,756 Desert CEU 0.57 2.23 × 10−7

22 32,459,471 LARGE YRI 0.36 7.82 × 10−9

X 20,171,291 Desert YRI 0.33 5.02 × 10−9

X 64,323,320 HEPH YRI 0.55 3.02 × 10−8

X 42,763,073 MAOB CEU 0.53 4.21 × 10−9

X 34,399,948 Desert CEU 0.57 8.85 × 10−8
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