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Abstract
The RNAs of many plant viruses lack a 5′ cap and must be translated by a cap-independent
mechanism. Here, we discuss the remarkably diverse cap-independent translation elements that have
been identified in members of the Potyviridae, Luteoviridae, and Tombusviridae families, and genus
Tobamovirus. Many other plant viruses have uncapped RNAs but their translation control elements
are uncharacterized. Cap-independent translation elements of plant viruses differ strikingly from
those of animal viruses: they are smaller (<200 nt), some are located in the 3′ untranslated region,
some require ribosome scanning from the 5′ end of the mRNA, and the 5′ UTR elements are much
less structured than those of animal viruses. We discuss how these elements may interact with host
translation factors, and speculate on their mechanism of action and their roles in the virus replication
cycle. Much remains to be learned about how these elements enable plant viruses to usurp the host
translational machinery.
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1. Introduction
Like viruses of all organisms, plant viruses must gain access to the host translation machinery.
Because recognition of the 5′ cap structure on mRNA is a key step in cellular regulation of
translation, viral mRNAs that translate in the absence of a 5′ cap can bypass host regulatory
mechanisms to sustain translation. Thus, plant viruses in diverse families use cap-independent
translation as a gene expression strategy. By understanding the mechanisms of plant viral RNA
translation, we can gain insight on how to reduce crop losses due to plant virus infection. Also,
plant virus-derived sequences can be useful tools to control transgene expression in genetically
engineered plants. Plant viruses serve as excellent model viral systems and shed light on basic
eukaryotic translation processes, owing to their small genomes, high titer, and lack of human
pathogenicity. However, as is obvious in this review, many plant virus translation mechanisms
are unknown in the animal virus world. This review summarizes what (little) is known about
cap-independent translation of plant viruses and discusses the role of this property in viral life
cycles.

Two features are necessary for efficient translation of cellular mRNAs: the 5′ m7G(5′)ppp(5′)
N cap and the 3′ poly(A) tail. On cellular mRNAs, interaction of initiation factor 4E (eIF4E)
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with the cap structure (von der Haar et al., 2004), and the interaction of poly(A) binding protein
(PABP) with the poly(A) tail facilitate translation initiation (Kahvejian et al., 2005). Through
the large adapter protein, eIF4G, which binds eIF4E and PABP simultaneously, a closed loop
complex is formed to bring the mRNA ends into proximity (Hentze, 1997;Sachs et al., 1997).
This closed-loop is thought to increase the affinity of translation initiation factors, the ribosome,
and the mRNA for each other, to initiate scanning (Pestova et al., 2001). In plants, eIF4E has
two isoforms, eIF4E and eIFiso4E. Together with the two isoforms of eIF4G and eIFiso4G,
respectively, these proteins complex to form eIF4F and eIFiso4F. The plant eIF4G isoforms
are less similar to each other than the different forms of eIF4G in mammals or yeast are to each
other. Wheat eIF4G (180 kDa) is twice as large as eIFiso4G (86 kDa). This large difference
suggests there may be significant functional differences between the eIF4F isoforms in plants
(Browning, 2004).

To compete with host mRNAs for the translation apparatus and circumvent host translational
regulation, many viruses contain an internal ribosome entry site (IRES) in their 5′ untranslated
region (UTR). IRESes obviate the need for a 5′ cap, recruiting the ribosome directly to the
vicinity of the start codon without ribosome scanning from the 5′ end. In animal virus RNAs,
IRESes are usually long (200–500 nt), structured and located in the 5′ UTR. By contrast, those
in plants are smaller, less structured, and sometimes located in the 3′ UTR. Here, we discuss
the known plant viral sequences that facilitate cap-independent translation (Table 1 and Fig.
1): (i) elements in the 5′ end (Potyviridae and other picorna-like viruses), (ii) inter-and
intragenic elements of the Tobamovirus and Polerovirus genera, respectively, and (iii) elements
in the 3′ UTRs of viruses in the Tombusviridae family and Luteovirus genus. Beyond the scope
of this review are translation enhancer elements in capped RNAs such as those of Potato virus
X (Smirnyagina et al., 1991) and Tobacco mosaic virus (Gallie and Walbot, 1992). Nor will
we discuss elements that facilitate poly(A) tail-independent translation (Leathers et al.,
1993;Neeleman et al., 2001).

2. Cap-independent translation elements in the 5′ UTR
2.1. Potyviridae

The RNAs of the large Potyviridae family resemble those of the picornaviruses, in that they
have a VPg (viral protein, genome-linked) at their 5′ end and a poly(A) tail. Their positive-
sense RNA genomes (Fig. 1) code for a single polyprotein, which is processed by virus-encoded
proteases. Potyviruses differ from picornaviruses in that their VPgs are several fold larger and
the 5′ UTRs are several fold shorter (~150 nt for potyviruses versus 600–1200 nt for
picornaviruses), less structured than those of picornaviruses and do not contain more than one
upstream AUGs.

The 5′ leader (143 nt) of Tobacco etch potyvirus (TEV) mediates cap-independent translation
(Carrington and Freed, 1990), and promotes efficient translation in conjunction with the poly
(A) tail (Gallie et al., 1995;Niepel and Gallie, 1999). This is facilitated by two cap-independent
regulatory elements (CIREs) that span nucleotides (nts) 28–118 in the 5′ UTR (Niepel and
Gallie, 1999). Smaller segments of the TEV 5′ UTR, 1–20, 37–65, 67–113 and 110–114 nt
were also reported to enhance translation (Kawarasaki et al., 2000). Zeenko and Gallie
(2005) recently reported that the 5′ proximal domain (38–75 nt) can fold into a 45 nt RNA
pseudoknot (PK1), that is required for full cap-independent translation (Fig. 2). However,
mutations expected to disrupt and restore the pseudoknot did not behave as expected, as
compensatory mutations did not restore translation activity. In addition to the pseudoknot,
upstream unstructured sequences (28–37 nt), that resemble the cap-dependent TMV Ω
translation enhancer sequence are clearly important. One loop (L3) of PK1 is complementary
to 1117–1123 nt of 18S rRNA. Mutations within L3 that disrupt base pairing to the 18S rRNA
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substantially reduced translation, while mutations that retain complementarity did not affect
translatability. This interaction may enhance translation by facilitating the recruitment of the
40S ribosomal subunit through direct base pairing of the viral RNA to the ribosome. When
placed in the intergenic region of a dicistronic reporter construct, the TEV 5′ UTR facilitates
translation of the second ORF, suggesting that it has IRES activity (Gallie, 2001). However,
a stable stem loop placed upstream of the leader in its natural 5′ UTR context reduced translation
as much as 10-fold, indicating that the TEV leader normally requires ribosomal scanning from
the 5′ end (Niepel and Gallie, 1999).

The TEV 5′ UTR functions in vivo in tobacco (Carrington and Freed, 1990) and carrot (Gallie
et al., 1995) cells. It confers a competitive advantage against uncapped non-viral mRNAs in
translation extracts depleted of eIF4F. This advantage is lost when eIF4F (but not eIFiso4F),
particularly the eIF4G subunit, is added back (Gallie, 2001). Thus, the TEV 5′ UTR has either
no or reduced dependence on eIF4F (or eIF4G) compared to non-viral mRNAs.

Like that of TEV, the 5′ UTRs of other potyviruses, including Potato virus Y (PVY), Plum pox
virus (PPV), and Turnip mosaic virus (TuMV) have been shown to stimulate cap-independent
translation in various assay systems. When placed in the inter-cistronic region of a dicistronic
RNA, the 5′ UTR of PVY (Fig. 2) stimulates translation of the downstream ORF in rabbit
reticulocyte lysates (Levis and Astier-Manifacier, 1993). The 3′ 55 nucleotides of the PVY 5′
UTR are the most important for the cap-independent translation in tobacco protoplasts (Yang
et al., 1997). Conserved motifs that may participate in cap-independent translation include
several UUUCA and (CAA)n blocks that are also found in the cap-dependent TMV Ω
translation enhancer sequence (Gallie and Walbot, 1992). In contrast, the 5′ UTR of PPV, a
very serious disease agent of fruit trees, does not seem to require specific sequences. Large
deletions in the PPV 5′ UTR did not affect the efficient translation of uncapped mRNAs in
reticulocyte lysates or in tobacco protoplasts (Simón-Buela et al., 1997). Instead, the 147 nt
PPV 5′ UTR harbors an initiation codon in a poor context upstream of the primary initiation
codon. Mutation of the upstream start codon to place it in a good initiation context substantially
reduced expression of the viral genes. Thus, leaky scanning plays a role in cap-independent
translation of PPV RNA (Simón-Buela et al., 1997). The TuMV 5′ UTR inhibits translation of
capped transcripts when added in trans, suggesting that a translation factor may interact with
the 5′ UTR (Basso et al., 1994).

There is little sequence conservation among the 5′ UTRs of viral RNAs in the diverse
Potyviridae family. We (unpublished data) and Maiss et al. (1989) found similarities only
among the first 25 nt of the leaders discussed here. In general, potyvirus 5′ leaders appear to
lack extensive secondary structure (e.g. Fig. 2), and have low GC content (Simón-Buela et al.,
1997). They are so simple that they may function simply by their lack of structure, which
reduces factor dependence (i.e. helicase eIF4A), combined with help from their rRNA
complementary. 5′ UTR elements like these may also be present in other plant virus groups
such as the chrysoviruses (Covelli et al., 2004), so if motifs in the known 5′ UTR elements are
delineated, broader understanding of how the RNA elements function in non-potyviruses may
be gained.

2.2. Potyvirus VPg binds host translation factors
Given that potyvirus RNAs lack a 5′ cap, it is intriguing that the VPg at the 5′ end of potyviral
RNA binds the host cap-binding translation factors, eIF4E and eIFiso4E. The TuMV VPg binds
eIFiso4E in vitro and in the yeast two-hybrid system (Wittmann et al., 1997), and in Arabidopsis
plants (Léonard et al., 2000). PABP co-purifies with the complex of VPg–Pro and eIF4E or
eIFiso4E (Léonard et al., 2004). VPg–Pro has also been shown to interact with the eIFiso4F
complex (Plante et al., 2004). Mutations in the VPg domain necessary for interaction with
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eIFiso4E reduced TuMV infectivity (Léonard et al., 2000). There is also substantial genetic
evidence for a role of eIF4E in virus infection. Recessive resistance genes to potyviruses in
pepper (Ruffel et al., 2002), lettuce (Duprat et al., 2002;Lellis et al., 2002;Nicaise et al.,
2003), and pea (Gao et al., 2004a), and loss-of-susceptibility mutations to potyviruses in
Arabidopsis (Lellis et al., 2002) all proved to be caused by mutations in eIF4E or eIFiso4E, or
by reduced expression of one of these factors.

The above observations are consistent with a direct role for the VPg in recruiting the translation
factors, perhaps replacing the cap structure (Thivierge et al., 2005). However, we are unaware
of any direct evidence that the eIF4E/eIFiso4E interaction with VPg participates in translation.
In fact, some evidence suggests that this interaction serves other function(s) in the virus life
cycle. First, as discussed above, the VPg is unnecessary for efficient cap-independent
translation. The 5′ UTR alone confers this function, although it has not been ruled out that the
VPg may also stimulate translation (Thivierge et al., 2005), as observed for caliciviruses
(Herbert et al., 1997). Secondly, the VPg competes with m7GTP for binding eIFiso4F,
leading Plante et al. (2004) to propose that it inhibits host translation. Thirdly, potyviral proteins
other than the VPg also interact with eIF4E. The TEV nuclear inclusion protein, Nla, binds
eIF4E from tomato and tobacco in a strain specific manner (Schaad et al., 2000). The role of
eIF4E in the infection cycle of Pea seedborne mosaic potyvirus (PSbMV) is postulated to be
in cell-to-cell movement (Gao et al., 2004b). Mutations in eIF4E (resistance gene cum1) or
eIF4G (resistance gene cum2) prevent replication of Cucumber mosaic cucumovirus (CMV),
which has capped RNAs (Yoshii et al., 2004). Finally, a screen of Arabidopsis mutant lines
showed that mutations of 4E (and not iso4E) are associated with susceptibility to Clover yellow
vein potyvirus, while mutations in iso4E (and not 4E) are associated with susceptibility to
TuMV (Sato et al., 2005). These observations suggest there are alternative roles for translation
factors in the life cycle of potyviruses.

2.3. Other picorna-like plant viruses
Cowpea mosaic comovirus (CPMV, Comoviridae) is even more similar than the Potyviridae
to the Picornaviridae (Argos et al., 1984). The presence of an IRES in the 5′ UTR of the middle
component RNA was reported in vitro (Thomas et al., 1991;Verver et al., 1991); however
internal initiation could not be demonstrated in animal cells (Belsham and Lomonossoff,
1991). Leaky scanning was also suggested as a mechanism of translation for CPMV RNA, as
it has an upstream AUG in the middle component RNA (Belsham and Lomonossoff,
1991;Thomas et al., 1991;Verver et al., 1991). The picorna-like waikaviruses, in the
Sequiviridae family also have uncapped RNAs and very long 5′ UTRs (454–515 nt) preceding
a polyprotein ORF, and it has been suggested that three nucleotide differences between isolates
in a potential IRES may explain differences in symptoms, although there is no experimental
evidence for an IRES (Chaouch-Hamada et al., 2004).

3. Cap-independent translation elements within or between ORFs
3.1. Tobamoviruses

In polycistronic plant RNA viruses, 5′-distal ORFs were thought to be translated via normal 5′
end-dependent ribosome scanning on subgenomic viral mRNAs containing 5′ truncations of
the viral genome (Hull, 2002). Surprisingly, some tobamoviruses have been found recently to
translate ORFs on subgenomic RNAs via IRESes. Tobamoviruses, including the prototype
Tobacco mosaic virus U1 (TMV U1), have four ORFs (Fig. 1). Two ORFs comprising the
replicase are translated from the capped genomic (gRNA) while the downstream genes
encoding the movement (MP) and coat (CP) proteins are translated from separate subgenomic
RNAs (sgRNAs). Unlike the CP sgRNA, the dicistronic I2 sgRNA, with the MP ORF at its 5′
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end, is uncapped (Hunter et al., 1983;Joshi et al., 1983). The 75 nt leader sequence of I2 sgRNA,
called IRESMP, 75

U1 , promotes translation of the downstream ORF in a dicistronic reporter
construct, even in the presence of a stable hairpin that blocks scanning at the 5′ terminus of the
RNA (Skulachev et al., 1999). However, IRESMP, 75

U1  is incapable of mediating MP expression

from its internal location in viral genomic RNA. The authors propose that IRESMP, 75
U1  may be

inaccessible in the full-length RNA context (Skulachev et al., 1999). A functionally similar
element is present in the unrelated Crucifer-infecting tobamovirus (crTMV) (IRESMP, 75

CR )
(Skulachev et al., 1999). The intracellular transport of a movement-deficient TMV U1 mutant
lacking IRESMP, 75

U1  was restored with the insertion of IRESMP, 75
CR , supporting the notion that

IRESMP, 75
CR confers cap-independent translation (Zvereva et al., 2004).

Unlike TMV U1, the CP gene of crTMV is translated from both the I2 sgRNA and genomic
RNA by internal ribosome entry (Fig. 1) (Ivanov et al., 1997;Dorokhov et al., 2002).
Translation is controlled by a 148 nt IRESCP, 148

CR  element located within the MP coding

sequence that overlaps the CP ORF by 25 codons (Ivanov et al., 1997). IRESCP, 148
CR  has been

reported to confer higher cap-independent translation activity than the widely used
encephalomyocarditis virus IRES in plant and animal cells (Dorokhov et al., 2002). The
sequence and structure analysis of IRESCP, 148

CR  revealed a bulged stem loop structure flanked
by two polypurine A-rich sequences (PARS), crucial for IRES activity (Fig. 2) (Dorokhov et
al., 2002;Ivanov et al., 1997). The authors showed that a simplified version of the PARS
consisting only of a (GAAA)16 repeat gave very efficient cap-independent translation. The
corresponding 148 nt region in the 5′ UTR of TMV U1 CP sgRNA has no homology to
IRESCP, 148

CR and does not stimulate cap-independent translation (Ivanov et al., 1997).

3.2. Potato leafroll polerovirus
Viral RNAs in the Polerovirus and Enamovirus genera (Luteoviridae) contain a VPg, so one
would predict that these viruses may contain an IRES at the 5′ end of their genomic RNAs
(gRNA). The three 5′-proximal ORFs (Fig. 1) are translated from gRNA, and downstream
ORFs are translated from two subgenomic RNAs (Tacke et al., 1990;Ashoub et al., 1998).
While a sequence element that confers cap-independent translation of the 5′ proximal ORFs
has not been reported, translation can initiate at a site within ORF 1. This leads to translation
of a 5 kDa protein dubbed Rap1, encoded by an ORF within ORF 1, in a different frame (Jaag
et al., 2003). The function of Rap1 is unknown, but it is indispensable for viral replication.
Rap1 translation initiates about 1500 nt downstream of the 5′ end of the gRNA by internal
ribosome entry (Jaag et al., 2003). Translation initiation is mediated by a motif,
GGAGAGAGAGG, located 22 nt downstream of the Rap1 AUG initiation start (Jaag et al.,
2003). This IRES element in conjunction with the 22 nt spacer sequence is sufficient to mediate
cap-independent translation in vitro but not in vivo (Jaag et al., 2003). It is noteworthy that,
like the crTMV IRESCP, 148

CR , the essential region of the PLRV IRES is a polypurine tract.

4. Cap-independent translation elements in the 3′ UTR
Viral RNAs in the Luteoviridae and Tombusviridae appear to be unmodified at the 5′ end, and
they lack a poly(A) tail (Miller et al., 2002). Unlike all other known viruses of plants and
animals, members of genus Luteovirus (but not the Polerovirus or Enamovirus genera) of the
Luteoviridae family and most genera of the Tombusviridae contain a sequence in the 3′ UTR
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that facilitates cap-independent translation initiation at the 5′ end of the genome. From a 3′
position, the translation element facilitates expression of the ORFs located kilobases upstream
at the 5′ end of the mRNA.

4.1. Satellite tobacco necrosis virus (STNV)
Although it is a satellite of Tobacco necrosis necrovirus (TNV), STNV RNA bears no sequence
homology to its helper virus or any other member of the Tombusviridae family. Thus, perhaps
it should be classified separately. STNV RNA is approximately 1200 nt long and encodes only
the coat protein. STNV RNA is entirely dependent on TNV for replication but is encapsidated
in its own coat protein. STNV RNA contains an efficient cap-independent translation enhancer
domain (TED) located in the 5′ end of the 600 nt 3′ UTR (Fig. 1) (645–746 nt) (Danthinne et
al., 1993;Timmer et al., 1993;Meulewaeter et al., 1998a). Mutations within TED that abolish
translation can be fully compensated by a cap at the 5′ end of the mRNA (Meulewaeter et al.,
1998b). Independent of its position within the RNA, the TED mediates cap-independent
translation in vivo and in vitro of STNV and heterologous RNAs (Meulewaeter et al.,
1998b). Most likely, TED adopts an extended stem loop structure (Fig. 2) for its translation
activity, while an alternative pseudoknot-containing structure is unnecessary for translation
and may participate in a different stage of viral infection (van Lipzig et al., 2002).

The TED translation activity correlates with its ability to bind two host factors of about 28 and
30 kDa (van Lipzig et al., 2001). Subsequently, TED was shown to bind specifically and
directly to eIF4E (26 kDa) and eIFiso4E (28 kDa) (Gazo et al., 2004), which are probably the
proteins detected by van Lipzig et al. TED inhibited translation of cap- or TED-containing
mRNAs when added in trans, whereas no trans-inhibition was caused by mutant TED
sequences that lost their ability to bind to translation factors (van Lipzig et al., 2001). Trans-
inhibition by TED was reversed by the addition of eIF4F or eIFiso4F (Gazo et al., 2004). The
addition of free cap analogue m7GTP to the translation extract did not inhibit TED-mediated
translation, suggesting that the TED may not compete with the cap for binding of eIF4E (Gazo
et al., 2004).

To achieve translation initiation at the 5′-proximal AUG, TED must interact with the STNV
RNA 5′ UTR (Meulewaeter et al., 1998b). Both elements bear complementary sequences
(Meulewaeter et al., 1998b), which led the authors to test the hypothesis that TED and the 5′
UTR interact by direct base pairing. However, mutations in either sequence that disrupted the
predicted base pairing reduced translation only slightly. Compensatory double mutations
predicted to restore base pairing did not restore cap-independent translation. Thus, any
interaction between TED and the 5′ UTR may not rely on Watson–Crick base pairing. However,
the results do not rule out the possibility that base pairing is required, and that the particular
mutations altered the structures in unpredicted ways to prevent base pairing between UTRs,
or that specific sequence as well as base pairing is required.

Both the STNV 5′ UTR and 3′ TED have sequences complementary to 18S rRNA (Meulewaeter
et al., 1998a), which may facilitate recruitment of the 40S ribosomal subunit by direct base
pairing (Gazo et al., 2004). The eIF4F complex recruited by the TED would then assemble the
translation complex at the 5′ end of the mRNA either by interaction of both ends with the 40S
subunit or by tertiary structure of the mRNA (Gazo et al., 2004).

4.2. Barley yellow dwarf virus (-like) translation element (BTE)
Barley yellow dwarf virus (BYDV, Luteoviridae), all other members of genus Luteovirus
(Domier et al., 2002), and all members of the Necrovirus and Dianthovirus genera
(Tombusviridae), harbor the BYDV (or BYDV-like) cap-independent translation element
(BTE) in the 5′ end of the 3′ UTR. We define BTEs as cap-independent translation elements
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with two structural features (Fig. 2): (i) a conserved 17 nt sequence, GGAUC-
CUGGGAAACAGG that includes a stem loop (SL-I) with a GNRNA loop motif (Legault et
al., 1998), and (ii) a loop (not in SL-I) that can base pair to a loop in the 5′ UTR of the RNA.
BTEs are functionally indistinguishable from the STNV TED, but bear no similarity in
sequence or secondary structure to TED (Wang et al., 1997).

The BYDV BTE facilitates cap-independent translation of viral proteins from the genomic
RNA (gRNA) and sgRNAs in vivo and in vitro (Wang et al., 1997). It folds into a roughly
cruciform secondary structure of about 100 nt with three major stem loops (SL-I, SL-II, SL-
III) and a terminal stem or “stalk” (S-IV) that allows it to protrude from the viral genome (Guo
et al., 2000; E. Pettit Kneller, unpublished). The BTE mediates cap-independent translation
when placed in the 5′ UTR, but fails to promote translation of a downstream gene when located
in a dicistronic context, indicating that the BTE is not an IRES (S. Wang and E. Allen,
unpublished).

As observed for TED (Gazo et al., 2004), pull-down and UV cross-linking assays revealed that
eIF4F and eIFiso4F bind specifically to the BTE and not non-functional mutants (E. Allen, E.
Pettit Kneller, unpublished). A wheat germ extract depleted of the cap-binding factors is unable
to sustain BTE-mediated translation, while the addition of small amounts of eIF4F or eIFiso4F
to the extract restores translation of BTE-containing RNA preferentially to capped mRNA (E.
Pettit Kneller, unpublished). When added in trans, the BTE inhibits both cap-dependent and
BTE-dependent translation (Wang et al., 1997). This inhibition is reversed by addition of
eIF4F, suggesting that the BTE sequesters the translation factors. Higher concentrations of cap
analogue are necessary to inhibit BTE-mediated translation than translation of capped mRNAs,
indicating that the BTE may not compete for the cap-binding pocket of eIF4E (Wang and
Miller, 1995). In addition to recruiting initiation factors that facilitate ribosome recruitment,
the BTE may bind the 40S subunit directly. A hexamer, GAUCCU, within the 17 nt conserved
sequence, is complementary to 18S rRNA at exactly the same distance from the 3′ end of 18S
rRNA as is the RNA binding site (Shine–Dalgarno binding site) of prokaryotic 16S ribosomal
RNA (Wang et al., 1997).

In addition to recruiting ribosomes or translation factors, the 3′ BTE must deliver them to the
5′ end of the viral RNA where translation initiates. This is facilitated by kissing stem loop base
pairing between the loop of SL-III in the BTE (Fig. 2) and a five base loop sequence in the 5′
UTRs of BYDV genomic RNA (Guo et al., 2001) and subgenomic RNA 1 (E. Pettit Kneller,
unpublished). A single point mutation within either loop, that disrupted base pairing, abolished
translation and replication. Compensatory mutations predicted to restore the kissing-stem loop
base pairing also restored cap-independent translation and replication activity (Guo et al.,
2001). The BTE-5′ UTR interaction may not be based solely on Watson–Crick base pairing,
as many sequences predicted to retain complementarity between the BTE and 5′ UTR could
not sustain translation. However, the BTE can facilitate translation of a heterologous RNA
from a 3′ location using a surrogate base pairing between UTRs outside of the BTE (A.
Rakotondrafara, unpublished).

BTE-mediated cap-independent translation appears to require ribosome scanning from the 5′
end, as in normal cap-dependent translation. The addition of a stable stem loop structure at the
very 5′ end of the BYDV RNA blocks BTE-facilitated cap-independent translation as well as
cap-dependent translation (Guo et al., 2001). When the stem loop structure was placed more
distal to the 5′ terminus, the RNA translated efficiently. Furthermore, addition of an upstream
AUG in a different reading frame from the main reporter gene ORF significantly reduced
translation of the reporter gene (A. Rakotondrafara, unpublished). All these observations are
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consistent with the classical 5′ ribosome scanning mechanism (Guo et al., 2000;Kozak,
1989).

4.3. Necroviruses and dianthoviruses (Tombusviridae)
The cap-independent translation function of the BTE in two quite different necroviruses, TNV-
A and TNV-D, was demonstrated by Meulewaeter et al. (2004) and Shen and Miller (2004),
respectively. The necrovirus BTEs have similar secondary structures to that of BYDV except
they lack SL-II (Fig. 2). Like the BYDV BTE, the TNV BTE promotes cap-independent
translation from the 3′ or the 5′ UTR (Shen and Miller, 2004) and it has a stem loop that
potentially base pairs to a loop in the 5′ UTR. In TNV-D RNA, this comprises only four
complementary bases. Mutagenesis results are not only consistent with a requirement for base
pairing between the 3′ BTE of TNV-A and TNV-D viruses and the 5′ UTRs of their genomic
and subgenomic RNAs, but also indicate that the primary sequence of the paired regions is
sensitive to changes (Meulewaeter et al., 2004;Shen and Miller, 2004).

Dianthoviruses, including Red clover necrotic mosaic virus (RCNMV), are the only
Tombusviridae viruses with a bipartite genome. Both RNAs were reported initially to be capped
(Lommel et al., 1988;Xiong and Lommel, 1989), but recent data ruled out the presence of a
cap (Mizumoto et al., 2003). This finding was consistent with the infectivity of uncapped in
vitro transcribed RCNMV RNA 1 in protoplasts (Mizumoto et al., 2003). Cap-independent
translation is mediated by the “translation element of dianthovirus RNA 1” or TE-DR1,
between bases 3596 and 3732 of the 3′ UTR. Secondary structure prediction reveals that the
dianthovirus BTEs, including TE-DR1, resemble the BYDV BTE except that they contain three
extra stem loops (Fig. 2). TE-DR1 was reported to mediate translation independently of the
RCNMV 5′ leader, as it showed full activity with a 5′ vector-derived leader sequence
(Mizumoto et al., 2003). However, the involvement of a 3′–5′ interaction could not be ruled
out, because potential base pairing was predicted in silico between TE-DR1 and both the
RCNMV 5′ UTR, and the vector-derived 5′ UTR that was used in the above experiment (Fabian
and White, 2004).

In contrast to RCNMV RNA 1, RCNMV RNA 2 lacks both a TE-DR1-like element in its 3′
UTR and a 5′ cap (Mizumoto et al., 2003). Thus, the mechanism by which RNA 2 is translated
remains unclear. We found that the same GUUGUG loop in TE-DR1 predicted by Fabian and
White (2004) to base pair to the RNA 1 5′ UTR (Fig. 2), also has potential to base pair in trans
to any of the three loops predicted in the 5′ UTR of RNA 2. Thus, the translation factors/
ribosomes likely to be recruited to TE-DR1 could be delivered to the RNA 2 5′ UTR via this
base pairing. Interactions between RCNMV RNAs 1 and 2 would be enhanced by known base
pairing between internal regions of these RNAs necessary for sgRNA synthesis (Sit et al.,
1998).

4.4. Other Tombusviridae
The other six genera of the Tombusviridae, while harboring some kind of cap-independent
translation sequence, have no sequence resembling a BTE. Tomato bushy stunt virus (TBSV)
RNA of genus Tombusvirus, lacks a BTE as evidenced by the absence of the 17 nt conserved
sequence, nor is cap-independent translation clearly detectable in vitro. Instead, TBSV RNA
relies on a 400 nt region composed of three contiguous domains (RIII, R3.5, RIV) referred to
as the 3′ cap-independent translational enhancer or 3′ CITE, to facilitate cap-independent
translation in vivo (Wu and White, 1999). The R3.5 segment represents the core translation-
specific element (Oster et al., 1998;Wu and White, 1999), but requires the flanking RIII and
RIV regions that are also essential for replication (Oster et al., 1998).
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The R3.5 adopts a Y-shaped structure with three extended stems (S-A, SL-B, and SL-C) (Fig.
2) that is highly conserved in genus Tombusvirus (Fabian and White, 2004). Mutations on
either stem loop impaired RNA translatability (Fabian and White, 2004). 3′–5′ communication
is mediated by base pairing of the SL-B R3.5 to a complementary stem loop, SL3, within the
5′ T-shaped domain, TSD, essential for replication (Fabian and White, 2004;Wu et al., 2001).
The interaction involves 9 nt that extend from the terminal loop to stem sequence. Sequence
complementarity rather than primary sequence is important for this 3′–5′ communication
(Fabian and White, 2004). Thus, like BTE-containing viruses, base pairing between loops in
the 3′ and 5′ UTRs is necessary. In fact, Fabian and White found potential base pairing between
3′ and 5′ UTRs in most genera of the Tombusviridae family (Fabian and White, 2004).

Interestingly, the Maize necrotic streak virus (Tombusviridae) 3′ CITE mediates cap-
independent translation in vitro from the gRNA and both sgRNAs. Rather than adopting a Y-
shaped structure, it forms a long stem loop, and the loop has sequence complementary to a loop
within the TSD (P. Redinbaugh and K. Scheets, personal communication).

The core translation enhancer element of Turnip crinkle carmovirus (TCV, Tombusviridae) is
also located within the 5′ end of the 3′ UTR of the gRNA and sgRNA (Qu and Morris, 2000).
The TCV-TE works cooperatively with the 5′ UTR in mediating cap-independent translation.
This cooperation may not involve base pairing interaction as no potential complementary
sequence was identified (Fabian and White, 2004;Qu and Morris, 2000).

Interestingly, the 5′ UTR of the CP sgRNA of TCV mediates translation more efficiently than
the gRNA 5′ UTR. This makes sense because the level of accumulation of the CP is at least
100-fold greater than other gene products. Qu and Morris (2000) propose that the primary role
of the TCV 3′ TE is to ensure efficient translation of viral RNA in competition with the host
mRNA, while the 5′ UTRs modulate the level of expression to control the switch from early
to late stages of viral life cycle (Qu and Morris, 2000). Yoshii et al. (2004) showed that the
recessive eIF4G mutant in the cum2 gene of Arabidopsis thaliana prevents translation of TCV
RNA. However, TCV translatability was not affected in the cum1 mutant line that had lost
eIF4E (Yoshii et al., 2004) or with mutation within eIFiso4E gene (Lellis et al., 2002). Thus,
TCV RNA translation may be eIF4G- but not eIF4E-dependent.

A 180 nt 3′ cap-independent translation enhancer was identified in another carmovirus Hibiscus
chlorotic ringspot virus (HCRSV, Tombusviridae) (Koh et al., 2002). It requires a hex-
anucleotide, GGGCAG (Koh et al., 2002), and acts synergistically with an IRES element
located 124 bases upstream (2394–2566 bp) of the CP gene (Koh et al., 2003). The authors
propose that both elements function by direct base pairing to the ribosomal RNA (Koh et al.,
2002,2003).

5. Discussion
5.1. Plant virus translation elements differ from animal virus translation elements

Even though plant viruses have similar genome organizations and expression strategies to
animal viruses, their cap-independent translation signals are strikingly different from those in
animal viruses. The plant elements are less complex, and some are not IRESes. These
differences may reflect fundamental differences between the plant and animal viral translation
apparatus. For example, in response to stress including certain viral infections, animal hosts
shut down cap-dependent translation via dephosphorylation of eIF4E-binding protein (4EBP)
which, in turn binds eIF4E and blocks binding of eIF4G (Richter and Sonenberg, 2005). No
4EBP homologs have been identified in plants (Browning, 2004), so plants may lack this
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translation system defense mechanism, and plant viruses hence do not need to bypass such
regulation.

5.2. Why cap-independent translation?
Being able to translate cap-independently allows viruses to avoid the above eIF4E-mediated
cellular translational control. It also permits animal viruses to actively shut off host cap-
dependent translation, which prevents defense gene expression and frees ribosomes for the
viral RNA. The cost to animal viruses is the requirement for large, complex IRESes to
functionally replace the host factors in recruiting ribosomes. In contrast, plant viruses are not
known to globally shut down host translation. They may require more of the host translational
machinery and hence do not need large IRESes. Some small plant virus translation elements
also can function in artificial mammalian systems using reporter genes (Dorokhov et al.,
2002), but more complex IRESes are needed in infectious animal viruses, perhaps to override
antiviral translation defense systems that are absent in plants.

Another advantage of cap-independent translation is simply that this capability avoids the need
to encode capping enzymes. Most positive strand RNA viruses replicate in the cytoplasm, but
the cellular capping machinery resides in the nucleus. Thus, capped, positive strand plant
viruses encode their own capping enzymes (Ahola and Ahlquist, 1999). Considering that most
plant viruses encode only four or five genes, it is a major burden to devote a gene to capping.

5.3. Why a 3′ translation element?
The presence of the translation element in the 3′ UTR of the viral RNA: (i) prevents translation
initiation on 3′-truncated or degraded RNAs, (ii) ensures the presence of the translation element
on all 3′ co-terminal subgenomic mRNAs, and (iii) may facilitate the switch from translation
to replication (Barry and Miller, 2002). Translation and RNA replication cannot take place
simultaneously on the same RNA (Gamarnik and Andino, 1998). To avoid non-productive
collisions between the replicase moving from the 3′ end toward the 5′ end and ribosomes
moving 5′ to 3′, while copying the 3′ UTR the replicase may disrupt the 3′ cap-independent
translation element structure, hence turning off translation at the 5′ end of the genome. The
resulting ribosome-free genomic RNA could then be replicated (Barry and Miller, 2002).

5.4. How does cap-independent translation relate to the closed loop model?
Base pairing between the 3′ cap-independent translation elements and the 5′ UTR circularizes
the mRNA and thus may obviate the need for translation factor-mediated circularization as
occurs on normal capped, polyadenylated mRNAs. However, cap-binding factors are still
needed, and also sequence downstream of the BTE is required in the BYDV RNA 3′ UTR for
full translation in vivo. Translation of mRNAs lacking the downstream sequence can be
restored by addition of a poly(A) tail but not by adding a cap (Guo et al., 2000). These
observations indicate that eIF4F and a “poly(A) mimic” sequence are necessary for aspects of
translation initiation other than circularization. How plant viral RNAs that harbor the cap-
independent translation element in the 5′ UTR or in intergenic regions are circularized, if at
all, is unknown or has not been demonstrated. Thivierge et al. (2005) propose that the potyviral
RNAs circularized by a VPg–eIF4E–eIF4G–PABP–poly(A) tail or a VPg–PABP–poly(A) tail
interaction.

6. Future prospects
We have barely begun to understand how plant viral translation elements interact with the host
translation machinery. Screens to identify protein/viral translation element interactions and
protein/protein interactions would shed light on cap-independent translation mechanisms. So
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far, eIF4E has been found to bind some 3′ UTR cap-independent translation elements (Gazo
et al., 2004; E. Pettit Kneller and E. Allen, unpublished). The roles of the different isoforms
of eIF4E and eIF4G in viral translation are unknown. One functional difference between the
isoforms is their ability to support translation on a mRNA containing a structured 5′ UTR leader
(eIF4F is more efficient than eIFiso4F) (Gallie and Browning, 2001).

The roles of translation factors recruited by viruses must be elucidated. Translation factors may
perform functions other than translation such as cell-to-cell movement or RNA replication.
Plant viruses modify the connections between cells (plasmodesmata) to move between cells
(Oparka, 2004). Given that eIFiso4G binds microtubules (Bokros et al., 1995), by binding viral
RNAs it could facilitate movement by localizing viral RNA to the ER, which spans the
plasmodesmatal connections. Zucchini yellow mosaic potyvirus RdRP interacts with PABP in
Y2H (Wang et al., 2000); the function of this interaction is unknown.

On the other hand, translation factors are often commandeered by the viral replicase for RNA
replication (Blumenthal and Carmichael, 1979;Quadt et al., 1993). The ability of potyvirus
VPg–Pro to bind eIF4E may recruit translation factors to the replicase complex rather than
facilitate translation. Perhaps the eIF4E mutants that confer recessive resistance (discussed
earlier) prevent assembly of a functional viral replicase.

The phosphorylation status of plant initiation factors affects mRNA cap-binding (Khan and
Goss, 2004), but little is known about the effect of plant virus infection on factor
phosphorylation. TMV, like influenza virus, appears to modulate phosphorylation of
translation initiation factor eIF2α (Bilgin et al., 2003), indicating that similarities between plant
and animal translational control may exist, at least for a capped RNA virus.

Given that many plant viral elements have oligomers that are complementary to 18S rRNA
(Table 1), approaches to understand the biological significance of this complementarity
(Akbergenov et al., 2004) should also be investigated. In summary, we have only begun to
scratch the surface with our understanding of cap-independent translation mechanisms in
plants.
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Fig 1.
Genome organizations of selected plant viruses with cap-independent translation elements.
Bold black bars beneath genomes indicate location of cap-independent translation element.
Gray bars indicate upstream sites with which 3′ elements interact. Double-headed arrows
indicate positions of polyprotein cleavage on TEV and CPMV. Positions of ORFs are indicated
in boxes above the RNA genome. For simplicity, only replication proteins, capsid proteins,
and those proteins mentioned in the text are shown. RdRP: RNA dependent RNA polymerase;
CP: coat protein; LCP: large coat protein; SCP: small coat protein; MP: movement protein.
MP and CP ORFs of tobamoviruses are translated from subgenomic RNAs (not shown) as
discussed in text.
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Fig 2.
Secondary structures of plant viral translation elements. Predicted structures for 5′ and
intergenic elements: PVY 5′ UTR (Yang et al., 1997). Italics in PVY indicate UUUCA, CAA,
and box motifs. TEV 5′ proximal 75 nucleotide IRES domain (Zeenko and Gallie, 2005), which
includes the 45 nt RNA pseudoknot PK1 with complementary sequence to the 18S rRNA in
L3 (underlined), and the upstream Ω-like sequence (italics). CrTMV CP IRES (IRESCP, 148

CR )
(Dorokhov et al., 2002). Functionally tested structures for 3′ elements. Bold (not italic) text
indicates bases known or predicted to base pair to a loop in the 5′ UTR. Bold italics indicate
conserved 17 nt sequence common to all BYDV-like cap-independent translation elements.
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