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Introduction
For many straightforward medical problems any

well trained doctor will make a good decision. Some-
times the correct course of action is unclear, however,
and without help doctors and patients may make poor
decisions because of a failure to consider probabilities
correctly or to recognise the range of patients' values
and weigh these correctly. Wrong decisions are made
as a result of well recognised biases,' and one way of
avoiding these biases and clarifying the problem is
decision analysis.2 I

Decision analysis is a method for breaking complex
problems down into manageable component parts,
analysing these parts in detail, and then combining
them in a logical way to indicate the best course of
action. In North America decision analysis is taught in
most undergraduate medical courses but it is rarely
used in the United Kingdom and was omitted from a
BMJ series on logic in medicine in 1987.4 With more
emphasis than ever before being put on patient choice
in the NHS the time is ripe for a change of heart on
decision analysis and we hope to go some way to
remedy this national neglect in this article.
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Gambling on probabilities
Anyone who has played 21 (vingt et un, pontoon,

blackjack) has wondered when they are dealt, say, a 10
and a seven whether they should stick (remain with
their two cards) or twist (buy another card). At any
particular stage of the game the probability of victory
with a score of 17 is known to the expert. Drawing
another card may improve the odds of success but runs
the risk of total loss by pushing the score over 21. In
some versions of the game twisting may increase the
stake and the potential winnings.
A typical medical problem is similar. Consider a

doctor and a patient who have a choice between
continuing with a current treatment with a known cure
rate or performing a risky procedure which may
improve the cure rate but which carries a risk of
immediate death. The correct course of action depends
on the probabilities (the cure rates and risks of the
operation) and the values placed on the possible
outcomes. In medicine tests may be available to revise
risks, but usually these will also have some cost, if only
to delay the start of definitive treatment. Decisions
are particularly complex when there are multiple
outcomes, all with different values to the patient.

Gamblers perform better if they calculate the
odds and combine them correctly with the possible
winnings. That is why professional poker players beat
amateurs in the long run. Doctors can also improve
their performance by calculating the risks and incorpo-
rating values correctly.

Decision analysis is explicit, quantitative, and pre-
scriptive. It forces decision makers to spell out the way
decisions have been broken into their component parts
and then recombined. Decision makers are compelled
to measure, and put numerical values on, both key

uncertainties and the values of possible outcomes.
Decision analysis aims at telling doctors what to do, not
just describing what they do. There are four basic steps
in a decision analysis.

(1) Identify the decision problem.
(2) Structure the decision problem over time.
(3) Measure the uncertainties (probabilities and

utilities) needed to fill in the structure.
(4) Combine the uncertainties to choose a preferred

course of action.
The following example, based on a full decision

analysis to be published elsewhere,5 introduces the
technique of classical decision analysis.

The problem
A 29 year old nurse, engaged to be married and

planning a family, developed occult cervical cancer.
The diagnosis was confirmed by a cone biopsy, which
showed a moderately differentiated squamous cancer,
invading 2 mm below the basement membrane and
with lymphatic spread. The primary tumour was
completely excised and the pathologist reported a wide
margin of normal tissue around the tumour. What
treatment should she choose?
We began by defining the problem. The treatment

options lay between no further treatment and extended
hysterectomy with lymphadenectomy. We ruled out
simple hysterectomy since this could not remove
tumour metastases, was unlikely to improve survival,
and would automatically render her infertile. The pos-
sible outcomes considered were survival with fertility
retained, immediate death from surgical complications,
delayed death from cancer, and survival but with
infertility.
The next stage was to structure the problem using a

decision tree (fig 1). This is a flow diagram in which
decisions and outcomes are represented in order with
early events to the left and later events to the right.
Decision points are represented by square nodes and
points where outcomes occur by chance by round
nodes. In figure 1 the left hand decision node repre-

Death from
cancer

No further surgery Fertile
survival

Surgical
Dies death

Radical
hysterectmy

No spread Infertile
Survives\ survival

Infertile
Spread survival

Death from
cancer

FIG 1-Basic decision tree for microinvasive cancer of the cervix
without probabilities and utilities
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sents the choice between no further surgery and radical
hysterectomy. The upper circle is a chance node
representing the chance that the patient may die of
cancer or survive in full health having retained her
fertility ifno surgery is performed. The other nodes are
self explanatory. The order of events in this decision
tree needs to be chosen with care. The chance outcome
of "spread" or "no spread" obviously occurs biologic-
ally before operation but will become known only after
the operation, when the excised specimen has been
examined. It is therefore placed after the operation.
Our third step was to fill in the probabilities and

utilities of each outcome. There was no meta-analysis
of randomised trials, or even a single randomised trial,
to provide these, so we had to base our estimates on
observational studies just as we would have had to do if
we were not using decision analysis. After a literature
review we estimated surgical mortality as 5/1000, the
likelihood of disease spread beyond the area of the cone
biopsy as 2%, and the chance of cure by surgery if it
had done so as 50%.5 In figure 2 the probability of each
outcome (estimated from the literature) is represented
in brackets beside each outcome as a number between 0
(will never occur) and 1 (certain to occur). All possible
outcomes are included so that the probabilities at each
chance node always add up to 1.

No further surgery

Radical
hysterectomy

FIG 2-Decision tree for microinvasive
probabilities added
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FIG 3-(Top) First lottery to
measure the utility ofinfertility.
(Bottom) Point at which the
patient was unable to decide
whether to risk death to avoid
infertility (the level of
indifference). This defines the
utility ofinfertility as 0 95 on a

scale where immediate death is
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cancer of the cervix with

This information enabled us to calculate the treat-
ment with the lowest expected mortality. For our
patient this was 0-02 with no further treatment and
0-015 (0-005+(0-02X0 5)) with radical hysterectomy.
This does not, however, mean that radical hysterec-
tomy is the best treatment because we have not
considered all relevant factors-for example, the
patient's preference for delayed death from cancer
versus immediate death from surgery, the desire to
avoid the morbidity of surgery, and above all the desire
to conserve fertility. We need to measure the utilities of
the outcomes in a way that will allow us to see what
chance of one favoured outcome our patient will
relinquish to obtain another favoured outcome. When
we have such a measure we can combine these utilities
with the probabilities in a logical fashion to calculate
the treatment with the highest expected utility.

Measurement of utilities
The best method for measuring people's utilities is

the basic reference lottery where the relative utilities of
three health states are worked out together.67 Our
patient needed to define the utility of four health states
so two lotteries were needed. She ranked the health
states as follows: the best was fertile life (with a utility
of 1), the worst immediate death (with a utility of 0),
with infertile life and delayed death rated intermediate.
She did not find it difficult to rank infertile life as

0 10 20 30 40 50

Life expectancy (years)
Winnings (£)

FIG 4-Hypothetical utility curves for life expectancy and money. The
horizontal scale represents either life expectancy or money. If it
represents life expectancy the dotted line at 450 represents the utilities of
a person whose scale of values is linear: 25 years has exactly half the
utility of50 years. This is an unusual attitude. More often people are
risk averse for life expectancy and the upper curve better reflects their
values: here 15 years have half the utility of50 years. Such a person
would be indifferent between a certain 15 years' life and a 50/50 lottery
between immediate death and 50years of life. If the horizontal axis is
taken to indicate money the lower curve represents the utilities ofa risk
seeking gambler

preferable to delayed death, but she also needed to
know exactly where to place the intermediate states on
her utility scale.

She first calculated the utility of infertile life by
choosing between that and various gambles between
fertile life and immediate death until she reached a
level of indifference. It worked as follows. She was
asked to imagine two doors, through one of which she
had to go. Behind the left hand door there was no risk
of death but she would be rendered infertile. Behind
the right hand door she would encounter a 50% chance
of fertile survival but also a 50% risk of death (fig 3).
She chose the left hand door. The risks of death
through the right hand door were decreased until a
point was reached where she could not decide which
door to select. This occurred when the risk of death
through the right hand door was 5% and of fertile
survival 95% (fig 3). This was the level of indifference.
Our patient therefore valued survival with infertility as
0 95 on a scale where full health was valued 1 and
immediate death valued 0. She performed a second
similar lottery between delayed death from cancer and
various chances of full health or immediate death and
derived a utility for delayed death of 0-05.

There are alternative methods of measuring values,
such as asking patients to mark health states on a linear
scale, but, unlike the reference gamble, this method is
not axiomatically correct. People avoid the extremes of
the scale, and because they may not perceive the trade
offinherent in the technique the values obtained in this
way may be distorted. A better alternative makes use of
natural underlying scales such as money or years of life.
Unfortunately people's utilities for money and years of
life are rarely linear. People are usually risk seeking or
risk averse. For example, the gambler in our earlier
example is likely to be risk seeking. A utility curve for
such a gambler is shown in figure 4, where £50 has
twice the utility of £35. People taking out insurance
policies are by definition risk averse and will have
utility curves of the shape of the upper left hand curve
in fig 4.

Years of life expectancy is another frequently used
underlying scale, but people tend to value the years
immediately ahead more highly than those far in the
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future. This is another example of risk aversion, and
utility scales must reflect this. The upper left hand
curve in fig 4 represents such a curve when the
horizontal scale is converted to years of life expectancy.
The non-linearity of monetary and life expectancy

scales makes it impossible to use them without adjust-
ment to calculate expected utilities in decision analysis.
Either basic reference lotteries must be performed to
measure the relevant utilities directly or utility curves
for the relevant patient or population of patients must
be derived from monetary or life expectancy lotteries.

Adding utilities to the decision analysis
Having measured the utilities we need to combine

them with the probabilities to select a preferred course
of action-that is, that with the greatest expected
utility. We start by estimating the utility of each
chance node, which is calculated as the weighted
average of the utilities of its possible outcomes, where
the weights are the probabilities of each outcome. The
utility of the upper chance node in figure 5 is thus
(002x0 05)+(0O98x1 0)=0981. Where there is a
sequence of chance nodes in the tree we use the
weighted utility of the distal chance node in calculating
the expected utility of the proximal node. The utility of
a decision node is the maximum of the utilities of its
component branches since a rational decision maker
should choose this strategy. It is clear that the expected
utility of no further surgery (O 98 1) is greater than that
of radical hysterectomy (0936), and this is the option
our patient should choose.
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FIG 5-Decision tree for microinvasive cancer of the cervix with
outcome utilities added and the expected utilities for each branch
(dotted lozenges) and for each chance node (solid lozenges) calculated

The difference in expected utility between the
different courses of action may not appear very great,
but on this scale the difference 0 045 represents 4 5%
of the value of the patient's entire life in full health.
Moreover, if the axioms of expected utility theory are

accepted by our patient (most people do agree that this
is how they wish to make decisions), and if the
probability and value estimates are the best possible,
then it would be perverse to choose the course of lower
utility, however small the difference.

Sensitivity analyses
The final part of a full decision analysis should

include a sensitivity analysis, because conclusions
depend on the probabilities and utilities used, and in
real life we are rarely, if ever, certain what these are. In
a sensitivity analysis each of the key probabilities and
values is varied in turn within the range of reasonable
uncertainty to test the robustness of the conclusion.
Figure 6 shows a one way sensitivity analysis to show
the effect of varying the utility of infertility. Each
straight line on the graph represents the expected

utility of the relevant strategy at a range of levels
of infertility utility. The strategy lines intersect at an
infertility utility of 0-995; therefore above this value
radical surgery is the preferred option while below it no
further surgery is preferred. The point at which
strategy lines intersect is called a decision threshold.
This threshold will itself vary if other variables such as
operative mortality and recurrence risk are changed.
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0 84-

No surgery

Surgery

09 092 094 096 098 1.0

Utility of infertility
FIG 6-A one way sensitivity analysis of the microinvasive cancer of
the cervix decision to siow the effect ofvarying the utilit of infertility

The effect of changing more than one variable can be
shown in a threshold analysis (fig 7). Here the decision
threshold is plotted against the risk of recurrence and
utility of infertility for three different operative death
rates. For each patient the utility of infertility and
probability of disease spread is plotted. If this point
falls below and to the left of the relevant threshold line
she should not undergo surgery and if above and to the
right she should. The effect of varying utilities and
probabilities can be seen at a glance. Decision trees and
sensitivity and threshold analyses can easily become
complicated and so computerised aids are widely used
by serious practitioners.'
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0 92-
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Operate

Do not operate

Operative
mortality
0*05

0'01
0*005

0 0 05 0.1 0 15 0 2 0 25

Probability of disease spread
FIG 7-A threshold analysis of the microinvasive cancer of the cervix
decision to show the effect of varving the utility of infertility, the
probability ofspread, and operative mortality simultaneozusly

In this example our conclusions were very sensitive
to the value placed on retaining fertility. Doctors
should therefore take great care to explore this parti-
cular issue with a patient. The example was inspired by
a debate about the histological diagnosis of so called
"microinvasive cancer." The analysis shows how treat-
ment can be tailored to individual patients according to
a range of histological and other criteria and that any
attempt to treat patients according to fixed cut off
criteria for histological diagnosis is doomed to failure.
Decision analysis is seldom used in its full rigour for
the treatment of individual patients. More often it
helps to structure debate, and it has been used to shed
light on some important medical controversies. Some
examples are listed in the box. Decision analysis
has also been used for some novel purposes, such as

the design of randomised controlled trials,22 23 and
the lottery method has been used to clarify ethical
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problems."4 It is closely allied to cost-utility studies
used for resource allocation decisions.

Why prefer decision analysis to global decision
making?
The extreme alternative to formal decision analysis

is for doctors and patients to decide by intuition and to
make a single global analysis of the whole problem.
People deciding this way often make suboptimal
decisions. These may result from inadequate data, and
decision analysis cannot help here except to indicate
the need for careful review of the evidence.

Ideally each probability estimate used in making a
decision should be derived from published data; in the
case of occult cervical tumours we found many relevant
articles. Ideally the results from large randomised
controlled studies should be used and they should be
combined using formal techniques such as meta-
analysis.22 Often such studies are unavailable, and even
when they are judgment is required to extrapolate
results from one time and place to another. Semi-
objective probability estimates often have to be used in
which probabilities obtained from published data are
modified according to local circumstances or changes
in practice. For example, we adjusted the published
estimate of operative mortality for occult cervical
cancer downwards to take account of improvements in
surgical technique, anaesthetics, and intensive care
since the studies were undertaken. One of the most
common and least justified criticisms of decision
analysis is that the need to make such revisions of
probability estimates invalidates the technique. These
adjustments invalidate decision analysis no more than
they do conventional intuitive decision making. The
latter is also based on probabilities, which are no more
accurate for not being made explicit. Indeed, the
process of making probabilities explicit is a reason to
use rather than abandon decision analysis, since this
exercise exposes the source of disagreement about
treatment policy. Because it is transparent, decision
analysis encourages a comprehensive review of
published data.

Probabilities also need to be adjusted for individual
patients in the light of specific test results; the
probability of an event is often based not on one but on
many items of information. The usual technique for
working out the probability of an event, by combining
prior probability (prevalence) and the result of all these
tests, is Bayes's theorem. The archetypal example of
the use of Bayes's theorem in clinical medicine is in the
diagnosis of abdominal pain described by de Dombal
in 1972. ' There is evidence that this method improves
clinical care by reducing delay in the surgical treatment
of gangrenous organs while at the same time reducing
the number of negative laparotomies.26 The prob-
abilities of different diagnoses produced in this way are
eminently suitable for including in decision trees and
hence for decision analysis.

In the absence of data from meta-analysis of good
trials and correct Bayesian revision of risks humans use
a number of heuristics (systems of reasoning) to
estimate subjective probabilities. These often lead to
predictable and well recognised biases.' For example,
we often estimate the frequency of an event from its
ease of recall. Vivid and recent events are overesti-
mated as a result. A surgeon who has just had a death
from treatment complications and a patient whose
friend died postoperatively will both overestimate
treatment risks. Another heuristic is to use the degree
of similarity of a pattern of observations to an event to
estimate the likelihood of that event. For example, if an
unknown fruit looks like an apple it probably is an
apple, but if the fruit comes from a country where
apples do not grow-that is, the prior odds of it being

an apple are low-the "representativeness" heuristic
will lead to an overestimate. Finally the "anchoring"
heuristic describes the way in which people typically
make a prior estimate of an event occurring. When
further information becomes available they adjust this
prior risk upwards or downwards. Biases occur if the
prior estimate was wrong and because adjustments in
the light of new information are typically insufficient
and often not made at all. For example, doctors may
simply ignore test results that do not fit in with their
preconceived ideas.

Finally, decision analysis provides a method to
put large amounts of information together. Intuitive
decision makers may claim that they are incorporating
more complex patient preferences of intermediate out-
comes in the decision, but analysis of how they actually
make decisions reveals that they also make major
simplifying assumptions.27 Many of these simplifica-
tions are made necessary simply by the limitations of
human short term mental capacity. It is impossible to
keep more than a few facets of a decision in the
forefront of the mind at any one moment. Decision
analysis aids the overworked brain by separating the
components of a decision so that they can be analysed
separately.

Nevertheless, doctors often still resist decision
analysis. They may feel that it is unnecessary for the
many well defined everyday decisions where either the
consequences of a wrong diagnosis are unimportant or
the correct course of action is clear to everyone. This is
no argument for not using it for the less common
difficult decisions. It is not popular with those doctors
who deal with poorly defined conditions-irritable
bowel syndrome or premenstrual tension, for example.
There are no objective methods to confirm or refute
such "I say so" diagnoses, and the outcomes are
generally good whatever is done. For this reason
decision analysis is percieved as having little to add.
Since it emphasises the way that values and prob-
abilities underlie decisions it is threatening to those
who like to work with certainties. Finally, many
clinicians feel that utility functions are unnecessarily
precise. Is infertility really 0 95 of full health? These
problems have not all been resolved and undoubtedly
explain why decision analysis has not been more widely
used.2x

Conclusion
The language and methods of decision analysis and

more specifically of expected utility theory can change
how we think. The discovery that there is a specific
mathematical function (expected utility) which
measures the benefits of a course of action is a
revelation to many when they first come across it. We
hope that this article inspires some practitioners.
Decision analysis has been widely used in business for
years and has entered the mainstream ofmedical think-
ing in North America and more recently Australia and
New Zealand. It is incorporated in the medical curri-
culum in centres as far apart as Hamilton, Ontario, and
Dunedin in the South Island of New Zealand. We
believe that doctors in Europe may love it or hate it but
cannot ignore it.
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That the expression of human genes must be a highly
regulated process should be clear to anyone who has
ever dissected a human body. The vast range of
different tissues and organs differ dramatically from
each other and they all synthesise different proteins-
haemoglobin in red blood cells, myosin in muscle,
albumin in the liver, and so on. Moreover, with few
exceptions all these different cell types contain the
same sequence of DNA, which encodes all these
different cell proteins, and this DNA is also identical
to the DNA in the single celled zygote, from which
all these different cells arise during embryonic
development. Clearly, therefore, some process of gene
regulation must operate to decide which genes within
the DNA will be active in producing proteins in each
cell type.

Levels of gene regulation
A number of stages exist between the DNA itselfand

the production of a particular protein (fig 1).' Thus the
DNA must first be transcribed into a primary RNA
transcript, which is subsequently modified at both
ends by the addition of a 5' cap and a 3' tail of
adenosine residues. Moreover, within this primary
transcript, the RNA sequences which actually encode
the protein are not present as one continuous block.
Rather they are broken up into segments (exons) which
are separated by intervening sequences (introns) that
do not contain any protein coding information. As
these introns interrupt the protein coding region and
would prevent the production of an intact protein they
must be removed by the process of RNA splicing2
before the mature messenger RNA can be transported
from the nucleus to the cytoplasm and translated into
protein.

Clearly each of these stages is a potential point at
which gene expression could be regulated, and there is
evidence that several of them are actually used. Thus,
for example, the production of many new proteins in
the egg immediately after fertilisation and the start of
embryonic development depends on the translation
into protein of fully spliced, messenger RNAs that pre-
existed in the cytoplasm of the unfertilised egg but

whose translation was blocked before fertilisation.
This form of gene regulation is known as translational
control. Similarly, by splicing the protein coding
regions (exons) of a single primary transcript in
different combinations two or more different mRNAs
encoding different proteins in different tissues can be
produced. This process of alternative splicing3 is well
illustrated in the single gene that encodes both the
calcium modulating hormone, calcitonin, and the
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FIG 1-Stages in gene expression which could be regulated
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