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Aims

 

Approximately 80% of uracil is excreted as 

 

b

 

-alanine, ammonia and CO

 

2

 

 via three
sequential reactions. The activity of the first enzyme in this scheme, dihydropyrimidine
dehydrogenase (DPD), is reported to be the key determinant of the cytotoxicity and
side-effects of 5-fluorouracil. The aim of the present study was to re-evaluate the
pharmacokinetics of uracil and its metabolites using a sensitive assay and based on
a newly developed, physiologically based pharmacokinetic (PBPK) model.

 

Methods

 

[2–

 

13

 

C]Uracil was orally administrated to 12 healthy males at escalating doses of 50,
100 and 200 mg, and the concentrations of [2–

 

13

 

C]uracil, [2–

 

13

 

C]5,6-dihydrouracil
and 

 

b

 

-ureidopropionic acid (ureido-

 

13

 

C) in plasma and urine and 

 

13

 

CO

 

2

 

 in breath were
measured by liquid chromatography–tandem mass spectrometry and gas chromato-
graph–isotope ratio mass spectrometry, respectively.

 

Results

 

The pharmacokinetics of [2–

 

13

 

C]uracil were nonlinear. The elimination half-life of [2–

 

13

 

C]5,6-dihydrouracil was 0.9–1.4 h, whereas that of [2–

 

13

 

C]uracil was 0.2–0.3 h. The
AUC of [2–

 

13

 

C]5,6-dihydrouracil was 1.9–3.1 times greater than that of [2–

 

13

 

C]uracil,
whereas that of ureido-

 

13

 

C was 0.13–0.23 times smaller. The pharamacokinetics of

 

13

 

CO

 

2

 

 in expired air were linear and the recovery of 

 

13

 

CO

 

2

 

 was approximately 80%
of the dose. The renal clearance of [2–

 

13

 

C]uracil was negligible.

 

Conclusion

 

A PBPK model to describe 

 

13

 

CO

 

2

 

 exhalation after orally administered [2–

 

13

 

C]uracil
was successfully developed. Using [2–

 

13

 

C]uracil as a probe, this model could be useful
in identifying DPD-deficient patients at risk of 5-fuorouracil toxicity.

 

Introduction

 

Pyrimidine and purine, which are present endogenously
in nucleic acids, nucleotides and their derivatives, dis-
play a wide range of physiological functions. Since the

catabolism and anabolism of pyrimidines are inextrica-
bly linked, their biological fate is complex. Uracil, a
pyrimidine base, is metabolized to 

 

b

 

-alanine, ammonia
and CO

 

2

 

 via three sequential reactions [1, 2] (Figure 1).
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Uracil is first reduced to dihydrouracil by dihydropyri-
midine dehydrogenase  (DPD),  then  hydrolysed  to

 

b

 

-ureidopropionic acid by dihydropyrimidinase
(DHPase), and finally decarbamoylated to 

 

b

 

-alanine by

 

b

 

-ureidopropionase (UP). Of these enzymes, DPD is
considered to represent the rate-limiting step [3, 4].

5-Fluorouracil (5-FU) is an anticancer agent in which
the hydrogen atom at the C-5 position of uracil is sub-
stituted by fluorine (Figure 1). Since the structure of
5-FU is analogous to that of uracil, it is biotransformed
to putative, biologically active metabolites, 5-fluoro-2

 

¢

 

-
deoxyuridine-5

 

¢

 

-monophosphate or 5-fluorouridine-5

 

¢

 

-
triphosphate, by the same anabolic pathway as that of
uracil [5, 6]. 5-FU is metabolized by conversion to bio-
logically inactive metabolites by the same enzymes that
metabolize uracil [7–10]. When 5-FU is given to
patients with genetic DPD deficiency or those taking
drugs which inhibit DPD activity, blood concentrations
of the drug are markedly elevated, resulting in serious
adverse effects [11–14]. The use of diagnostic methods
to detect pyrimidine metabolic disorders [15–17] at the
start of chemotherapeutic treatment would prevent the
development of adverse effects with 5-FU and its
prodrugs.

We previously developed a diagnostic product
(UBIT

 

®

 

) for 

 

Helicobacter pylori

 

 infection which mea-
sures 

 

in vivo

 

 urease activity using expired 

 

13

 

CO

 

2

 

 after
oral administration of 

 

13

 

C-urea [18–20]. Extending this
work, we have developed a new method for diagnosing
pyrimidine metabolic disorders using [2–

 

13

 

C]uracil (

 

13

 

C-
uracil), prepared by labelling the C-2 position of uracil
with 

 

13

 

C, a stable isotope of 

 

12

 

C (Figure 1). We have
already applied this method to dogs [21] to show that
expired 

 

13

 

CO

 

2

 

 is a good marker of hepatic DPD activity
in the enzyme-deficient model. To gain further under-
standing of pyrimidine catabolism, the pharmaco-
kinetics of 

 

13

 

C-uracil was studied following oral

administration under fasting conditions to healthy sub-
jects at escalating doses.

 

Methods

 

Subjects

 

The study protocol was approved by the Ethics Com-
mittee of Juntendo University Hospital, and written
informed consent was obtained from each participant
before enrolment. The subjects were 12 healthy Japa-
nese males (21–57 years old; 56–90 kg) with normal
pyrimidine metabolism as determined by measurement
[22] of endogenous pyrimidine and dihydropirimidine
in urine. Good general health was confirmed by 12-lead
electrocardiogram, medical history and physical exam-
ination. The study was designed to evaluate the pharma-
cokinetic profile of 

 

13

 

C-uracil and its metabolites after
single oral administration of 

 

13

 

C-uracil using an open
label, single-centre, dose escalation design. The subjects
were given 

 

13

 

C-uracil on three occasions at escalating
doses of 50, 100 and 200 mg under fasted conditions.
The subjects were given 

 

13

 

C-uracil as granules with
100 ml of water at approximately 09.00 h. Food was not
permitted from 21.00 h on the evening before dosing to
4 h after dosing. Subjects were in a sitting position for
2 h postdose. The order of dosing was 50, 100 and
200 mg and the wash-out period was set at 

 

≥

 

5 days.
Blood was taken immediately before and at 10, 20, 30,
40, 50, 60 and 90 min and 2, 4, 6, 8 and 12 h after
dosing. Urine samples were collected before and at the
periods of 0–2, 2–4, 4–8 and 8–12 h after dosing. Breath
samples were collected in a bag (volume 300 ml) before
and at 10, 20, 30, 40, 50, 60, 80 and 100 min and 2, 3,
4, 6, 8 and 12 h after dosing.

 

Chemicals

 

[2-

 

13

 

C]Uracil, [2-

 

13

 

C]5,6-dihydrouracil, 

 

b

 

-ureidopropi-
onic acid (ureido-

 

13

 

C), uracil (

 

13

 

C

 

4

 

, 

 

15

 

N

 

2

 

), 5,6-dihydrou-

 

Figure 1

 

The metabolism of uracil and 5-fluorouracil in humans
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racil (

 

13

 

C

 

4

 

, 

 

15

 

N

 

2

 

) and 

 

b

 

-ureidopropionic acid (

 

13

 

C

 

4

 

, 

 

15

 

N

 

2

 

)
were purchased from Cambridge Isotope Laboratories,
Inc. (Andover, MA, USA). All other solvents and
reagents were of the highest grade available.

 

Determination of 

 

13

 

C-uracil, 

 

13

 

C-DHU and 

 

13

 

C-UPA in 
plasma and urine by LC-MS/MS

 

Plasma concentrations of 

 

13

 

C-uracil and its metabolites
(

 

13

 

C-DHU and 

 

13

 

C-UPA) were measured by LC-MS/MS
(TSQ7000; Thermo Finnigan, San Jose, CA, USA). Iso-
tope-labelled uracil (

 

13

 

C

 

4

 

, 

 

15

 

N

 

2

 

), 5,6-dihydrouracil (

 

13

 

C

 

4

 

,

 

15

 

N

 

2

 

) and 

 

b-ureidopropionic acid (13C4, 15N2) were used
as internal standards. 13C-Uracil and 13C-DHU were
extracted from 0.5 ml of plasma using 4 ml of acetoni-
trile after the addition of 0.5 ml of a saturated aqueous
ammonium sulphate solution. Samples were then cen-
trifuged at 2200 g for 10 min. The organic layer was
evaporated to dryness, the residue reconstituted in
200 ml of purified water, and a 50-ml aliquot was injected
into LC-MS/MS. A Develosil RPAQUEAUS column
(5 mm, 2.0 mm i.d. ¥150 mm; Nomura Chemical Co.,
Ltd, Seto, Japan) and a mobile phase of water were used
to separate the analytes. 13C-UPA was extracted from
0.2 ml of plasma by solid-phase extraction on silica after
deproteinization. After evaporation of the eluate to dry-
ness, the residue was reconstituted in 200 ml of purified
water. This solution (30 ml) was injected onto the LC-
MS/MS fitted with two columns in series, a Develosil
RPAQUEAUS (5 mm, 2.0 mm i.d. ¥150 mm) and a
Capcell pak SCX UG80 (5 mm, 2.0 mm i.d. ¥50 mm;
Shiseido Co., Ltd, Tokyo, Japan). The mobile phase was
an aqueous solution of 10 mM ammonium formate
(pH 3.5). Protonated molecular ions [M+1]+ of the ana-
lytes including the internal standard, formed by atmo-
spheric pressure chemical ionization, were fragmented,
and the selected product ions were monitored (selected
reaction monitoring). The calibration curves were linear
over the ranges 5–250 ng ml-1 for 13C-uracil and 13C-
DHU and 50–2000 ng ml-1 for 13C-UPA. The percent
recoveries of isotope-labelled uracil (13C4, 15N2), 5,6-
dihydrouracil (13C4, 15N2) and b-ureidopropionic acid
(13C4, 15N2) from human plasma were 83–105%, 56–
74% and 23–24%, respectively. The limit of quantifica-
tion (LOQ), defined as the lowest concentration with a
coefficient of variation (CV) of <20% and accuracy
within ±20%, was 5 ng ml-1 for 13C-uracil and 13C-DHU
and 50 ng ml-1 for 13C-UPA. Precision, estimated as CV,
was <15% and accuracy was within ±15% for the ana-
lytes at all concentrations except the LOQ.

Urinary concentrations of each compound were mea-
sured using LC-MS/MS. 13C-Uracil and 13C-DHU were
extracted from 0.2 ml of urine using 5 ml of ethyl ace-

tate after the addition of 0.1 ml of a saturated aqueous
ammonium sulphate solution. The samples were then
centrifuged at 1800 g for 10 min. After the organic layer
was evaporated to dryness, the residue was reconstituted
in 200 ml of purified water and 30 ml of the solution was
injected onto the LC-MS/MS. 13C-UPA was extracted
from 0.1 ml of the urine by solid-phase extraction on
silica after deproteinization. After evaporation of the
solid-phase extraction eluate to dryness, the residue was
reconstituted in 200 ml of purified water and 30 ml was
injected onto the LC-MS/MS. The chromatographic
conditions were similar to those for the plasma samples.
The calibration curves for these analytes were linear
over the range of 0.1–5 mg ml-1, and the LOQ was
0.1 mg ml-1. The percent recoveries of isotope-labelled
uracil (13C4, 15N2), 5,6-dihydrouracil (13C4, 15N2) and b-
ureidopropionic acid (13C4, 15N2) from human urine were
57–64%, 63–74% and 20–30%, respectively. Precision
was <15% and accuracy was within ±15% at all con-
centrations except the LOQ.

Analysis of 13CO2 in expired air by gas chromatography 
isotope ratio mass spectrometry (IRMS)
13CO2 concentrations in expired air were determined
using a gas chromatograph-IRMS (model ABCA-G;
PDZ-Europa Ltd, Cheshire, UK). 13CO2/12CO2 ratios
were expressed as d13C value (permil, ‰) relative to the
Pee Dee Belemnite Limestone standard, and changes in
the d13C value as D13C (‰) were compared with the
baseline using the following equations:

d13C (‰) = [(13CO2/12CO2)sample - (13CO2/12CO2)PDB]/
(13CO2/12CO2)PDB ¥ 1000

D13Ct (‰) = d13Ct - d13C0

where D13Ct (‰) is the difference between respiratory
d13Ct measured at time t and baseline d13C0 following
the administration of 13C-uracil.

Pharmacokinetic analysis
Pharmacokinetic parameters for 13C-uracil and its
metabolites were calculated using noncompartmental
pharmacokinetic analysis (WinNonlin Standard version
3.1; Pharsight Co., Mountain View, CA, USA). Maxi-
mum plasma concentration (Cmax), time to Cmax (tmax) and
the area under the plasma concentration vs. time curve
up to 12 h after administration (AUC12 h) were deter-
mined. The apparent terminal-phase slope (lz) was esti-
mated by linear regression of the semilogarithmic curve
of plasma concentration vs. time. The terminal elimina-
tion half-life (t1/2) was calculated as 0.693/lz. AUC• was
calculated by dividing the last measured concentration
(Clast) by lz. The apparent total clearance (CL/F) is dose/
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AUC•, and the apparent volume of distribution (Vd/F) is
CL/F/lz. The cumulative amount excreted into the urine
for 12 h (Ae) was used to estimate the renal clearance
(CLR) from the expression Ae/AUC12 h. The total amount
of 13CO2 recovered in the breath (m) was calculated from
13CO2 excretion curves based on the method of Ghoos
et al. [23], in which CO2 production was assumed to be
300 mmol m-2 h-1.

Statistical analysis
The relationships between the dose and the pharmaco-
kinetic parameters (Cmax, AUCt, and AUC•) were analy-
sed by using a predictive power model based on the
equation

Parameter  =  A·(Dose)b

Statistical analysis was performed with SAS software,
version 8.2 (SAS Institute Japan, Tokyo, Japan).

Model development
A physiologically based pharmacokinetic (PBPK)
model model (Figure 2) was constructed to describe the
time course of plasma concentrations of 13C-uracil and
its metabolites, and 13CO2 in expired air. This model
incorporates Michaelis–Menten catabolic and first-order
degradation processes. The differential equations for the
PBPK model were as follows:

For 13C-uracil

Vp·(dCp/dt) = QH·Ch/Kp - QH·Cp - Cp·CLR (1)

Vh·(dCh/dt) = ka·Fa·Dose·e-kat - fp·Ch·CLint/Kp

- QH·Ch/Kp + QH·Cp (2)

CLint = Vmax/(Km + fp·Ch/Kp) (3)

For 13C-DHU

VdDHU·(dCDHU/dt) = fp·Ch/Kp·CLint - CDHU·VdDHU·keDHU

(4)
For 13C-UPA

VdUPA·(dCUPA/dt) = CDHU·VdDHU·keDHU - CUPA·VdUPA·keUPA

(5)

For 13CO2

dXH
13

CO3
-/dt = CUPA·VdUPA·keUPA - ke·XH

13
CO3

- (6)

D13C(‰) = P1 + P2·XH
13

CO3
- (7)

where Vh is the volume of the liver; Vp is the volume of
distribution in rapidly equilibrating tissues, including
the systemic plasma compartment of 13C-uracil; VdDHU

and VdUPA are the pseudo-distribution volumes of 13C-
DHU and 13C-UPA, respectively; Ch is the concentration
of 13C-uracil in liver; Cp, CDHU and CUPA are the plasma
concentrations of 13C-uracil, 13C-DHU and 13C-UPA,

respectively; QH is the hepatic blood flow rate; Kp is the
liver-to-blood concentration ratio of 13C-uracil; CLR is
the renal clearance of 13C-uracil; CLint is intrinsic meta-
bolic clearance; Vmax and Km are the maximum rate of
13C-uracil metabolism and the Michaelis–Menten con-
stant, respectively; fp is the unbound fraction of 13C-
uracil in plasma; keDHU and keUPA are the degradation rate
constants of 13C-DHU and 13C-UPA, respectively;
XH

13
CO3- is the amount of H13CO3

–; ke is the excretion
rate constant of 13CO2; and P1 and P2 are constants.

These equations are based on the following
assumptions:

1 The gastrointestinal absorption of 13C-uracil follows
a first-order process.

2 13C-Uracil is eliminated by the liver and kidney, and
is converted sequentially in the liver to 13C-DHU,
13C-UPA and H13CO3

–.
3 13C-uracil is eliminated via a single irreversible and

saturable Michaelis–Menten process.
4 The elimination of the metabolites of 13C-uracil fol-

lows first-order irreversible kinetics.
5 The elimination of 13C-DHU, 13C-UPA and H13CO3

–

is described by a single-compartment model.

Figure 2
A physiologically based pharmacokinetic model describing the 

concentration–time profiles for 13C-uracil, its metabolites and 13CO2 in 

expired air
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This assumption can be justified from the following
findings: (i) a single-compartment model describes the
pharmacokinetics of 13CO2-H13CO3

– after co-administra-
tion of sodium bicarbonate [24]; (ii) the kinetics of
13CO2 after administration of 13C-compounds are best
described by a one-compartment model [25–27].

Equation 7 holds true because D13C (‰) is propor-
tional to  the  amount  of  H13CO3

–  in  the  body [28].
The physiological data used, namely Vh = 1070 ml,
QH = 1190 ml min-1 and haematocrit value = 0.55, were
obtained from the literature. Kp, fp and Fa were set at 1.0
according to our preliminary experiments (data not
shown), and CLR at 120 ml min-1 on the basis of our
urinary excretion analysis.

The pharmacokinetic software SAAM II (SAAM
Institute Inc., Seattle, WA, USA) was used for nonlinear
least squares analysis to fit the parameters Vp, ke, Km and
Vmax to the set of plasma concentrations of 13C-uracil for

dose-escalation experiments using equations 1, 2 and 3.
Using these fixed parameters, the parameters VdDHU,
VdUPA, keDHU, keUPA, ke, P1 and P2 were subsequently esti-
mated by SAAM II using equations 4–7.

Results
Pharmacokinetics
Tables 1, 2 and 3 show the pharmacokinetic parameters
for 13C-uracil, 13C-DHU and 13C-UPA in the plasma,
respectively, and Tables 4 and 5 the urinary excretion
and expiratory 13CO2 excretion data. Figure 3 shows the
concentration vs. time curves for 13C-uracil and its
metabolites, and the D13C in the expired air vs. time
curve.

13C-Uracil was absorbed rapidly after oral dosing to
attain Cmax within 0.54 h, and then declined rapidly in
plasma, with a short half-life of less than 0.32 h. The
major metabolite of 13C-uracil in plasma at all doses was

Table 1
Pharmacokinetic parameters for 13C-uracil in plasma

Dose
Cmax

(mg ml-1)
AUC12 h 
(mg h ml-1)

AUCµ
(mg h ml-1)

tmax

(h)

lz

(1 h-1)
t1/2

(h)
CL/F
(l h-1)

Vd/F
(l)

50 mg 0.127 0.047 0.053 0.36 3.66 0.26 1082 466
±0.083 ±0.022 ±0.021 ±0.10 ±1.71 ±0.22 ±410 ±500

100 mg 0.534 0.165 0.170 0.39 5.25 0.21 772 296
±0.430 ±0.109 ±0.107 ±0.18 ±2.92 ±0.19 ±368 ±423

200 mg 1.205 0.545 0.567 0.54 2.91 0.32 464 296
±0.899 ±0.325 ±0.312 ±0.25 ±1.19 ±0.26 ±265 ±480

Values: mean ± SD (n = 12).

Table 2
Pharmacokinetic parameters for 13C-DHU in plasma

Dose
Cmax

(mg ml-1)

AUC12 h

(mg h ml-1)
tmax

(h)

lz

(1 h-1)
t1/2   
(h)

50 mg 0.102 0.144 0.49 0.68 1.10
±0.050 ±0.048 ±0.15 ±0.18 ±0.34

100 mg 0.251 0.378 0.56 0.78 0.91
±0.094 ±0.135 ±0.18 ±0.11 ±0.14

200 mg 0.551 1.054 0.93 0.60 1.37
±0.255 ±0.449 ±0.50 ±0.19 ±0.74

Values: mean ± SD (n = 12).

Table 3
Pharmacokinetic parameters for 13C-UPA in plasma

Dose
Cmax

(mg ml-1)
AUC12 h 
(mg h ml-1)

tmax

(h)

lz

(1 h-1)
t1/2 
(h)

50 mg 0.023 0.006 0.46 – –
±0.035 ±0.014 ±0.16 – –

100 mg 0.076 0.034 0.50 1.17 0.87
±0.040 ±0.042 ±0.19 ±0.88 ±0.61

200 mg 0.149 0.126 0.82 1.12 1.05
±0.081 ±0.105 ±0.45 ±0.67 ±1.05

–, Not calculated. Values: mean ± SD (n = 12).
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13C-DHU, with the relative ratios of the AUC12 h of 13C-
DHU to 13C-uracil at 50, 100 and 200 mg being 3.1, 2.3
and 1.9, respectively. 13C-UPA was a minor metabolite,
and the relative ratios of the AUC12 h of 13C-UPA to 13C-
uracil  at  50,  100  and  200 mg  were  0.13,  0.21  and
0.23, respectively. Plasma concentrations of 13C-DHU
were higher than those of 13C-uracil from 50 min after
administration. At all  doses, the elimination half-life
of 13C-DHU was much longer than that of 13C-uracil. A
predictive power model was used to evaluate the dose-
proportionality of Cmax, AUC12 h and AUC• values. None
of these parameters was dose-proportional over the range
of 50–200 mg [the 95% confidence interval (CI) for the
slope of the regression line (b) did not include unity].
Nonlinearity in pharmacokinetics was clearly present in
10 out of the 12 subjects, although there was considerable
interindividual variability between subjects.

The contribution of renal clearance to the total body
clearance was negligible (Table 4).

The D13C of 13CO2 in expired air vs. time curve was
similar to that of 13C-DHU in plasma (Figure 3). The
recovery of 13C in expired air was approximately 80%
at each dose, which is in agreement with previous
reports [8–10] on the deposition of 5-FU. Cmax was
found not to be dose-proportional over the range of 50–
200 mg, but AUC• and AUC12 h were proportional to
dose [the 95% CIs of the slopes (b) for these parameters
were 0.93–1.06 and 0.94–1.06].

The predicted concentration–time courses of 13C-
uracil, 13C-DHU, 13C-UPA and D13C (‰) are shown in
Figure 4. Satisfactory agreement between the predicted
curve and experimental data was obtained. The excep-
tion was the relationship for 13C-UPA, which had a
higher limit of quantification (50 ng ml-1) than with 13C-

Table 4
Urinary excretion and kinetic parameters for 13C-uracil and its metabolites

Substance Parameter 50 mg 100 mg 200 mg

13C-uracil Ae (mg) 0.35 ± 0.19 1.21 ± 0.80 4.52 ± 2.80
CLR (l h-1) 6.8 ± 1.6 7.2 ± 2.1 7.7 ± 1.4
Excretion (%/dose) 0.7 ± 0.4 1.2 ± 0.8 2.3 ± 1.4

13C-DHU Ae (mg) 0.10 ± 0.05 0.28 ± 0.14 0.83 ± 0.44
CLR (l h-1) 0.7 ± 0.2 0.7 ± 0.2 0.8 ± 0.3
Excretion (%/dose) 0.2 ± 0.1 0.3 ± 0.1 0.4 ± 0.2

13C-UPA Ae (mg) 0.21 ± 0.10 0.53 ± 0.31 1.33 ± 0.91
CLR (l h-1) 17.1 ± 8.7 13.4 ± 6.3 9.1 ± 4.1
Excretion (%/dose) 0.4 ± 0.2 0.5 ± 0.3 0.6 ± 0.4

13C-DHU: 5,6-dihydrouracil (2-13C)] 13C-UPA, b-ureidopropionic acid (ureido-13C). Values: mean ± SD (n = 12).

Table 5
Expiratory excretion parameters for 13CO2 (D13C)

Dose
Cmax

(‰)

AUC12 h

(‰ h)
AUCµ
(‰ h)

tmax

(h)

lz

(1 h-1)
t1/2 
(h)

m 
(% dose-1)

50 mg 37.8 53.3 54.2 0.43 0.59 1.27 75.5
 ±11.7 ±5.3 ±5.2 ±0.15 ±0.18 ±0.36 ±7.4

100 mg 67.9 106.4 107.8 0.54 0.56 1.41 75.9
 ±17.3 ±9.7 ±9.9 ±0.19 ±0.21 ±0.59 ±3.3

200 mg 104.8 213.8 216.2 0.89 0.55 1.34 76.4
±20.8 ±25.0 ±24.9 ±0.44 ±0.15 ±0.37 ±6.1

m, Amount of 13CO2 recovered in the breath. Values: mean ± SD (n = 12).
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uracil and 13C-DHU (5 ng ml-1), thus introducing some
uncertainty into the data. The pharmacokinetic parame-
ters estimated by nonlinear least squares regression are
listed in Table 6. The clearance down each metabolic
step was calculated as follows: intrinsic clearance
(CLint1) for the first step catalysed by DPD was assumed
to be Vmax/Km, clearance (CLint2) for the second step
catalysed by DHPase to be VdDHU·keDHU, and clearance
(CLint3) for the third step catalysed by UP to be

VdUPA·keUPA. We have assumed that, since 13C-DHU and
13C-UPA are generated sequentially only in the liver,
their clearance represents intrinsic hepatic clearance.
The rank order of metabolic clearances was
CLint3 > CLint1 > CLint2 (Table 6).

Discussion
DPD is reported to be the rate-limiting enzyme in the
metabolism of pyrimidine and its analogues under in

Figure 3
Plasma concentration–time curves for 13C-uracil and its metabolites, and 

D13C–time curves in expired air after oral administration of 13C-uracil at 

doses of (A) 50 mg, (B) 100 mg, and (C) 200 mg to 12 healthy males. 

(�; 13C-uracil, D; 13C-DHU, �; 13C-UPA, �; 13CO2, mean ± SD, n = 12)
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Figure 4
Model fits for the mean plasma concentration–time data for 13C-uracil and 

its metabolites, and D13C in the expired air after oral administration of 13C-

uracil at doases of (A) 50 mg, (B) 100 mg, and (C) 200 mg to 12 healthy 

males. (�; 13C-uracil, D; 13C-DHU, �; 13C-UPA, �; 13CO2). Solid lines 

represent the predicted values calculated by the PBPK model shown in 

Figure 2
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vivo conditions [29–32]. However, this view has been
disputed by others [2, 10, 33]. Wasternack [33] stated
that ‘In most papers hitherto published, the first step in
degradation has been considered as rate-limiting. How-
ever, recent results argue against this concept’ and
‘Under in vivo conditions little information is available
because intermediates of degradation are not detect-
able.’ Daher et al. [10] reported that ‘all steps in the
sequential 3-step reactions in pyrimidine metabolism
have a potential to be rate-limiting and also it is still
unclear which enzyme is rate-limiting’. In the present
study, assuming that these discrepancies might be attrib-
utable problems in the analysis of pyrimidine and its
metabolites in plasma or urine, we re-evaluated the
pharmacokinetics of 13C-uracil and its metabolites using
the high-resolution methods of LC-MS/MS and IRMS.

The results showed that 13C-uracil was reduced to 13C-
DHU by DPD in the first catabolic step, which caused
its rapid elimination from plasma. DHPase then medi-
ated the conversion of 13C-DHU to 13C-UPA, but the
relatively slow rate of this reaction meant that 13C-DHU
remained in plasma for much longer than 13C-uracil.

Subsequently, since 13C-UPA was rapidly biotrans-
formed to H13CO3

– by UP, the D13C in the expired air vs.
time curves were similar to the plasma concentration vs.
time curves of 13C-DHU.

We developed a PBPK model to describe the pharma-
cokinetics of uracil. PBPK models have been shown to
be useful in quantitative evaluation of the metabolism
and transport processes of drugs and endogenous sub-
strates under physiological conditions [34–37]. The
derived intrinsic clearances for each metabolic step are
consistent with the rapid conversion of uracil to DHU,
the slow biotransformation of DHU to UPA, and the
rapid conversion of UPA to HCO3

–.
In contrast, Wasternack [33] suggested that the efflux

of dihydropyrimidines from mitochondria into cytosol
is rate-limiting owing to the cytosolic location of DPD.
Thus, uncertainty remains regarding the rate-limiting
step in the disposition of pyrimidines in vivo, which may
involve factors such as the transportation of 13C-uracil
and its metabolites into hepatocytes, the location of the
three enzymes responsible for its metabolism, and coen-
zymes such as NADH, NADPH [38].

Sumi et al. [39] reported two cases of dihydropyrim-
idinuria among 21 200 infants in whom urinary pyrim-
idine and dihydropyrimidine concentrations were
measured, and concluded that a defect in DHPase was
a probable risk factor for an adverse response to 5-FU
therapy. Hamajima et al.  [40] subsequently analysed
the DHPase gene and demonstrated six types of gene
mutation. In addition to these reports, 5-fluoro-5,6-
dihydrouracil, the substrate of DHPase and the metabo-
lite of 5-FU, is reported to have antitumour cytotoxic
activity [41], suggesting its involvement in the toxicity
of 5-FU. Given that the metabolic characteristics of 5-
FU [42, 43] and uracil are similar, the present results for
uracil should be applicable to 5-FU. Therefore, we came
to the tentative hypothesis that the in vivo rate-limiting
enzyme for 5-FU metabolism is not DPD but DHPase.
This hypothesis is supported by a study [9] of [6-3H]5-
FU that produced pharmacokinetic profiles of the drug
and its metabolites comparable to our results for 13C-
uracil. However, in DPD-deficient subjects, DPD is
likely to be the rate-limiting enzyme for overall pyrim-
idine catabolism.

In conclusion, we investigated the metabolic fate of
13C-uracil, its metabolites and the end product 13CO2 in
expired air. Our PBPK model described the nonlinear
pharmacokinetics of uracil and its metabolites well, and
showed that of the three enzymes involved in pyrimidine
degradation, DHPase is the least active in vivo in
humans. Further study is required to show whether the
analysis of 13CO2 in expired air after administration of

Table 6
Parameters estimated from simultaneous fitting of mean 
data for 13C-uracil and its metabolites and 13CO2 in expired 
air

Parameter
Dose

50 mg 100 mg 200 mg

Km (mg ml-1) – 1.60* –
Vmax (mg min-1) – 33900* –
Vp (l) – 17.2* –
ka (min-1) – 0.259* –
VdDHU (l) – 408† –
VdUPA (l) – 10.0† –
keDHU (min-1) 0.0119 0.0126 0.00948
keUPA (min-1) 4.58 5.00 2.54
ke (min-1) 0.151 0.0781 0.0578
P1 0.264 0.627 0.365
P2 0.00904 0.00458 0.00368
CLint1 (l min-1)‡ – 21.2 –
CLint2 (l min-1)§ 4.86 5.14 3.87
CLint3 (l min-1)¶ 45.8 50.0 25.4

–, Not calculated. *Calculated using plasma concentra-
tions of 13C-uracil at the doses of 50, 100 and 200 mg
by equations 1, 2 and 3. †Calculated using plasma con-
centrations of 13C-uracil and its metabolites and 13CO2 in
expired air at the dose of 100 mg by equations 4, 5 and
6. ‡Calculated as Vmax/Km. §Calculated as VdDHU·keDHU. ¶Cal-
culated as VdUPA·keUPA.
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13C-uracil will allow the identification of patients at risk
of a severe adverse response to treatment with 5-FU.

Competing interests: None declared.
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