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Aims

 

Success of the quantitative prediction of drug–drug interactions via inhibition of CYP-
mediated metabolism from the inhibitor concentration at the enzyme active site ([

 

I

 

])
and the 

 

in vitro

 

 inhibition constant (

 

K

 

i

 

) is variable. The aim of this study was to
examine the impact of the fraction of victim drug metabolized by a par ticular CYP
(

 

f

 

m

 

CYP

 

) and the inhibitor absorption rate constant (

 

k

 

a

 

) on prediction accuracy.

 

Methods

 

Drug–drug interaction studies involving inhibition of CYP2C9, CYP2D6 and CYP3A4
(

 

n

 

 

 

=

 

 115) were investigated. Data on 

 

f

 

m

 

CYP

 

 for the probe substrates of each enzyme
and 

 

k

 

a

 

 values for the inhibitors were incorporated into 

 

in vivo

 

 predictions, alone or
in combination, using either the maximum hepatic input or the average systemic
plasma concentration as a surrogate for [

 

I

 

]. The success of prediction (AUC ratio
predicted within twofold of 

 

in vivo

 

 value) was compared using nominal values of

 

f

 

m

 

CY

 

P

 

 

 

=

 

 1 and 

 

k

 

a

 

 

 

=

 

 0.1 min

 

-

 

1

 

.

 

Results

 

The incorporation of 

 

f

 

m

 

CYP

 

 values into 

 

in vivo

 

 predictions using the hepatic input plasma
concentration resulted in 84% of studies within twofold of 

 

in vivo

 

 value. The effect
of 

 

k

 

a

 

 values alone significantly reduced the number of over-predictions for CYP2D6
and CYP3A4; however, less precision was observed compared with the 

 

f

 

m

 

CYP

 

. The
incorporation of both 

 

f

 

m

 

CYP

 

 and 

 

k

 

a

 

 values resulted in 81% of studies within twofold
of 

 

in vivo

 

 value.

 

Conclusions

 

The incorporation of substrate and inhibitor-related information, namely 

 

f

 

m

 

CYP

 

 and 

 

k

 

a

 

,
markedly improved prediction of 115 interaction studies with CYP2C9, CYP2D6 and
CYP3A4 in comparison with [

 

I

 

]/

 

K

 

i

 

 ratio alone.

 

Introduction

 

Drug–drug interactions resulting from inhibition of
CYP-mediated metabolism can lead to serious toxici-
ties, and have resulted in a number of compounds being
withdrawn from the market. In recent years there has
been an increased use of various 

 

in vitro

 

 systems used

to detect CYP inhibition, which is qualitatively a useful
tool. However, the extrapolation of these 

 

in vitro

 

 data to
ultimately provide a quantitative 

 

in vivo

 

 prediction is
problematic, and at present there is no comprehensive
strategy that allows for the identification of particular
drugs at risk from an inhibitory interaction [1–5].
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In human 

 

in vivo

 

 interaction studies, the degree of
interaction is expressed as the ratio of the area under the
plasma concentration–time curve (AUC) in the presence
and absence of an inhibitor. For many, but not all, cases
this involves multiple oral dosing and the assumption is
made that a new steady state is achieved. Also, for sim-
plicity other conditions are commonly assumed: the vic-
tim drug is administered orally, cleared exclusively by
the liver by way of a single metabolic pathway and the
‘well-stirred’ liver model applies. The AUC ratio is
related to the ratio of the metabolic intrinsic clearance
(CL

 

int

 

) as described by equation 1. The drug concentra-
tion 

 

in vivo

 

 is usually much lower than the 

 

K

 

m

 

 value and
the mechanism of inhibition (competitive or noncompet-
itive) is not relevant; therefore, equation 1 is valid for
both inhibition types.

(1)

where [

 

I

 

] is the inhibitor concentration available to the
enzyme and subscript 

 

i

 

 indicates the presence of the
inhibitor.

We have previously constructed a database of 146
studies to evaluate the prediction of drug–drug interac-
tions involving reversible inhibition of CYP2C9,
CYP2D6 and CYP3A4 [6]. In this analysis, we evalu-
ated the utility of the [

 

I

 

]/

 

K

 

i

 

 ratio by using various inhib-
itor plasma concentrations as surrogates for [

 

I

 

]. Results
from this database analysis showed that the greatest
change in AUC was observed for CYP3A4 (approxi-
mately 24-fold increase), followed by CYP2D6
(approximately 11-fold increase), with a fivefold AUC
increase for CYP2C9 studies. The interaction studies
involved nine different substrates for CYP2C9, 13 sub-
strates for CYP2D6, with 18 substrates for CYP3A4 as
shown in Figure 1, together with the predicted relation-
ship based on equation 1. Using the maximum hepatic
input concentration as [

 

I

 

] together with the 

 

in vitro K

 

i

 

value was found to be the most successful method for
categorizing CYP inhibitors and for identifying true
negative drug–drug interactions. Although false nega-
tives were eliminated, several false positives were
evident and most true positives were markedly over-
predicted (Figure 1). It was concluded that this generic
approach provides only an initial discriminating screen,
since there are a number of specific factors related to
both the substrate and inhibitor that will affect the 

 

in
vivo

 

 predictions.
Predictions made using equation 1 assume that the

fraction of substrate metabolized by way of the inhibited
CYP pathway (

 

f

 

m

 

CYP

 

) is equal to 1. However, parallel

AUC
AUC

CL
CL

1int

int,

i

i i

I

K
= = +

[ ]

 

pathways of metabolism and renal clearance of
unchanged drug will affect the 

 

f

 

m

 

CYP

 

 and, consequently,
the predicted degree of interaction, as even minor
changes in the 

 

f

 

m

 

CYP

 

 value (e.g. from 1 to 0.98) may alter
predictions significantly [7]. Equation 2 can be used in
the  prediction  of  the  

 

in  vivo

 

 AUC  ratio  when  

 

f

 

m

 

CYP

 

values are known and the other CYP pathways involved
in the metabolism of the substrate are not subject to
inhibition [7, 8]. Previously, we have demonstrated a
substantial improvement in the quantitative predictions
of drug–drug interactions involving CYP2D6 substrates
using equation 2 rather than equation 1 [7].

(2)

Previously [6], we investigated the use of the maximum
hepatic inhibitor concentration at the inlet to the liver
([

 

I

 

]

 

in

 

). Calculation of this parameter (equation 3) relies
on information on hepatic blood flow (

 

Q

 

H

 

), inhibitor
dose (

 

D

 

), fraction absorbed from the gastrointestinal
tract (

 

f

 

a

 

), the absorption rate constant (

 

k

 

a

 

) to provide an
absorption term and the average systemic plasma con-
centration ([

 

I

 

]

 

av

 

).

AUC
AUC CYP

+( )
( )

=

+[ ]
+ -( )

inhibitor

control f
I / K

fm

i
mCYP

1

1
1

 

Figure 1

 

Relationship between the observed AUC ratio and the [

 

I

 

]

 

in

 

/

 

K

 

i

 

 ratio for 146 

drug–drug interactions involving CYP2C9 (

 

�

 

), CYP2D6 (

 

�

 

) and CYP3A4 

(

 

�

 

). The line shown is the theoretical relationship based on equation 1. 

The shaded areas represent the regions corresponding to negative and 

positive drug–drug interactions as defined by the borderlines of an AUC 

 

ratio of 2 and an [

 

I

 

]/

 

K

 

i

 

 of 1 [2]
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(3)

 

In vivo

 

 clinical studies frequently do not report ka val-
ues; in the absence of this information and in order to
avoid false-negative prediction and obtain the largest
[I]in, it has been suggested that maximum ka of 0.1 min-1

is appropriate, assuming the gastric emptying is the rate
limiting step for absorption [9].

The aim of the present study was to extend the pre-
vious database analysis [6] on 146 reversible drug–drug
interaction studies and investigate the impact of sub-
strate- and inhibitor-related parameters, namely fmCYP

and ka, on the prediction accuracy, using either [I]av or
[I]in together with published Ki data. Values for fmCYP

were assigned for the commonly used substrate probes
for CYP2C9, CYP2D6 and CYP3A4. In addition, ka

values were estimated for each CYP inhibitor and the
significance of these values on the [I]in value and in vivo
predictions were assessed. The effects of fmCYP and ka,
alone and in combination, have been analysed in order
to maximize the drug–drug interaction prediction
accuracy.

Methods
Data collection
Drug–drug interaction studies involving the reversible
inhibition of CYP2C9, CYP2D6 and CYP3A4 (n = 146)
were obtained from published literature [6]. The degree
of interaction in each study was expressed as the fold
increase in the AUC in the presence of an inhibitor,
compared with the control study. In vitro Ki values for
the CYP inhibitors involved in the above studies were
also collected from the literature. In most cases in vitro
data were available for the same substrate as used in the
in vivo study, and when several human liver microsomal
studies had been conducted, average Ki values were used
for the prediction. If there were no available in vitro data
involving the in vivo substrate in question, then in vitro
data from alternative, well-established probe substrates
of that particular enzyme were used [6]. For example,
in the absence of in vitro studies involving fluconazole
and phenytoin, the Ki value obtained with (S)-warfarin
was used.

Values of fmCYP for each substrate were assigned using
various literature data for a subset of 115 studies from
the original database. The fmCYP value for the CYP2C9
substrate tolbutamide was obtained by calculating the
difference between the urinary recovery of metabolites
in both the presence and absence of the CYP2C9
selective inhibitor sulphaphenazole (phenocopying).
Phenotyping data obtained from extensive and poor

I I
k f D

Q
in av

a a

H

[ ] = [ ] + ◊ ◊ metabolizers of CYP2D6 were used to calculate the
fmCYP values for these substrates [7]. A similar rationale
was used to calculate the CYP2C19 contribution to
phenytoin clearance and hence the fmCYP value for
CYP2C9. For warfarin, an fmCYP value was calculated
from a combination of urinary recovery of metabolites,
biliary excretion and the recovery of unchanged drug as
previously documented [10].

The fmCYP values are shown in Table 1; as the assi-
gnment of fmCYP values for CYP3A4 substrates was
problematic, a range is shown for certain substrates. For
all nine CYP3A4 substrates, the fraction excreted
unchanged in urine is available and this provided an
initial value for fmCYP based on the assumption that all
metabolism is mediated via CYP3A4. In some cases this
may be an upper estimate and further clarification is
required. For the three benzodiazepines (midazolam, tri-
azolam or alprazolam) this was achieved by adopting a
regression approach [7] using equation 2 and the AUC
ratio and [I]/Ki ratio for each substrate dataset (n = 8–

Table 1
Values of fmCYP for the probe substrates in the in vivo 
interactions with CYP2C9, CYP2D6 and CYP3A4

CYP Substrate fmCYP* References

2C9 Tolbutamide 0.80 [16]
S-warfarin 0.87 [10]
Phenytoin 0.75 [17, 18]

2D6 Desipramine 0.88 See [7]
Propafenone 0.76
Tolterodine 0.94
Encainide 0.86
Metoprolol 0.83
Mexiletine 0.49
Imipramine 0.46
Propranolol 0.37

3A4 Midazolam 0.99, 0.94 [24–26]
Triazolam 0.98, 0.92 [24]
Alprazolam 0.80 [20]
Nifedipine 0.71 [24, 27, 28]
Nisoldipine 0.99 [27]
Felodipine 0.99, 0.81 [24, 27, 29, 30]
Quinidine 0.76 [21, 24, 27, 31]
Simvastatin 0.99 [24]
Lovastatin 0.99 [27, 32]

*When two values are shown, the higher value is derived
from renal excretion data, whereas the lower value is
obtained by regression/ranking and is that used in further
predictions.
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16) to obtain an average fmCYP. Figure 2 shows the exam-
ple of midazolam. The regression approach was also
used for nifedipine and quinidine (n = 5 and 6). For the
other CYP3A4 substrates (felodipine, nisoldipine, sim-
vastatin and lovastatin) the number of studies available
was more limited and fmCYP values were obtained by
ranking the AUC ratio (using either data from itracona-
zole or ketoconazole studies) relative to midazolam and
applying this factor to the midazolam fmCYP. For the
predictions of the AUC ratio the lower values of fmCYP

for the CYP3A4 substrates were used.

Data analysis
As described previously [6], the database analyses
revealed that the inhibitor concentration was frequently
not reported in an in vivo study, and when information
was available in the same subjects, various concentra-
tions were quoted (average, maximum or minimum). In
order to standardize procedures, these concentrations
were estimated from literature pharmacokinetic param-
eters. The average systemic plasma concentration after
repeated oral administration ([I]av), and the maximum
hepatic input concentration ([I]in) were calculated as in
equations 4 and 3, respectively [9].

(4)

In equation 4, F and t represent the fraction of dose
systemically available and dosing interval, respectively,
of the inhibitor used in the in vivo interaction study. For

I
D /

CL / F
av[ ] = t

the purpose of this analysis using equation 3, the fa value
was taken as 1, assuming that the inhibitors were com-
pletely absorbed from the gastrointestinal tract, the ka

value was initially assumed to be 0.1 min-1 (the maxi-
mum rate of gastric emptying) [9] and the blood-to-
plasma concentration ratio and hepatic blood flow taken
as unity and 1610 ml min-1, respectively.

The fmCYP data collected were incorporated into the
prediction of AUC ratio using equation 2 for both [I]av

and [I]in for all three CYPs and compared with initial in
vivo predictions based on equation 1 for different [I]. In
order to obtain more realistic ka estimates, values were
calculated for each inhibitor using the time to reach
maximum plasma concentration (Tmax) and the elimina-
tion rate constant (k) as shown in equation 5 (the latter
values collected from published literature data). For a
number of inhibitors (n = 5/10 for CYP2C9, n = 11/18
for CYP2D6 and n = 7/14 for CYP3A4), this pharma-
cokinetic information was unavailable; therefore a value
of 0.01 min-1 was assigned. The calculated ka values for
the inhibitors are listed in Table 2.

(5)

Refined ka values (calculated from inhibitor phar-
macokinetics or an assumed value of 0.01 min-1)
were incorporated into in vivo predictions for all
three CYP enzymes for [I]in, either alone or in com-
bination with fmCYP information, using equations 1 and
2, respectively. The success of prediction (within two-
fold of in vivo value) was compared with the previ-
ous database analysis ( fmCYP = 1 and ka = 0.1 min-1). A
twofold threshold value was selected on the basis of
previous consensus reports [2, 11] for a significant

T
k / k

k k
a

a
max

ln=
( )

-( )

Figure 2
Determination of fmCYP for midazolam. Relationship between the AUC ratio 

observed in vivo and [I]in/Ki ratio for 10 drug–drug interactions involving 

midazolam as the victim drug
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Table 2
Absorption rate constants for CYP inhibitors involved in in 
vivo interaction studies

Inhibitor CYP enzyme ka (min-1) Reference

Sulphaphenazole 2C9 0.030 [9]
Fluconazole 2C9, 3A4 0.061 [33]
Ketoconazole 2C9, 3A4 0.013 [34]
Itraconazole 3A4 0.020 [35]
Quinidine 2D6, 3A4 0.014 [36]
Fluoxetine 2D6, 3A4 0.009 [37]
Fluvoxamine 2C9, 2D6, 3A4 0.008 [38]
Sertraline 2C9, 2D6 0.007 [37]
Citalopram 2D6 0.024 [37]
Nifedipine 3A4 0.056 [39]
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increase in AUC ratio with a corresponding [I]/Ki

ratio of unity.
The [I]/Ki ratio was calculated for each of the in vivo

interaction studies using the various inhibitor concentra-
tions described previously. Some inhibitors such as flu-
oxetine and itraconazole [6] have an active metabolite
that also has inhibitory activity towards the same CYP
enzyme. For these studies, the [I]/Ki ratio was calculated
for the both the parent and the metabolite, the values
were then added [12]. Out of the three itraconazole
metabolites reported by Isoherranen et al. [13]
(hydroxy-, keto- and N-desalkyl-itraconazole), only the
contribution of hydroxy-itraconazole was included in
the prediction, consistent with the previous database
analysis [6].

The change in AUC ratio in vivo was plotted against
the AUC ratio predicted using the various parameters
and predictions within twofold of the in vivo AUC ratio
were considered successful. The bias of drug–drug
interaction prediction was assessed from the geometric
mean of the ratio of predicted and actual value (average-
fold error, afe). The mean squared prediction error (mse)
(difference between the predicted and observed in vivo
value) and the root mean squared prediction error (rmse)
provided a measure of precision for the prediction of the
drug–drug interaction studies using including [I]/Ki,
appropriate ka and fmCYP values, both individually and in
combination [14, 15].

(6)

(7)

(8)

Results
From the original database [6] a subset of 115 studies
was created for which fmCYP data on the in vivo probe
substrate were available. The drug–drug interaction
studies selected (n = 21 for CYP2C9, n = 40 for
CYP2D6 and n = 54 for CYP3A4) involved 23 different
substrates and 42 inhibitors. The range of fmCYP values
was from 0.75 to 0.87 (CYP2C9), 0.37 to 0.94
(CYP2D6) and 0.71 to 0.99 (CYP3A4) (see Table 1).
Figures 3 and 4 illustrate the effect of the fmCYP values
on the prediction of AUC ratio for 115 drug–drug inter-
action studies (based on equation 2) using either [I]in or
[I]av, respectively. The data in Figure 3A,B show that an
improvement in the prediction accuracy is observed for
each of the three CYP enzymes by incorporating the

afe n

Predicted

Observed= Â
10

1
log

mse
n

Predicted Observed= -( )Â1 2

rmse mse=

fmCYP values for in vivo predictions based on the [I]in. The
number of studies within the twofold range of the in vivo
value increased by 24, 38 and 28% for CYP2C9,
CYP2D6 and CYP3A4, respectively (Table 3) and there
was a corresponding reduction in the bias and increase
in precision.

Figure 4 indicates that the incorporation of fmCYP data
into the in vivo predictions based on [I]av has a similar
but less substantial effect. The greatest improvement
occurred for CYP2C9 with a 24% increase in the num-
ber of studies within the twofold limit of the in vivo
value. Incorporation of fmCYP data reduced several over-
predictions for both CYP2D6 and CYP3A4. However,
incorporation of fmCYP for the [I]av prediction did not
significantly improve the under-predictions obtained for
CYP3A4 interactions; 30% of studies involving this
enzyme were still classed as false-negative interactions
(see Figure 4B).

The [I]in value represents the combination of the cir-
culating systemic plasma concentration and the addi-
tional concentration occurring during the absorption
phase. Figure 5 illustrates the relationship between the
[I]in and [I]av values for the 115 data studies where ka is
assumed to be 0.1 min-1. The contribution of the absorp-
tion term ka · fa · D/Qh to the slope of this relationship
can be illustrated by considering three particular inhib-
itors (Table 4). Lowering the ka value from the maxi-
mum value (ka = 0.1 min-1) to literature-reported values
reduces the relative ratio between the absorption and
systemic contribution by 10–13-fold for ketoconazole
and itraconazole, but has a minimal effect for flucona-
zole. However, the dose absorbed is the main contributor
to the high [I]in values and for [I]av this factor is less
apparent due to the effect of volume of distribution.

Refinement of ka values from literature information
was possible for 10 inhibitors to provide new parameter
values for 86 studies (Table 2); a ninefold range of ka

values was observed, ranging from 0.007 to 0.06 min-1

for sertraline and fluconazole, respectively. For the
remaining studies involving inhibitors for which no
absorption information was available, a ka value of
0.01 min-1 was assigned as a reasonable estimate.
Figure 3C shows the effect of incorporating these
refined ka values into in vivo predictions for 115 drug–
drug interaction studies; fmCYP was assumed to be 1 for
these predictions. From the results in Figure 3 and
Table 3, it can be seen that in comparison with the orig-
inal analysis [6] where an arbitrary ka of 0.1 min-1 was
used, the ka improves the prediction accuracy for all
three CYP enzymes. The greatest effect was noted for
CYP2D6, where a 25% increase in the number of stud-
ies within twofold of the in vivo value is observed. In
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Figure 3
Relationship between the AUC ratio observed in vivo and the AUC ratio predicted for 115 drug–drug interaction studies involving CYP2C9 (�), CYP2D6 

(�) and CYP3A4 (�). The plots represent predictions using the maximum hepatic input concentration—equation 1 (A), incorporating both the fmCYP, 

equation 2 (B), refined ka value (C) and both fmCYP and ka (D). Solid line represents line of unity, whereas dashed lines represent the twofold limit in 

prediction accuracy. The shaded areas represent the regions corresponding to negative and positive drug–drug interactions as defined by the borderlines 

of an AUC ratio of 2 and an [I]/Ki of 1 [2]
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addition, the use of refined ka values significantly
reduced the number of over-predictions in comparison
with  the  higher  ka  value  (2.2-  and  2.7-fold  for
CYP3A4 and CYP2D6 drug–drug interaction studies,
respectively).

The incorporation of both fmCYP and ka resulted in the
most successful prediction for all three CYPs, with a total
of 81% of studies within twofold of the in vivo value

(Figure 4D and Table 3). For these predictions, there was
the least bias and improvement in precision, as judged
by the statistical parameters afe and rmse (see Table 3).

Discussion
In a previous drug–drug interaction database analysis
[6] we have shown the utility of [I]in in qualitative zon-
ing of inhibitors, allowing the true negatives to be iden-
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tified and eliminating false negatives. However, several
false positives resulted and on a quantitative level the
large over-prediction of true-positive effects was of con-
cern (see Figure 1). The fact that this simple generic
approach ignores specific substrate- or inhibitor-related
properties no doubt contributes to a number of over-

predictions of true-positive interactions. Therefore, this
study focused on demonstrating the significance of fmCYP

for the victim drug (previously explored for CYP2D6
[7]) and ka for the inhibitor on the drug–drug interaction
prediction accuracy for 115 studies. In order to assess
the impact of these particular parameters on the pre-

Figure 4
Relationship between the observed AUC ratio in vivo and AUC ratio predicted for 115 drug–drug interaction studies involving CYP2C9 (�), CYP2D6 (�) 

and CYP3A4 (�). The plots represent predictions using the average systemic total drug plasma concentration ([I]av) (A), and incorporating fmCYP data (B). 

The solid line represents line of unity, whereas dashed lines represent the twofold limit in prediction accuracy
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Table 3
Prediction accuracy for 115 interaction studies illustrating the impact of fmCYP and ka parameters on the use of [I]in and in vitro Ki 
values. Number of studies for each CYP is shown together with the percentage success for the total number of studies

CYP Prediction accuracy [I]in*
[I]in with 
fmCYP

[I]in with
refined ka

[I]in with fmCYP

and refined ka

2C9 Over-predictions 11 6 9 5
Under-predictions 0 0 1 1
Within twofold limit 10 15 11 15

2D6 Over-predictions 19 3 7 0
Under-predictions 0 1 2 5
Within twofold limit 21 36 31 35

3A4 Over-predictions 23 8 13 3
Under-predictions 0 0 5 8
Within twofold limit 31 46 36 43

Total % within twofold limit 54 84 68 81
afe 2.11 1.21 1.37 0.84
rmse 144.2 4.8 75.6 2.95

*fmCYP = 1 and ka = 0.1 min-1.
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dicted AUC ratio, previously collated data were used
[6], including the literature reported Ki values.

The range of fmCYP values obtained for each CYP
enzyme, 0.75–0.87 (CYP2C9), 0.37–0.94 (CYP2D6)
and 0.71–0.99 (CYP3A4), illustrates that more than one
enzyme/clearance mechanism contributes to the elimi-
nation of most of the victim drugs under consideration.
The use of fmCYP data in the assessment of AUC ratio
corrected several false-positive predictions, as well as
reducing the extent of over-predictions of true positives
(Table 3). The improvement is most notable for the pre-
dictions using [I]in, where the percentage of studies
within the twofold limit of the in vivo AUC ratio
increased from 54 to 84%.

Predictions for both CYP2C9 and CYP3A4 substrates
are markedly improved to a comparable extent to that
reported previously for CYP2D6 [7]. While fmCYP values
for the CYP2C9 substrates are relatively high, they are

sufficiently less than 1 to benefit substantially from
adopting equation 2 rather than equation 1. Incorpora-
tion of the renal clearance contribution for quinidine and
alprazolam reduced the overestimation of the interac-
tions with these CYP3A substrates by three- and 30-
fold, respectively, whereas the impact of fmCYP was of
less significance for the other CYP3A4 substrates (fmCYP

range from 0.9 to 0.99). These findings extend the anal-
ysis on CYP2D6 substrates previously presented [7] and
illustrate the general applicability of fmCYP in progressing
drug–drug interaction predictions to a valuable quanti-
tative level.

A number of approaches were employed to obtain
fmCYP in this study. For all the CYP2D6 substrates, com-
parison of phenotyping data in extensive and poor
metabolizers of CYP2D6 was used [7]. As previously
discussed [7], the phenotyping approach will provide
the most unequivocal method for establishing the impor-
tance of a particular cytochrome P450 in the clearance
of a drug. A good alternative for polymorphic enzymes
is ‘phenocopying’, that is from the difference between
the urinary recovery of metabolites in both the presence
and absence of a selective inhibitor. We were able to use
this approach for the CYP2C9 substrate tolbutamide
using sulphaphenazole [16]. For another CYP2C9 sub-
strate phenytoin, it is known that CYP2C19 also con-
tributes to its clearance [17] and the availability of
phenotyping data allowed calculation of the contribution
of the latter CYP [18] and hence a fmCYP value for
CYP2C9 and phenytoin. A fmCYP value for CYP2C9 and
warfarin has been estimated by Kunze and Trager [10]
using a combination of information on the urinary
recovery of metabolites, biliary excretion and the recov-
ery of unchanged drug. This level of detail is not com-
monly available, even for probe substrates.

For CYP3A4 substrates, estimation of fmCYP is prob-
lematic for several reasons, including the lack of
selective inhibitors (ketoconazole and itraconazole
being only selective at low concentrations) and com-

Inhibitor [I]av(mM) ka(min-1)
Absorption
term (mM)

Absorption term/
systemic term

Ketoconazole 0.44 0.013 3.0 6.8
0.1 23.4 53

Itraconazole 0.12 0.02 3.5 29
0.1 17.6 147

Fluconazole 23.2 0.061 24.6 1.1
0.1 40.55 1.7

Table 4
The effect of changing the ka value on the 
ratio between the systemic and the 
absorption term (ka · fa · D/Qh, equation 
3) for ketoconazole, itraconazole and 
fluconazole

Figure 5
Relationship between [I]in and [I]av for 115 drug–drug interaction studies 

involving CYP2C9 (�), CYP2D6 (�) and CYP3A4 (�)
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plexities of multisite binding [19]. In this study, initial
values were obtained from estimates of total metabo-
lism calculated indirectly from urinary recovery of
unchanged drug. These values are high (Table 1),
which is consistent with the extensive use of several of
these drugs (the benzodiazepines and calcium channel
blockers) as selective probes. However, whether the
metabolism of these substrates is completely mediated
by CYP3A4 activity is debatable; thus these fmCYP val-
ues should be regarded as upper estimates. In the
cases of alprazolam and quinidine, the importance of
renal clearance is well established [20, 21], resulting
in fmCYP values of £0.8. For the remaining seven sub-
strates this method resulted in fmCYP values of ≥0.98.
Simulations using equation 2 have shown AUC ratios
to be very sensitive to small changes in fmCYP between
values of 0.8 and 1 [7]; quinidine and alprazolam are
the only CYP3A4 substrates outside this range. Most
studies available used either midazolam, triazolam,
alprazolam, quinidine or nifedipine, allowing a regres-
sion approach to be adopted based on equation 2 to
obtain an average fmCYP for these five drugs (see
Figure 2 for midazolam). For quinidine and alpra-
zolam there was good agreement between the regres-
sion and corrected renal excretion values. For
felodipine, nisoldipine, simvastatin and lovastatin, due
to the limited number of studies available, fmCYP values
were obtained by an alternative approach of ranking
(either itraconazole or ketoconazole AUC ratios) rela-
tive to midazolam. Despite the limitations of these
methods and the uncertainity of the absolute values of
fmCYP obtained for the CYP3A4, Figures 3 and 4 indi-
cate good predictions for these substrates, comparable
to those for CYP2C9 and CYP2D6.

Extending this work to drug–drug interactions involv-
ing victim drugs that are not established CYP probes
will rely on an estimate of fmCYP. Most drugs have several
enzymes contributing to their elimination and the key
information needed is the relative importance of partic-
ular enzymes to those drug pathways, i.e. fmCYP in con-
trast to the fraction metabolized by a particular pathway
(often obtained via a radiolabel study). The importance
of this type of specific information is being increasingly
realized and various approaches have been recently
summarized [11, 22]. The impact of hepatic transporters
on drug clearance may also be an important consider-
ation. However, the success apparent with CYP probe
substrates described here, as well as theoretical relation-
ships [7], would indicate that even approximate fmCYP

values may markedly improve a prediction.
The use of [I]in relies on an input term for the hepatic

portal vein plasma concentration calculated from equa-

tion 3. Predictions based on these [I] values, however,
do result in a significant number of over-predictions or
false-positive interactions [6]. One of the possible limi-
tations of this approach is the use of the theoretical
maximum value of 0.1 min-1 for the ka, which represents
the maximum rate of gastric emptying [9]. Refinement
of this parameter resulted in the ka values 2–14-fold
lower than the initial estimates as shown in Table 2 for
10 CYP inhibitors investigated in the current study.
Incorporation of refined ka reduced the relative contri-
bution of the absorption term in comparison to the sys-
temic term in the [I]in value up to 13-fold, as illustrated
for itraconazole in Table 4. In addition, the ka value may
vary with dose of inhibitor and the food intake (e.g.
ketoconazole [23]), affecting the [I]in estimate and con-
sequently the predicted AUC ratio.

Refined ka values reduce the number of over-predic-
tions observed for all three CYPs (Table 3). Predictions
using [I]in when either a realistic ka or fmCYP value were
incorporated individually predicted 68–84% of the
interactions within twofold of in vivo value (comparable
lack of bias). However, incorporation of fmCYP improved
the precision of the drug–drug interaction assessment
(sevenfold lower rmse), substantially more than with the
use of refined ka values (see Table 3).

The use of [I]in incorporating both fmCYP and refined
ka values resulted in the most successful prediction over-
all (see Figure 3D). A total of 81% of studies were
within the twofold limit of the in vivo value and this
represents an increase of 30% in comparison with the
qualitative zoning assumptions (ka = 0.1 min-1 and
fmCYP = 1) previously described [6]. Minimal bias and
high precision of the predictions were achieved
(Table 3).

The accurate prediction of an in vivo drug–drug inter-
action is critically dependent on the inhibitor concentra-
tion used in equations 1 and 2. It is impossible to
measure this concentration directly within the human
liver and for this reason there are many conflicting
reports about which inhibitor concentration to use in
prediction, whether it is the systemic or portal vein
concentration, total or unbound plasma concentration or
the liver concentration. There have been many attempts
to make an assessment of the concentration within the
liver, with varying degrees of success [3, 9, 15].
Although in the present study the most successful pre-
dictions result from using a total drug concentration
term ([I]in) with fmCYP and refined ka values, there are still
a number of falsely predicted interactions. The possibil-
ity of an interaction in the gut wall may be significant
for certain substrates and has not been included in this
approach. Another factor that can influence the in vivo
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prediction is experimental variability in the generation
of the in vitro data. The Ki values used in the current
analysis are obtained from a variety of published litera-
ture sources and it would be valuable to explore whether
standardization of the in vitro assessment would further
improve prediction. This consideration is particularly
pertinent for CYP3A4 Ki values, and a recent study has
explored the importance of substrate selection and sub-
stitution for this enzyme [19].

In summary, we have demonstrated that incorporation
of fmCYP values for the victim drug markedly improves
prediction of 115 drug–drug interactions compared with
the use of the [I]/Ki ratio alone. In addition to fmCYP,
inclusion of realistic ka values to refine estimates of [I]in

provides the most useful estimate of [I] and results in
the most successful predictions as judged by a lack of
bias and a high level of precision.
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