Table 3.
(a) Impact of each covariate alone | |||||
---|---|---|---|---|---|
Individual covariate alone | PPVt2 | PPVR2 | PPVP2 | PPVP2/PPVt2 | OBJ |
No covariates | 0.319 | 0.319 | 0 | 0 | 2073.0 |
Allometric scaling | 0.3191 | 0.165 | 0.154 | 48.3% | 1973.9 |
Post-conception age | 0.3191 | 0.2 | 0.119 | 37.3% | 2012.8 |
NSAID use | 0.3191 | 0.301 | 0.018 | 5.6% | 2047.6 |
Sequential nested model | PPVt2 | PPVR2 | PPVP2 | PPVP2/PPVt2 | OBJ |
---|---|---|---|---|---|
No covariates | 0.319 | 0.319 | 0 | 0 | 2073.0 |
Allometric scaling | 0.3191 | 0.165 | 0.154 | 48.3% | 1973.9 |
Post-conception age | 0.3191 | 0.119 | 0.200 | 62.7% | 1919.0 |
NSAID use | 0.3191 | 0.113 | 0.206 | 64.6% | 1893.2 |
(b) Impact of each covariate when added sequentially to the model
Assumed from no covariate model estimate.
Assumed from no covariate model estimate. PPVt2is the total population parameter variability estimated without covariate analysis, PPVP2is the population parameter variability predictable from covariates, PPVR is the random PPV estimated on a parameter when covariate analysis is included. The ratio of the population parameter variability predictable from covariates (PPVP) to the total population parameter variability obtained without covariate analysis (PPVt2)(i.e.PPVP2/PPVt2) indicates the fraction of the total variability in the parameter that is predictable from covariates. OBJ is the objective function value measuring the goodness of fit.