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Aims

 

To evaluate whether simvastatin influences (i) the intestinal expression of P-glycopro-
tein (P-gp) and MRP2, and (ii) the disposition of the 

 

β

 

1

 

-selective blocker talinolol, a
substrate of these transporter proteins.

 

Methods

 

The disposition of talinolol after intravenous (30 mg) and single or repeated oral
administration (100 mg daily) was monitored before and after chronic treatment with
simvastatin (40 mg daily) in 18 healthy subjects (10 males, eight females, body mass
index 19.0–27.0 kg m

 

−

 

2

 

) genotyped for 

 

ABCB1

 

, 

 

ABCC2

 

 and 

 

SLCO1B1

 

 polymorphisms

 

.

 

The steady-state pharmacokinetics of simvastatin was evaluated before and after
repeated oral talinolol administration. The duodenal expression of 

 

ABCB1

 

 and 

 

ABCC2

 

mRNA before and after simvastatin treatment was quantified using real-time reverse
transcriptase-polymerase chain reaction (TaqMan

 

®

 

).

 

Results

 

Simvastatin did not influence the expression of duodenal 

 

ABCB1

 

 and 

 

ABCC2

 

. There
was no significant pharmacokinetic interaction between simvastatin and talinolol.
Duodenal 

 

ABCB1

 

 mRNA content was significantly correlated with the AUC

 

0–

 

∞

 

(

 

r

 

 

 

=

 

 0.627, 

 

P

 

 

 

=

 

 0.039) and 

 

C

 

max

 

 (

 

r

 

 

 

=

 

 0.718, 

 

P

 

 

 

=

 

 0.013) of oral talinolol. The 

 

ABCB1

 

and 

 

ABCC2

 

 gene polymorphisms did not influence simvastatin and talinolol disposi-
tion. The half-life of the latter was significantly shorter in the nine carriers with a

 

SLCO1B1

 

*1b allele compared with the seven subjects with the wild-type

 

SLCO1B1

 

*1a/*1a genotype (12.2 

 

±

 

 1.6 h 

 

vs.

 

 14.5 

 

±

 

 1.4 h, 

 

P

 

 

 

=

 

 0.01).

 

Conclusions

 

Simvastatin does not influence the intestinal expression of P-gp and MRP2 in man.
There was no pharmacokinetic interaction between talinolol and simvastatin during
their chronic co-administration to healthy subjects.
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Introduction

 

Talinolol is a 

 

β

 

1

 

-selective adrenoreceptor blocking agent
used to treat arterial hypertension and coronary heart
disease. The drug is slowly and incompletely absorbed
after oral administration despite adequate lipid solubil-
ity (logD 

 

=

 

1.1 at pH 7.4 and 37

 

°

 

C) and the absence of
significant first-pass metabolism [1, 2]. There is ample
evidence that the oral absorption of talinolol is influ-
enced by the multidrug transporter P-glycoprotein (P-
gp, expressed by the 

 

ABCB1 gene

 

) and the multidrug
resistance-related protein 2 (MRP2, expressed by the

 

ABCC2

 

 gene). First, talinolol was shown to be a sub-
strate of P-gp and/or MRP2 using Caco2 cell monolay-
ers, rat inverted intestinal sacs and 

 

mdr1a/1b

 

 knock-out
mice [2–4]. Second, the drug is secreted into gut lumen
against a steep concentration gradient [5, 6], and the
total body clearance is significantly related to intestinal
expression of P-gp [7]. Third, pretreatment of healthy
subjects with the P-gp (and MRP2) inducers rifampicin,
carbamazepine, thyroxine and St John’s Wort is ass-
ociated with lower bioavailability of talinolol, whereas
co-medication with the P-gp inhibitors erythromycin
and D-

 

α

 

-tocopheryl polyethylene glycol 1000 succinate
(TPGS, a surfactant in pharmaceutical dosage forms)
leads to higher bioavailability [7–12]. Fourth, talinolol
is better absorbed and more widely distributed in
MPR2-deficient rats (Groningen Yellows, GY/TR

 

–

 

)
[13]. However, the intestinal clearances of talinolol after
intravenous and oral administration in man have not yet
been determined.

During cardiovascular therapy, talinolol may interact
with other substrates of P-gp and/or MPR2 as shown for
the cardiac glycoside digoxin [14]. Another candidate
for interaction with talinolol is the cholesterol-lowering
simvastatin, which undergoes intensive presystemic
‘first-pass’ elimination leading to very low bioavai-
lability (

 

<

 

5%). The drug is completely metabolized to

 

β

 

-hydroxy simvastatin acid and four other active metab-
olites, mainly by CYP3A4, and also in part by CYP2C9
and CYP2D6 [15]. Furthermore, simvastatin seems to
be substrate of P-gp, MPR2 and the organic anion
uptake transporting protein 1B1 (OATP1B1, expressed
by the 

 

SLCO1B1

 

 gene) and may compete with the active
transport of other drugs [16–20]. Elevation of simvasta-
tin plasma concentrations after treatment with itracona-
zole, erythromycin or ciclosporin, as well as the
decrease in bioavailability after enzyme induction by
rifampicin, probably result from an interaction with
CYP3A4 and P-gp [21, 22]. Therefore, talinolol might
interact with the P-gp-dependent transport of simvasta-
tin. On the other hand, there is some experimental evi-
dence that simvastatin may increase expression of

multidrug transporter proteins [23]. The structurally
very similar lovastatin was shown to be a strong inducer
of PXR, which regulates the expression of  CYP3A4, 

 

in
vitro

 

 [24]. It is not known whether simvastatin causes
the induction of intestinal efflux transporters in man,
which in turn could impair the oral absorption of certain
drugs.

In this paper, we describe the basic pharmacokinetics
of talinolol including its intestinal clearance and corre-
lations to 

 

ABCB1

 

, 

 

ABCC2

 

 and 

 

SLCO1B1

 

 expression
and/or genotype. Furthermore, we confirm the absence
of relevant clinical pharmacokinetic drug interactions
between talinolol and simvastatin.

 

Materials and methods

 

Clinical study protocol

 

Subjects

 

Eighteen healthy white subjects (10 males,
eight  females;  age  21–30 years;  body  mass  index
19.0–27.0 kg m

 

−

 

2

 

) were selected according to their

 

ABCB1

 

 haplotype [25–27] as follows: 2677GG/3435CC
(*1/*1, 

 

N

 

 

 

=

 

 4), 2677GG/3435CT (*1/*6, 

 

N

 

 

 

=

 

 3),
2677GT and 3435CT (*1/*3, 

 

N

 

 

 

=

 

 3), 2677GT/3435TT
(*6/*6, 

 

N

 

 

 

=

 

 1), 2677TT/3435CT (*7/*3, 

 

N

 

 

 

=

 

 1),
2677TT/3435TT (*3/*3, 

 

N

 

 

 

=

 

 6). The frequency of the
carriers with the *3 allele were higher than in an unse-
lected population. Additional screening for 

 

ABCC2

 

polymorphisms identified six subjects with the CC-
allele, 11 subjects with the CT and one subject with the
TT allele with respect to the 

 

C-24T

 

 polymorphism [26,
28]. The following haplotypes of the 

 

SLCO1B1

 

 gene
[28–30]: *1a/*1a (

 

N

 

 

 

=

 

 7), *1a/*1b (

 

N

 

 

 

=

 

 5), *1b/*5
(

 

N

 

 

 

=

 

 1), *1b/*15 (

 

N

 

 

 

=

 

 3) and *1a/*5 (

 

N

 

 

 

=

 

 1) were
identified.

The subjects were in good health based on medical
history, physical examination, 12-lead ECG and bicycle
ergometry, and routine clinical chemistry and haematol-
ogy. All subjects tested negative for drugs, hepatitis virus
B and C (HBV, HCV) and human immunodeficiency
virus (HIV), took no medication except hormonal con-
traceptives (females), did not drink alcohol or drank

 

<

 

25 g per day. Two subjects were smokers (less than 10
cigarettes per day). A standardized diet was served dur-
ing hospitalization. The study protocol was approved by
the local ethics committee (University of Greitswald)
and all subjects gave written informed consent.

 

Study protocol

 

The study with simvastatin and talinolol
was performed according to the ICH-GCP guidance fol-
lowing the design shown in Figure 1. After inclusion, 11
subjects who agreed to two duodenal biopsies under-
went a gastroduodenoscopy and tissue specimens were
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taken from the lower duodenal mucosa and immediately
transferred into liquid nitrogen for mRNA analysis.

On the 1st and 8th study day, the pharmacokinetics
of talinolol (Cordanum

 

®

 

; AWD.pharma, Germany) was
evaluated in the entire group of 18 subjects after intra-
venous infusion of 30 mg in 200 ml saline (infusion
time 30 min) and after oral administration of 100 mg
according to a cross-over design with random alloca-
tion. Blood was sampled before and 0.17, 0.33, 0.5,
0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 16, 24
and 36 h after intravenous infusion and 0.5, 1, 1.5, 2,
2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 16, 24 and 36 h after
oral administration. Urine was sampled for 3 days and
faeces for 7 days.

Between the 15th and 36th study days, the subjects
were treated orally with 40 mg simvastatin once daily
(Simvacard

 

®

 

; AWD.pharma), and talinolol (100 mg
daily) was coadministered between the 21st and 29th
study days. Serum concentration–time profiles of simv-
astatin were monitored on the 20th study day and those
of simvastatin and talinolol on the 29th study day.
Venous blood was collected before and 0.5, 1, 1.5, 2,
2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 16, and 24 h (36 h, for
the assessment of talinolol half-life) after drug adminis-
tration. Urine was collected on the 29th study day and
faeces between the 25th and 30th study days. Additional
trough concentrations were measured as indicated in
Figure 1. A second gastroduodenoscopy with duodenal
biopsy was performed in the subgroup of 11 subjects at
the end of the treatment period with simvastatin (34/
35th study day).

Serum and aliquots of urine and faeces were stored
at 

 

−

 

80 

 

°

 

C until the analysis. On blood sampling days,
standard meals were given 5, 8 and 11 h after adminis-
tration of the study medication. A standard breakfast
during chronic treatment with talinolol and simvastatin
was given 1 h after the respective morning administra-
tion of the drugs. The meals did not include food con-
stituents that are known to inhibit or induce the function
of the transporter proteins investigated.

 

Drug and metabolite analysis

 

Simvastatin and 

 

β

 

-hydroxy simvastatin acid were
assayed using a modified LC-MS/MS method [31, 32].
Simvastatin was obtained from Medinsa (Madrid,
Spain) and simvastatin acid from Synfine Research Inc.
(Richmond Hill, Canada). Sample processing was car-
ried out in an ice-water bath and as rapidly as possible.
In brief, 0.5 ml serum and 25 

 

µ

 

l of the internal standard
solutions (160 ng ml

 

−

 

1

 

 lovastatin and lovastatin acid)
were added to 0.2 ml ammonium acetate buffer
(100 m

 

M

 

, pH 5.0). Lovastatin was purchased from
Sigma-Aldrich (Steinheim, Germany) and lovastatin
acid form Synfine Research Inc. The analytes were
extracted with 4 ml methyl tert-butyl ether. The organic
layer was evaporated to dryness at room temperature
and the residue was dissolved in 100 µl of mobile
phase (1 mM ammonium acetate buffer, pH 4.5) of
which 70 µl was injected onto the precolumn XTerra®

C18 MS, 2.1–10 mm, 3.5 µm and the analytical column
XTerra® C18 MS, 2.1–100, 3.5 µm (Waters, Eschborn,
Germany). The autosampler was precooled to 4°C

Figure 1
Design of the simvastatin–talinolol interaction study

Duodenal biopsy 

40 mg simvastatin po 

30 mg talinolol iv 

100 mg talinolol po 

Talinolol disposition, 100 mg po1

Talinolol disposition, 30 mg iv2

Simvastatin disposition, 40 mg po3

Additional blood sampling (trough) 

Urine sampling 

Feces sampling 

IE 

IE = inclusion examination
1blood sampling:  0, 0.5, 1, 1.5, 2, 2.5, 3,3.5, 4, 4.5, 5, 6, 8, 10, 12, 16, 24, 36 h
2blood sampling:  0, 0.17, 0.33, 0.5, 0.75, 1, 1.5, 2,2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 16, 24, 36 h
3blood sampling:  0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 16, 24 h        

Study day1 8 15 22 29 36 43
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using the Peltier cooling system (Perkin Elmer, Rod-
gau-Jügesheim, Deutschland). For detection, the PE
Sciex API 2000 tandem mass spectrometer with Tur-
boIon® spray (Applied Biosystems, Darmstadt, Ger-
many) was used in positive MRM mode for simvastatin
(m/z 419 → m/z 199) and lovastatin (m/z 405 → m/z
199)  and  in  negative  mode  for  simvastatin  acid  (m/z
435 → m/z 319) and lovastatin acid (m/z 421 → m/z
319). The limit of quantification for simvastatin and
simvastatin acid was 0.05 ng ml−1. Between day accu-
racy was −5.8 to 3.5% (simvastatin) and 1.9–6.2%
(simvastatin acid) of the nominal values. The results for
between-day precision were 7.5–9.2% and 7.1–8.0%,
respectively.

Talinolol in serum, urine and faeces was assayed by
a high-performance liquid chromatography method with
fluorescence detection [14, 33]. The limits of quantifi-
cation for talinolol in serum and urine were 5 ng ml−1

and 25 ng ml−1 in faeces. For talinolol in serum, the
accuracy of the assay was −0.3 to 4.6% of the nominal
values, and the within-day and between-day precision
was 1.1–12.0% and 5.5–7.0%, respectively. For the tali-
nolol in urine, the accuracy was −4.2 to 0.3% of the
nominal values, and the within-day and between-day
precision was 3.6–10.0% and 7.3–9.7%, respectively.
The respective values for faeces were 2.6–6.1% (accu-
racy), 3.3–14.6% and 7.0–13.8% (within-day and
between day precision).

The excretion of talinolol and its metabolites 2-cis, 3-
cis, 3-trans, 4-cis and 4-trans hydroxy talinolol into
urine and faeces was quantified using LC-MS/MS, and
with a XTerra® C18 MS, 2.1–10 mm, 3.5 µm pre-col-
umn and a XTerra® C18 MS, 2.1–100, 3.5 µm analytical
column (Waters, Eschborn, Germany) was used. Detec-
tion was with a PE Sciex API 2000 mass spectrometer
(Applied Biosystems). The TurboIon® spray (400 °C)
was used in positive MRM mode at mass transitions of
m/z 380 → m/z 324 for all metabolites and m/z 300 →
m/z 227 m/z for the internal standard metoclopramide.
The limit of quantification for all talinolol metabolites
in urine and faeces was 5 ng ml−1. Accuracy was
between −11.5 and 5.6%. Within-day and between-day
precision was 0.1–20.2% and 2.3–15.7%, respectively.

Pharmacokinetic and statistical analysis
Maximum plasma concentrations (Cmax, Css,max), mini-
mum concentrations (Cmin, Css,min) and the time to Cmax

(tmax) were taken from the concentration–time curves.
Average steady-state concentration was obtained from
the expression Cav = AUC0–τ /τ (τ = dosage interval). The
area under the serum concentration–time curve during
an administration interval (AUC0–τ) was calculated using

the trapezoidal rule with nontransformed concentration
values. AUC0–∞ was determined up to the last sampling
time above the limit of quantification (AUC0–t) using the
trapezoidal formula and extrapolated to infinity using
the concentrations of the terminal slope after logarith-
mic transformation (AUCt–∞). The elimination half-life
(t1/2) was also estimated from logarithmic values of the
terminal data points. Total body clearance (CL) was
obtained  by  dividng  the  intravenous  dose  by  the
AUC0–∞. Bioavailability (F) was determined from the
expression AUC0–τ × CL/doseoral. Renal clearance (CLR),
metabolic clearance (CLM) and intestinal clearance
(CLintestinal) were derived from the amounts (Ae) excreted
into  the  urine  and  faeces  divided  by  the  respective
AUC0–∞ (single dose) and AUC0–τ (steady state), respec-
tively. Peak–trough fluctuation (PTF) were obtained
from the equation PTF = Css,max − Css,min/Cav, and peak–
trough swing (PTS) from PTS = Css,max − Css,min/Cmin.

The absence of a clinically relevant influence of tali-
nolol on simvastatin disposition was assumed if the 90%
confidence interval on the AUC0−24 h and PTF ratios for
simvastatin given before compared with after talinolol
was within the range 0.80–1.25. Similarly, the absence
of an influence of simvastatin on talinolol disposition
was assumed if the AUC0−24 h (steady state after co-
medication of simvastatin) to AUC0–∞ (single dose
administration before simvastatin) ratio was within the
range 0.80–1.25.

Geometric means and geometric standard deviations
are present for all concentration and pharmacokinetic
data, except F and tmax for which arithmetic means and
standard deviations (M ± SD) were determined. Evalu-
ation of the effect of ABCB1, ABCC2 and OATP1B1
genotypes was based on box plots with median and
quartiles. Correlations were performed using the Spear-
man rank test. Gene–dose effects were evaluated using
the Kruskal–Wallis test and differences were assessed
using the Wilcoxon and Mann–Whitney tests, as
appropriate.

Results
After an intravenous infusion of 30 mg of talinolol
maximum serum concentrations between 340 and
780 ng ml−1 were achieved. The drug was eliminated
with a terminal half-life of about 13 h (Figure 2). The
mean renal clearance was somewhat higher than the
normal creatinine clearance of healthy young subjects.
The metabolic clearance was less than 3% and the intes-
tinal clearance about 20% of the total body clearance.
Nearly 50% of the dose was excreted with the urine, and
about 25% was recovered unchanged in the faeces
(Table 1).
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After a single oral dose, talinolol was rapidly but
incompletely absorbed with a bioavailability of about
75%. Metabolic and renal clearance after oral adminis-
tration were similar to the respective values after intra-
venous administration. About 50% of the excreted
metabolites were detected in urine, the remaining being
present in the faeces. The main metabolite was 4-trans
hydroxy talinolol (Table 2). The apparent intestinal
clearance of talinolol after oral administration was about
twice that after intravenous infusion, suggesting signif-
icant presystemic elimination. On average, about 30%

of the oral dose was excreted with the urine, nearly 40%
in the faeces.

Chronic co-medication of simvastatin did not signif-
icantly influence the steady-state pharmacokinetics of
talinolol. The 90% confidence intervals on the point
estimates of all the pharmacokinetic parameters were
within the range of equivalence of 0.80–1.25 (Table 1).
Only the amount of 4-cis hydroxy talinolol excreted into
the faeces, and hence the metabolic clearance into faeces
was significantly decreased after simvastatin co-
medication (Table 2).

The mean steady-state serum concentration–time pro-
files of simvastatin before and during co-medication
with talinolol were almost identical (Figure 3), and the
corresponding AUC0−24h values were equivalent (point
estimate 1.030; 90% CI 0.882, 1.203). However, the
drug was more slowly absorbed during talinolol admin-
istration based on a significantly decreased PTF. There
was also a tendency for a lower Cmax and longer tmax, but
the 90% confidence intervals of the respective ratios
were not within the stipulated limit of equivalence
(Table 3). Talinolol co-medication also did not markedly
influence the concentration–time profiles of simvastatin
acid, the 90% confidence intervals of the ratios of its
pharmacokinetic parameters except PTS being within
the range of 0.80–1.25 (Figure 3, Table 3).

A power assessment of the equivalence decision with
a sample size of N = 18, an α error of 5%, an equiva-
lence interval of 0.80–1.25 and the true ratios of the
point estimates (R = µTest/µReference) and the true intra-
subject coefficients (IC) from the study, revealed the
following values (nQuery Adviser 5.0, StatSol, Cork,
Ireland): 84% for AUC of simvastatin (R = 1.03,
IC = 28%), 84% for the PTF of simvastatin (R = 1.00,
IC = 29%) and 99% for the AUC of talinolol (R = 1.069,
IC = 12%).

The intestinal expression of ABCB1 mRNA (relative
to 18S mRNA × 10−3, geometric means and geometric
standard deviations) before and after co-medication of
simvastatin was 6.04 (4.83, 15.5) vs. 5.02 (3.50. 9.52;
not significant). The respective values for ABCC2
mRNA expression were 3.27 (2.06, 5.99) and 2.98
(1.50, 3.83, not significant). There were significant
correlations between intestinal ABCB1 mRNA content
and  the  AUC0–∞  as  well  as  the  Cmax  of  talinolol  after
oral administration (Figure 4). Polymorphisms of the
ABCB1 and ABCC2 were considered not to be of func-
tional relevance for the expression of intestinal P-gp and
MRP2 or for the disposition of talinolol and simvastatin
(data not shown). Talinolol half-lives were significantly
shorter in the nine carriers of the SLCO1B1 *1b allele
compared with the seven subjects with the wild-type

Figure 2
The concentration–time profiles (geometric means and standard 

deviations) of talinolol after infusion of 30 mg before and during repeated 

co-medication of 40 mg simvastatin daily (top panel). The concentration–

time curves of talinolol after single oral administration alone and after 

chronic oral administration of 100 mg daily together with 40 mg 

simvastatin daily are given. The study was performed in 18 healthy subjects 

(bottom panel)
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SLCO1B1 *1a/*1a genotype (12.2 ± 1.6 h vs. 14.5 ±
1.4 h, P = 0.01, Figure 5). There was a trend for a higher
faecal excretion of talinolol in subjects with the
SLCO1B1 *1b allele.

Discussion
This paper presents the first data on both the renal and
faecal elimination of the β1-selective blocker talinolol,
which is a probe drug to measure intestinal efflux by P-
gp and/or MRP2 [7–12, 14]. The drug was found to be
slowly and incompletely absorbed, widely distributed
and bi-exponentially eliminated with a terminal half-life
of approximately 12–13 h. The renal clearance was
greater than creatinine clearance in the young healthy
subjects studied, indicating tubular secretion. The met-
abolic clearance of talinolol, for which CYP3A4 is
mainly responsible, was less than 3% of the total body

clearance, and the metabolites were excreted in equal
amounts into urine and faeces [33]. The intestinal clear-
ance of talinolol after intravenous administration was
about 20% of the total body clearance and 50% of the
renal clearance. Apparent intestinal clearance after oral
administration was about twice as high as that after
intravenous administration. Intestinal clearance results
from the net elimination of talinolol via the faeces,
which may result from biliary and/or intestinal excretion
counteracted by intestinal metabolism and/or intestinal
re-absorption. The apparent intestinal clearance after
oral administration of talinolol may also include a con-
tribution form a non-absorbed portion of the adminis-
tered dose. However, in our view the faecal excretion of
talinolol after intravenous administration and the limited
bioavailability of the drug after oral administration may
be explained by intestinal secretion via the efflux trans-

Table 1
Pharmacokinetic parameters of talinolol after intravenous and chronic oral administration and during co-medication with 
simvastatin

Intravenous talinolol (30 mg) Oral talinolol (100 mg) Point estimates (90% CI)
Without
simvastatin

With
simvastatin

Single dose
without simvastatin

Steady-state
with simvastatin

Intravenous
talinolol

Oral
talinolol

AUC0–∞* (ng h−1 ml−1) 1406 1405 3438 3674 0.999 1.069
(1167, 1695) (1210, 1632) (2667, 4433) (2835, 4761) (0.946, 1.056) (0.997, 1.145)

AUCt-∞ (%) 12.1 ± 2.8 12.7 ± 3.6 13.3 ± 3.4 – – –
Cmax† (ng/ml) 496 464 337 382 0.936 –

(401, 613) (377, 570) (235, 483) (281, 520) (0.879, 0.997) –
tmax (h) 0.46 ± 0.09 0.48 ± 0.05 2.69 ± 0.97 3.53 ± 2.02 0.019

(− 0.014, 0.051)
0.833
(− 0.008, 1.674)

F (%) – – 73.3
(62.5, 86.0)

78.4
(64.1, 95.9)

1.069
(0.983, 1.164)

t1/2 (h) 13.5 13.3 13.0 13.9 0.988 1.073
(12.1, 15.1) (11.3, 15.7) (11.3, 15.0) (11.8, 16.5) (0.929, 1.051) (0.997, 1.153)

CL (ml min−1) 356 356 – – 1.001 –
(295, 429) (306, 413) (0.947, 1.057) –

CLR (ml min−1) 152 167 148 153 1.102 1.029
(94, 246) (94, 297) (110, 199) (106, 221) (0.803, 1.511) (0.885, 1.197)

CLM (ml min−1) 7.26 8.02 9.57 8.11 1.105 0.848
(3.95, 13.37) (5.45, 11.81) (7.16, 12.78) (5.40, 12.19) (0.796, 1.533) (0.730, 0.986)

CLintestinal (ml min−1) 74 100 146 175 1.356 1.197
(37, 147) (62, 162) (68, 315) (94, 324) (1.089, 1.689) (0.884, 1.620)

Aeurine (mg) 13.0 14.4 31.2 34.5 1.109 1.106
(8.9, 19.1) (9.0, 23.2) (23.8, 41.0) (23.6, 50.4) (0.838, 1.467) (0.921, 1.327)

Aefaces (mg) 6.3 8.5 31.6 39.1 1.345 1.235
(3.5, 11.3) (5.6, 13.0) (17.2, 58.1) (24.4, 62.5) (1.120, 1.617) (0.937, 1.630)

Geometric means and geometric standard deviations are given for all parameters except tmax, for which arithmetic means and 
standard deviations are listed. Point estimates and 90% confidence intervals were assessed for the evaluation of equivalence after 
co-medication with simvastatin. *AUC0−24 h. †Css, max in case of repeated oral administration of talinolol.
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Table 2
Metabolic clearances of talinolol and the amounts of its hydroxy metabolites excreted into urine and faeces before and during 
simvastatin co-medication are given

Intravenous talinolol (30 mg) Oral talinolol (100 mg)
Without
simvastatin

With
simvastatin

Single dose
without simvastatin

Steady state
with simvastatin

CLM (faeces) (ml min−1) 4.97 5.28 6.70 4.64*
(2.52, 9.77) (3.30, 8.45) (4.95, 9.07) (2.61, 8.27)

CLM (urine) (ml min−1) 1.95 2.48 2.83 3.18
(1.13, 3.38) (1.72, 3.58) (1.90, 4.21) (2.10, 4.82)

Amounts excreted into urine and faeces
2-cis-OH (mg) 0.033 0.037 0.107 0.078

(0.021, 0.052) (0.022, 0.061) (0.072, 0.160) (0.044, 0.140)
3-cis-OH (mg) 0.175 0.176 0.494 0.440

(0.091, 0.336) (0.109, 0.285) (0.314, 0.777) (0.299, 0.648)
3-trans-OH (mg) 0.057 0.070 0.168 0.169

(0.033, 0.098) (0.045, 0.108) (0.112, 0.252) (0.117, 0.243)
4-cis-OH (mg) 0.040 0.051 0.204 0.133*

(0.026, 0.061) (0.027, 0.096) (0.127, 0.330) (0.082, 0.216)
4-trans-OH (mg) 0.289 0.312 0.981 0.945

(0.172, 0.487) (0.208, 0.466) (0.702, 1.371) (0.686, 1.301)

Data are geometric means (geometric standard deviations). *P < 0.05 compared with data after single-dose administrations
of talinolol without simvastatin (Wilcoxon test).

Table 3
Pharmacokinetic parameters (geometric mean and standard deviation) of simvastatin and hydroxy simvastatin acid after chronic 
treatment with 40 mg daily without and during co-medication of 100 mg talinolol.

Simvastatin Simvastatin acid Point estimates (90% CI)
Without
talinolol

With
talinolol

Without
talinolol

With
talinolol Simvastatin

Simvastatin
acid

AUC0–24 (ng h−1 ml−1) 27.8 28.2 32.4 33.4 1.015 1.030
(14.8, 52.3) (16.9, 47.1) (18.8, 56.1) (22.4, 49.9) (0.866, 1.191) (0.882, 1.203)

PTF (%) 4.46 3.68* 2.96 2.96 0.825 1.000
(2.54, 7.83) (2.29, 5.91) (1.81, 4.86) (2.07, 4.24) (0.699, 0.973) (0.847, 1.180)

Css,max (ng ml−1) 5.47 4.60 0.35 0.29 0.842 0.823
(3.85, 7.76) (3.08, 6.88) (0.17, 0.71) (0.12, 0.67) (0.723, 0.980) (0.621, 1.090)

Css,min (ng ml−1) 0.23 0.18 1.35 1.39 0.800 1.030
(0.10, 0.51) (0.08, 0.42) (0.78, 2.34) (0.93, 2.08) (0.585, 1.095) (0.882, 1.203)

Cav (ng ml−1) 1.16 1.18 1.87 1.84 1.015 0.986
(0.62, 2.18) (0.71, 1.96) (1.28, 2.73) (1.35, 2.52) (0.866, 1.191) (0.863, 1.128)

PTS (%) 22.8 23.9 7.18 8.86 1.047 1.2349
(9.90, 52.6) (9.02, 63.3) (3.34, 15.44) (3.61, 21.77) (0.757, 1.448) (0.919, 1.661)

Point estimates and 90% confidence intervals are presented for the comparison of simvastatin disposition when given alone
and in the presence of talinolol. *P < 0.05 compared with data after administration of simvastatin without talinolol co-medication
(Wilcoxon test).
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porter proteins P-gp and MRP2, of which talinolol is a
substrate [2, 4–7]. Unexpectedly, we found a positive
correlation between intestinal ABCB1mRNA expression
and AUC0–∞ of oral talinolol in our non-induced healthy
subjects. Furthermore, talinolol absorption was not
dependent on polymorphisms of the ABCB1 and/or
ABCC2 genes.

These findings show the complexity of talinolol phar-
macokinetics [34]. On the one hand, upregulation of
intestinal efflux by rifampicin, carbamazepine, thyrox-
ine and St John’s Wort results in lower oral absorption
of talinolol [7–10]. On the other hand, co-medication of
verapamil, an inhibitor of P-gp and MRP2, also leads to

lower serum concentrations of oral talinolol in mdr1a/
1b knock-out and wild-type mice and in healthy sub-
jects. In the latter case an increase in concentration
would be expected, at least in species with intact
intestinal efflux transporters [3, 35]. Very recently,
significantly decreased talinolol bioavailability without
change in intestinal P-gp expression was observed after
grapefruit juice ingestion [36]. The authors of this work
explained their findings on the presence of an unknown
organic anion uptake transporter protein (OATP), which
is inhibited by verapamil and grapefruit constituents and
which overshadows the efflux of talinolol mediated by
P-gp and/or MRP2. One might speculate that these
OATPs in non-induced subjects are coregulated with
intestinal P-gp and/or MRP2. However, it is not known
how talinolol is taken up from gut lumen and how this
mechanism interacts with the intestinal efflux of the
drug.

Figure 3
The concentration–time profiles (geometric means and standard 

deviations) of simvastatin (top panel) and simvastatin acid (bottom panel) 

after chronic treatment with 40 mg simvastatin daily before and during co-

medication of 100 mg talinolol daily in 18 healthy subjects
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Correlations between intestinal expression of ABCB1 mRNA and the 

AUC0–∞ and Cmax of talinolol after chronic oral administration in 11 healthy 

subjects

4

2500

3000

3500

4000

4500

r = 0.627

p = 0.039A
U

C
 (

ng
xh

/m
l)

MDR1mRNA/18Sx10–3

4

200

300

400

500

600

r = 0.718

p = 0.013C
m

ax
 (

ng
/m

l)

MDR1mRNA/18Sx10–3

6 8 10 12 14 16

6 8 10 12 14 16



A. Bernsdorf et al. 

448 61:4 Br J Clin Pharmacol

We found some evidence that the liver-specific uptake
transporter OATP1B1 might be involved in the disposi-
tion of talinolol. In carriers of the SLCO1B1*1b allele,
the half-life of the drug was significantly shorter and
faecal excretion tended to be increased. Talinolol in
carriers with the *1b variant probably undergoes better
hepatic uptake, leading to more efficient secretion into
bile by canalicular P-gp and/or MRP2. The protein
expressed by SLCO1B1 *1b has a higher activity than
that by the wild-type gene, as shown by oestrone sul-
phate uptake in SLCO1B1 *1b-transfected HeLa cells
and by the results of a pharmacokinetic study with prav-
astatin in healthy subjects with the *1b allele [30, 37].
However, the present results are difficult to interpret
because talinolol undergoes little biliary excretion [38].
Therefore, in vitro data on the binding of the drug to
OATP1B1, and pharmacokinetic data from a larger
number of subjects are needed to confirm the role of the
SLCO1B1 gene polymorphism in the disposition of
talinolol.

In treatment of cardiovascular diseases, talinolol is
frequently given in combination with other drugs that
are subject to CYP3A4 metabolism and/or active
membrane transport. One example is the cholesterol-
lowering statin simvastatin. This drug may compete
with talinolol for intestinal and hepatic CYP3A4, P-gp
and MRP2, and probably with hepatic OATP1B1, for

which simvastatin is a substrate [16–20]. Since simvas-
tatin undergoes substantial presystemic elimination,
markedly increased blood concentrations are expected
during co-administration with talinolol, also a substrate
of P-gp, MRP2 and CYP3A4. The observed changes in
talinolol disposition were assumed to be much lower
because of its comparably low presystemic elimination.
Furthermore, we hypothesized that simvastatin may
affect the disposition of talinolol by induction of intes-
tinal efflux transporters. Simvastatin is similar in struc-
ture to the PXR-inducer lovastatin and it regulates
expression of mdr2 and mdr1b in rats [23].

In conclusion, the pharmacokinetics of talinolol and
simvastatin were not affected during co-administration
of these drugs to healthy subjects.

The work was supported by the German Federal Minis-
try for Education and Research (grant 01ZZ0403) and
a research grant of AWD.pharma GmbH & Co. KG
Dresden.
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