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Serum uric acid may be an independent risk factor for cardiovascular disease. This
review examines this association, potential mechanisms, and explores whether strat-
egies to reduce uric acid will improve outcomes. The recent studies of xanthine
oxidase inhibition are given particular focus. Epidemiological evidence supports the
theory that uric acid is an independent risk factor for cardiovascular disease. Recent
studies of losartan, atorvastatin and fenofibrate suggest that uric acid reduction
contributes to the risk reduction offered by these therapies. Several small studies of
xanthine oxidase inhibition have shown improvements in measures of cardiovascular
function of a similar magnitude to that of other proven preventative treatments. These
trial data and the convincing epidemiological evidence mandate that large clinical trials
of uric acid-lowering strategies are performed in patients with or at high risk of
cardiovascular disease. If such approaches are shown to be effective in reducing
cardiovascular events, they would represent a novel and cost-effective preventative
approach.

Introduction
The role of serum uric acid in the development of car-
diovascular disease has been the subject of controversy
for many years. Epidemiological evidence clearly sug-
gests an association between increasing uric acid con-
centrations and event rates and mortality in a variety of
cardiovascular disease states. However, the presence of
a causal relationship is less clear. Elevated concentra-
tions of uric acid may reflect a separate underlying
disease process, atherosclerosis itself or increased xan-
thine oxidase activity, all of which may influence vas-
cular risk. Conversely, a causal role has been suggested

by posthoc analyses of the losartan intervention for
endpoint reduction (LIFE) study [1], clinical trials of
fenofibrate [2] and atorvastatin [3] and preclinical data
suggestive of direct deleterious effects on platelet and
endothelial function. Interventional studies of xanthine
oxidase inhibition, which will reduce both uric acid
and oxidative stress, have been conducted in patients
with or at high risk of vascular disease [4–13].
Although these are small and few in number, their
results suggest a potential benefit of intervention to
modify uric acid metabolism in the prevention of car-
diovascular disease.
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This article will briefly review evidence concerning
the relationship between uric acid and cardiovascular
disease and discuss possible pathophysiological mecha-
nisms before focusing on the interventional studies to
date and discussing the significance of their findings.

Biochemistry of uric acid in man
Uric acid is a breakdown product of ingested and endog-
enously synthesized purines (Figure 1). DNA and RNA
are degraded into purine nucleotides and bases, which
are then metabolized, via the action of xanthine oxidase,
to xanthine and uric acid. These later steps are irrevers-
ible and generate superoxide anions. Uric acid under-
goes no further metabolism in humans and is excreted by
the kidneys and intestinal tract. In the kidney, it is fil-
tered and can be subsequently reabsorbed or further
excreted in the proximal tubule, predominantly under
the action of a urate transporter (URAT1) [14].

Serum concentrations are governed by the balance of
production and excretion. Production can be increased
by several mechanisms including rare enzymatic
defects, states of high cell turnover and alcohol ingestion
(partly because of purines contained in alcoholic drinks
[15, 16]). However, the majority of cases of elevated
serum uric acid result from impaired renal excretion,

possibly because of interindividual differences in func-
tion of the URAT transporter.

Uric acid as a cardiovascular risk factor
Most large, well-conducted epidemiological studies
support the hypothesis that elevated serum uric acid is a
powerful predictor of increased vascular event rate and
mortality in patients with hypertension, diabetes, and in
those with known cardiovascular disease (Table 1). The
results in healthy populations are less consistent. Studies
have typically utilized data from randomized control
trials or epidemiological databases and expressed results
as change in relative risk per increment of uric acid or as
relative risk across uric acid quintiles. A more detailed
discussion of these studies can be found elsewhere [17].

Exogenous
purines

Endogenous
purines 

Xanthine
oxidase 

Uric acid
production

Atherosclerosis and
cardiovascular disease 

Renal
excretion 

Losartan (and
other uricosurics)

Allopurinol

NO
inactivation

Endothelial
dysfunction 

Increased
platelet

aggregation

O2

Serum uric
acid 

–

+

Figure 1
Potential mechanisms by which elevated serum uric acid is related to

cardiovascular disease and potential methods of risk reduction

Table 1
Summary of studies examining the relationship between
serum uric acid and outcome

Ref. Population Change in outcome measure

[18] DM HR 1.91 (1.24, 2.94) (serum uric acid
>295 mmol l-1) for risk of stroke

[19] DM OR 1.004 (1.001, 1.008)* for presence
of PVD

[20] DM OR 1.03 (1, 1.06)* for presence of PVD
[27] DM/stroke HR 1.49 (1.21, 1.84)* for recurrent CV

event
[26] Acute stroke RR 1.27 (1.18, 1.36)* for recurrent CV

events
[28] Acute stroke Serum uric acid? in those with early

clinical deterioration (P = 0.001)
[21] ↑ BP HR 1.73 (1.01, 3)† for CV event rates
[22] ↑ BP HR 1.32 (1.03, 1.69)† for CV events
[23] ↑ BP HR 1.22 (1.11, 1.35)¶ for development

of CV disease
[24] ↑ BP HR 1.14 (1.02, 1.27)‡ for CV mortality

HR 1.34 (1.14, 1.57)‡ for fatal stroke
[25] ↑ BP HR 1.03 (0.93, 1.14)‡ for CV mortality

HR 1.06 (0.99, 1.13)‡ for all CV events
[29] CAD HR 1.5 (1.02, 2.1)† for all-cause mortality
[30] CAD HR 1.23 (1.11, 1.36)§ for all-cause

mortality

Results expressed as ratio and 95% CI. DM, Diabetes
mellitus; PVD, peripheral vascular disease; CV, cardiovas-
cular; CAD, angiographic coronary disease. *Per additional
0.1 mmol l-1in serum uric acid. †For highest vs. lowest
quintile/quartile. ‡For each 50 mmol l-1increment in serum
urate; §¶Per additional 0.6 and 0.86 mmol l-1in serum uric
acid, respectively.
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Cardiovascular risk states
In patients with diabetes, serum uric acid concentrations
above the median (295 mmol l-1) have been associated
with near double an increased risk of stroke [hazard ratio
(HR) 1.91, 95% confidence interval (CI) 1.24, 2.94]
[18], while increasing uric acid concentrations were
associated with increased prevalence of peripheral arte-
rial disease in both a Taiwanese [19] and Australian
cohort [20] [odds ratio (OR) 1.004, 95% CI 1.001, 1.008
and 1.03, 95% CI 1, 1.06, per additional 0.1 mmol l-1 in
serum uric acid, respectively].

In patients with essential hypertension, serum urate in
the highest quartile was associated with an increased
cardiovascular event rate (HR 1.73, 95% CI 1.01, 3),
cardiovascular mortality and all-cause mortality (HR
1.63, 95% CI 1.02, 2.57) [21]. A similar positive asso-
ciation was seen in the SHEP trial, where serum uric
acid in the highest quartile conveyed an increased risk of
cardiovascular events (HR 1.32, 95% CI 1.03, 1.69) but
not of all-cause mortality or stroke [22]. Other large
studies have shown that small increments in serum uric
acid are associated with increasing incidence of cardio-
vascular disease and with cardiovascular death [23, 24].
These associations persist despite adequate adjustment
for confounding factors and other risk factors. However,
in the Syst-Eur study of hypertensive patients, a trend
but no association was seen with cardiovascular events
or mortality (HR 1.06, 95% CI 0.99, 1.13 and HR 1.03,
95% CI 0.93, 1.14 per 50 mmol l-1 increment in serum
urate, respectively) [25]. While the event rate was
similar to that in other studies, the proportion of females
was far greater, meaning it is possible that a gender
effect has attenuated the association.

Cardiovascular disease
In patients with stroke, increasing serum uric acid con-
centrations have been associated with a reduced likeli-
hood of a favourable outcome and an increased risk of
recurrent vascular events [OR 0.78, 95% CI 0.67, 0.91
and relative risk (RR) 1.27, 95% CI 1.18, 1.36 per addi-
tional 0.1 mmol l-1 in serum uric acid, respectively] [26].
This association was more prominent in diabetic patients
[27]. Elevated concentrations of serum uric acid in the
early stages after acute stroke have also been associated
with early clinical deterioration [28]. In patients with
angiographically defined coronary artery disease, serum
uric acid in the highest quintile [29] and quartile [30] has
been shown to be predictive of all-cause mortality (HR
1.5, 95% CI 1.02, 2.1 and HR 1.23, 95% CI 1.11, 1.36,
respectively). Increasing concentrations of serum uric
acid have also been shown to strongly predict mortality,
need for cardiac transplant and in-hospital mortality in

those with cardiac failure [31, 32]. Conversely, it has
been shown that increased serum uric acid in the acute
phase following stroke is associated with a good
outcome [33], a finding that is addressed later.

Healthy populations
The NHANES study [34] showed an association with
each 59.48 mmol l-1 increment in serum uric acid leading
to increased risk of cardiovascular events (HR 1.09, 95%
CI 1.02, 1.18 in men) and cardiac mortality (HR 1.17,
95% CI 1.06, 1.28 in men). A yet more significant asso-
ciation was seen in women. However, a large analysis
from the Framingham Heart study cohort found no asso-
ciation with cardiovascular mortality after adjustment
for diuretic therapy [35] and a similar lack of association
has been reported in other large studies of healthy indi-
viduals [36–38]. Lower event rates in such healthy popu-
lations may explain this inconsistency; larger sample
sizes are required and some may have lacked power to
detect an independent association.

Against a direct causal association
It is argued that elevated serum uric acid in those with
cardiovascular disease simply reflects the presence of
other risk factors such as hypertension or diabetes,
diuretic treatment, impaired renal function, atheroscle-
rosis itself or increased oxidative stress.

Worsening renal function is associated with increased
serum uric acid concentrations and increased burden of
cardiovascular disease. Markers of oxidative stress are
increased in patients with chronic renal disease and are
predictive of increased cardiovascular mortality [39, 40].
Successful renal transplantation [41–43] improves such
markers. Therefore, the association may simply reflect
impaired renal function and the associated oxidative
stress and cardiovascular risk. While most studies have
adequately adjusted for renal impairment, it cannot be
excluded that raised uric acid concentrations reflect or
contribute to subclinical levels of renal impairment
which contribute to the association in as yet undefined
ways.

Even in those with normal renal function, higher con-
centrations of uric acid may reflect higher levels of xan-
thine oxidase activity and oxidative stress. This would
also explain why serum uric acid concentrations rise
after an ischaemic insult, as discussed below. The action
of xanthine oxidase leads to generation of superoxide
anions and is one of the principle sources of reactive
oxygen species (ROS) in the human vasculature [44,
45]. The molecular effects and importance of ROS in
cardiovascular disease has already been extensively
reviewed [46–49]. In summary, once formed, superoxide
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anions can inactivate nitric oxide (NO), leading to for-
mation of peroxynitrite, which is also a strong oxidant.
This inhibits endothelium-dependent vasorelaxation,
limits the favourable effects of NO on platelet aggrega-
tion and vascular smooth muscle proliferation and
causes oxidation of DNA and lipids; all factors integral
to development of atherosclerosis [50]. Under normal
circumstances, ROS production is usually countered by
antioxidant defence mechanisms, including the action of
superoxide dismutase (SOD) [51].

As well as this putative role in atherosclerosis devel-
opment, ROS production increases acutely following
cerebral or cardiac ischaemia and may contribute to the
degree and extent of tissue damage [52–54]. This
hypothesis is supported by animal models of ischaemic
stroke where SOD knockout mice exhibit greater lesion
volumes after temporary middle cerebral artery occlu-
sion [55–57], whereas SOD-overexpressing mice exhibit
reduced lesion volume [58]. Infusion of SOD and cata-
lase have led to a reduction in stroke lesion volume in a
murine stroke model [59]. Human studies have also
shown that locally increased oxidative stress and
reduced peripheral antioxidant activity are associated
with increased stroke lesion volume and a greater neu-
rological deficit [60, 61]. Similar work in animal models
of myocardial infarction has suggested oxidative stress
is associated with increased development of heart failure
[62, 63]. It is also likely that oxidative stress predisposes
to development of heart failure after acute myocardial
infarction in humans [64, 65]. Thus, increased uric acid
concentrations may simply reflect increased xanthine
oxidase activity, which may directly contribute to the
development of atherosclerotic disorders and predispose
to more severe vascular events.

There is evidence that uric acid has antioxidant activ-
ity and that concentrations may rise after an ischaemic
insult. This has led to an alternate hypothesis that
elevated serum uric acid represents a physiological, and
perhaps protective, response to the oxidative stress that
characterizes many vascular disease states [66, 67]. In a
rat model of cerebral ischaemia, brain uric acid concen-
trations increased [68, 69] and in a transient ischaemia
model, infusion of uric acid led to a reduction of infarct
volume and improved behavioural outcome [69]. This is
further supported by data from a rat model of traumatic
brain injury and a mouse model of multiple sclerosis,
where uric acid was found to reduce formation of per-
oxynitrite radicals [70, 71]. In healthy human volun-
teers, uric acid administration has been shown to
increase serum antioxidant capacity [72]. In a study of
800 patients with ischaemic stroke, admission serum
uric acid was higher in those with a good outcome and

increasing levels associated with a good outcome (OR
1.12, 95% CI 1, 1.25 per additional mg dl -1 uric acid)
[33]. This finding is in direct contrast to those of other
studies [26–28].

While these findings warrant consideration, the poten-
tial antioxidant properties of uric acid in vitro or in vivo
should not be overinterpreted. Increased local tissue
concentrations in animal models of ischaemia and brain
injury may simply reflect the levels of oxidative stress
and xanthine oxidase activity, and not an innate protec-
tive response. The substance itself may well have anti-
oxidant properties but its generation and associated
superoxide anion production may be of much greater
significance and detriment. Even the intriguing findings
that uric acid infusion may be protective in animal
models of brain ischaemia do not imply that uric acid-
lowering strategies, and particularly those involving
xanthine oxidase inhibition, could not have favourable
effects in vivo.

For a causal association
Data from animal and in vitro studies raise the possibil-
ity of a direct causal mechanism for uric acid in cardio-
vascular disease, which provides further support for the
convincing epidemiological associations. Monosodium
urate crystals have been shown to stimulate release of
the platelet constituents serotonin, adenosine triphos-
phate and adenosine diphosphate [73], while uric acid
has been shown to stimulate rat vascular smooth muscle
production in vitro [74]. Uric acid may also increase
oxygenation of low-density lipoprotein (LDL) [75] and
may have a causative role in the development of hyper-
tension [76–78].

Pharmacological intervention to lower uric acid
Several drugs are known to lower uric acid. These either
increase uric acid excretion (urosuric drugs), block the
final step in uric acid production via xanthine oxidase
inhibition or lead to uric acid breakdown (rasburicase).
The most effective urosuric drugs are probenecid and
sulfinpyrazone, while fenofibrate (a fibrate) [79] and
losartan (an angiotensin II antagonist) [80, 81] also have
urosuric activity. Rasburicase is a recombinant urate-
oxidase enzyme which converts uric acid to allantoin. It
is used in association with some anticancer treatments
and is unsuitable for repeated dosing. There are two
commercially available xanthine oxidase inhibitors,
allopurinol and oxypurinol. Allopurinol is rapidly
metabolized to oxypurinol, which is an analogue of xan-
thine and preferentially binds to xanthine oxidase,
thereby inhibiting its activity [82]. Because of its action
on both uric acid concentrations and xanthine oxidase
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activity, allopurinol is a logical drug to study in trials of
cardiovascular risk reduction.

Allopurinol is generally well tolerated with few side-
effects. Its major indication is in the prophylaxis of gout
[83]. Side-effects typically comprise gastrointestinal
upset and rashes. A rash develops in approximately 2%
of patients and typically subsides after treatment is dis-
continued. More serious side-effects, such as general-
ized hypersensitivity, occur in less than 1 in 1000 cases
and include exfoliative dermatitis, often with vasculitis,
fever, liver dysfunction, eosinophilia and acute intersti-
tial nephritis [84]. The rate of adverse reaction is highest
in patients with renal dysfunction and rashes are more
common with concurrent amoxicillin therapy [85, 86].
There is a known interaction with azathioprine and
6-mercaptopurine therapy and some rare reports of
cytopenia. This side-effect profile is comparable to that
of commonly used secondary preventative agents such
as HMG-CoA reductase inhibitors [87] and angiotensin
converting enzyme inhibitors [88, 89].

Urate-lowering drugs and cardiovascular risk
Three drugs known to reduce cardiovascular mortality
have been shown to reduce serum uric acid. This may
explain some of their beneficial effect, but changes in
other risk factors such as renal function and blood pres-
sure may explain both the beneficial effects and changes
in uric acid concentrations.

Fenofibrate is a fibric acid derivative known to reduce
total and LDL-cholesterol by approximately 15%, with a
similar increase in high-density lipoprotein-cholesterol
and with larger reductions in triglyceride concentrations
[90]. Fibrates reduce the incidence of cardiac events in
dyslipidaemic patients [91] and in those with coronary
disease [92]. These benefits may be greatest in Type 2
diabetes [93], where they have been shown to reduce
atherosclerosis progression [2] and total vascular events
[94]. Fenofibrate reduces serum uric acid concentrations
(via increased renal excretion) by as much as 46% in
healthy volunteers, hypertensive and diabetic patients
and those with gout on specific urate-lowering therapy
[95–97]. This may provide adjunctive efficacy in the
treatment of gout when combined with allopurinol [98,
99] and may contribute to the reduced vascular risk
associated with fibrate therapy. This effect is not seen
with other fibrates [100] and its mechanism is elusive,
although unlikely to be mediated by improvements in
renal function [101].

Losartan is an angiotensin II receptor antagonist
which is superior to atenolol in the prevention of cardio-
vascular events when given to hypertensive patients with
left ventricular hypertrophy [102]. Losartan is known to

increase renal uric acid excretion [103] (by as much as
30%), thereby causing significant reductions in serum
uric acid [104]. This is mediated via effects on the urate/
anion transport mechanism in the renal proximal tubule
[105]. This is not a class effect; other angiotensin II
antagonists have little or no effect on serum uric acid
excretion [106]. Up to 29% of the 13% relative risk
reduction seen with losartan use in the LIFE study has
been attributed to its effect on serum uric acid [1]. Serum
uric acid increased with both atenolol and losartan use in
the LIFE study, but the increase was significantly less
with losartan. Whether this underpins much of the
benefit of losartan and whether it can attenuate the pos-
sibly detrimental effects of diuretics on uric acid
requires further clarification. Although the effect was
independent of measures of renal function, treatment
with ACE blockade or angiotensin II antagonists reduce
levels of oxidative stress [107], which could itself
account for this added benefit.

Statin therapy has also been shown to lower serum
uric acid. In the GREACE study, atorvastatin was asso-
ciated with a fall in serum uric acid (by 8.2%), whereas
serum uric acid increased in those patients allocated to
the placebo group (by 3.3%). After extensive adjust-
ment of several risk factors, including change in renal
function, each 60 mmol l-1 reduction in serum uric acid
was associated with a reduction in vascular event rates
(HR 0.76, 95% CI 0.62, 0.89) [3]. A fall in serum uric
acid has been mirrored in other studies of statin
therapy [108, 109] but typically in association with
improvements in serum creatinine. Atorvastatin,
however, has repeatedly been shown to lower uric acid
(by 6.4%) in other studies [110, 111] even after adjust-
ment for renal function, possibly because of decreased
uric acid production [112]. As yet, this has not been
adequately studied and cannot be assumed to explain
some of atorvastatin’s effects, although it may repre-
sent a further beneficial effect.

Specific intervention to lower serum uric acid and
xanthine oxidase inhibition
The effect of xanthine oxidase inhibition on measures of
endothelial and cardiovascular function has also been
tested in a number of small studies, performed in the
context of diabetes, hypercholesterolaemia, hyperten-
sion, elevated 10 years’ cardiovascular risk, angio-
graphically confirmed cardiovascular disease and heart
failure [4–13]. Study design has varied, using either oral
or intravenous xanthine oxidase inhibition whilst typi-
cally employing a crossover design with changes in
forearm blood flow, and therefore endothelial function,
as the outcome measure (Table 2). Some studies have
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involved a single dose of allopurinol or oxypurinol,
suggesting that xanthine oxidase inhibition rather
than change in serum uric acid was the mechanism of
benefit.

Improvements in endothelial function following
allopurinol have been shown in patients with Type 2
diabetes and mild hypertension [4]. Endothelial func-
tion, expressed as percentage change in ratio of infused
forearm blood flow (FBF) compared with non-infused
arm FBF in response to intra-arterial acetylcholine infu-
sion, was found to return to near normal following
1 month of 300 mg allopurinol treatment. No effect was
seen on control patients. Using similar methods, a single
oral dose of allopurinol was found to improve peripheral
endothelial function towards normal in smokers but had

no effect in the nonsmoking control group [5]. The
rapidity of the improvement strongly suggests that xan-
thine oxidase is a key contributor to the endothelial
dysfunction seen in smokers. These techniques have also
shown an improvement in forearm endothelial function
in patients with hypercholesterolaemia following intra-
arterial administration of oxypurinol [6], a finding not
replicated in a similar but smaller study of 4 weeks’ oral
allopurinol treatment [7]. It is possible this later study
was underpowered; the power calculation was based
upon the effect size seen following 3 months of simvas-
tatin treatment [113]. The anticipated treatment effect
was larger than that seen in other studies of allopurinol
use, while the effect seen at 1 month was more similar
and approximately half this.

Table 2
Interventional studies of xanthine oxidase
inhibiton in patients with or at risk of
cardiovascular disease

Ref. Population Intervention
Change following
treatment

[12] CHF,↑ uric acid I.a. infusion of allopurinol Increase in radial artery LD*
[12] CHF,↑ uric acid 1 week allopurinol† 23% increase in lower limb

post-ischaemic blood flow
[11] CHF 3 months allopurinol† Fall in BNP concentrations

from baseline. No change
in exercise
tolerance

[13] CHF 1 month allopurinol† Increase in FBF responses*‡
[10] Idiopathic DCM I.c. allopurinol infusion 16 � 5% reduction in MVO2

22 � 9% increase in
myocardial efficiency

[5] Smokers Single p.o. dose
allopurinol†§

Increase in FBF responses*‡
towards control values.
No change in controls

[9] CAD Single i.v. oxypurinol
infusion

Attenuation of coronary
vasoconstrictor response*
and increase in CBF

[7] ↑ chol 4 weeks’ allopurinol† No change in FBF
responses*‡

[6] ↑ chol,↑ BP Single infusion of
oxypurinol§

Improvement in FBF
responses* in ↑ chol
patients. No change in ↑
BP or controls

[8] ↑ uric acid, ↑ CV risk 3 months allopurinol§ Increase in FBF responsese.
No change in controls

[4] DM 1 month’s allopurinol†§ Approximate 30% increase
in FBF responses*‡. No
change in controls

I.a., Intra-arterial, brachial; LD, luminal diameter. *In response to intra-arterial
acetylcholine infusion. †Crossover design. FBF, Forearm blood flow; BNP, B-type
natriuretic peptide. ‡Expressed as percentage D in ratio of infused FBF compared
with non-infused arm FBF. I.c., Intracoronary; MVO2, myocardial O2 consumption.
§Control arm. ¶Ischaemia-induced percentage change in BA diameter.
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FBF responses, expressed as ischaemia-induced
change in brachial artery diameter, were also improved
by a 3-month course of allopurinol in a group of patients
with elevated 10-year cardiovascular risk [8] and hype-
ruricaemia. A recent study in patients with stable coro-
nary artery disease [9] has shown that intravenous
administration of oxypurinol improved both peripheral
endothelial function and coronary endothelial function
(expressed as the coronary vascoconstrictor response to
acetylcholine and changes in coronary blood flow) in
those with impaired baseline function.

There are four small studies of xanthine oxidase inhi-
bition in the context of heart failure. Intracoronary infu-
sion of oxypurinol has been shown to reduce myocardial
oxygen consumption, probably via preserved NO bioac-
tivity, and to increase myocardial efficiency measure-
ments significantly. Both an intravenous infusion [12]
and a 1-month oral course [13] of allopurinol have been
shown to improve a variety of measures of peripheral
endothelial function in patients with heart failure.
Recent work has shown that B-type natriuretic peptide
(BNP) concentrations are reduced by a 3-month course
of oral allopurinol [11], but no improvements in exercise
tolerance were demonstrated.

Abnormalities in peripheral and coronary arterial
responses are accepted to signify endothelial dysfunc-
tion and are associated with other markers of cardiovas-
cular disease [114]. Improvements in these parameters
have been shown to follow treatment with thiazo-
lidinediones [115, 116] and agents such as ACE inhibi-
tors [117–119], HMG-COA reductase inhibitors [116,
119–123] and amlodipine [124]. Most of these agents
have been shown to be effective in reducing cardiovas-
cular event rates and mortality. While direct compari-
sons are flawed and difficult, the magnitude of the
changes effected by xanthine oxidase inhibition seems
comparable to that caused by these agents (bar the
exception outlined above) [107, 119, 120, 125]. Further,
the reductions in BNP concentrations seen were compa-
rable to those induced by ACE inhibition, angiotensin II
antagonists [126], b-blockade [127] and spironolactone
[128]. It is therefore possible, but entirely speculative,
that allopurinol could have an impact on clinical out-
comes similar that of these agents. The side-effect
profile of allopurinol is also comparable to other treat-
ments, but the cost is not; allopurinol is cheap, making it
an attractive preventative treatment.

We have shown that following stroke, each addi-
tional 0.1 mmol l-1 increase in serum uric acid is asso-
ciated with a 27% increased relative risk of a recurrent
cardiovascular event [28]. We have also shown that fol-
lowing stroke, 300 mg allopurinol causes a sustained

reduction in serum uric acid from a mean of
0.35 mmol l-1 (SD 0.09) to 0.22 mmol l-1 (SD 0.05)
(unpublished data). Using a secondary prevention
stroke trial as an example, it would therefore be rea-
sonable to expect a 27% relative risk reduction in car-
diovascular event rate with this treatment. With a
predicted cardiovascular event rate of 6/100 patient
years, or 16% over 3.5 years (as used to design and
seen in the recent ESPRIT trial [129]), approximately
3000 patients would be required to be followed for a
mean of 3 years to confirm this benefit. It is important
to remember that this figure may actually be less
because the beneficial effects of allopurinol on endot-
helial function would be expected to contribute to the
treatment effect regardless of changes in uric acid.

Summary
The epidemiological evidence to support a role of
elevated serum uric acid in cardiovascular disease is
cogent. These associations are seen across healthy
populations (albeit less consistently), those with cardio-
vascular risk factors and in those with established car-
diovascular disease. While a clear pathophysiological
role for uric acid in the development of cardiovascular
disease has yet to be established, there are data to
support detrimental and prothrombotic effects on plate-
let and endothelial function. Post-hoc analyses suggest
that some of the beneficial effects of proven treatments
for cardiovascular disease may be due to changes in
serum uric acid concentrations. Furthermore, xanthine
oxidase-mediated oxidative stress is likely to have a
significant role in the development of atherosclerosis
and several small studies have shown that xanthine
oxidase inhibition improves endothelial function and
markers of oxidative stress in a variety of disease states.
Thus, even if serum uric acid is simply a marker of
oxidative stress, there is a wealth of epidemiological,
animal and now clinical data to suggest the benefits of
strategies to lower uric acid and inhibit xanthine
oxidase. Large-scale trials with clinical end-points are
justified to address this important question in the context
of heart failure (such as the OPT-CHF trial), coronary
disease and in broader categories of cardiovascular risk.
Despite being an old drug, allopurinol may prove to be a
cheap, effective and novel preventative therapy for the
21st century.

J.D. is funded by a Chest Heart and Stroke Scotland
Fellowship. M.W. is funded by a CSO Clinician Scientist
Fellowship.
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