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Abstract
Background: Gene expression is governed by complex networks, and differences in expression
patterns between distinct biological conditions may therefore be complex and multivariate in
nature. Yet, current statistical methods for detecting differential expression merely consider the
univariate difference in expression level of each gene in isolation, thus potentially neglecting many
genes of biological importance.

Results: We have developed a novel algorithm for detecting multivariate expression patterns,
named Recursive Independence Test (RIT). This algorithm generalizes differential expression
testing to more complex expression patterns, while still including genes found by the univariate
approach. We prove that RIT is consistent and controls error rates for small sample sizes.
Simulation studies confirm that RIT offers more power than univariate differential expression
analysis when multivariate effects are present. We apply RIT to gene expression data sets from
diabetes and cancer studies, revealing several putative disease genes that were not detected by
univariate differential expression analysis.

Conclusion: The proposed RIT algorithm increases the power of gene expression analysis by
considering multivariate effects while retaining error rate control, and may be useful when
conventional differential expression tests yield few findings.

Background
The problem of detecting a change in expression between
two biological states, such as healthy vs. diseased, is cen-
tral to microarray data analysis. There are two main
approaches to this problem: statistical difference tests [1]
or feature selection by machine learning techniques [2].
The former alternative provides a solid statistical founda-
tion and allows proper control of false positive rates, but
is limited to detecting differences in the expression level of
single genes. We herein refer to this as univariate differen-
tial expression (UDE). The machine learning techniques on

the other hand can potentially discover more complex,
multivariate effects, herein referred to as multivariate differ-
ential expression (MDE). Figure 1 provides some examples
illustrating the distinction between UDE and MDE. How-
ever, machine learning techniques usually aim to discover
small, predictive gene sets and do not control error rates.
Consequently, the gene lists obtained are often unreliable
[3,4]. Thus, there is a need for novel methods that com-
bine the best of the two worlds – allowing detection of
MDE patterns within a sound statistical framework.
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Existing solutions to this problem center around the idea
of performing statistical tests on gene sets rather than on
individual genes. Examples of this include the popular
Gene Set Enrichment Analysis [5] method and various
multivariate tests [6,7]. This approach permits detection
of multivariate effects, but it requires the user to choose
the gene sets involved in advance. The latter simplifies the
problem considerably, but consequently only permits
detection of previously known functional groups such as
KEGG pathways [8] or GeneOntology categories [9].

Earlier, Szabo et al. [10] proposed to find novel gene sets
by maximizing a test statistic D using subset search.
Unfortunately, since exhaustive subset search is intracta-
ble for high-dimensional data, Szabo et al. are forced to
resort to heuristics, considering only gene sets of some a
priori fixed size and using randomized search methods.
Xiao et al. [11] developed this procedure further and used
a permutation test to ensure that D is significantly larger
than what would be expected by random. In this way the
error rate over gene sets can be controlled, at least approxi-
mately. Dettling et al. [12] proposed a different approach
for finding gene sets, but only considered sets of size 2 and
restricted attention to certain types of bivariate normal
distributions.

In our view, a limitation with all of the above methods is
that the error rates necessarily concern gene sets, not indi-
vidual genes. Since a gene set may be significant even
when containing only a single true positive gene [10], the
false positive rate over individual genes may be much

higher than the false positive rate over gene sets. For exam-
ple, if a single, true gene set containing 10 genes is
selected, then the false positive rate over gene sets is zero,
while the false positive rate over the genes involved may
be as high as 90%. This is appropriate if the investigator is
indeed primarily interested in gene sets; but if the primary
interest is individual genes, then these methods may be
misleading.

In this paper we focus on finding individual MDE genes,
not gene sets. We present a principled, generally applica-
ble method which can be seen as a direct generalization of
univariate differential expression to the multivariate case.
We prove that our procedure is consistent (i.e., given
enough samples, it discovers exactly the true MDE genes)
for a realistic class of data distributions. Further, we show
that our method produces correct p-values for small sam-
ples, and thus controls error rates while offering more
power than univariate differential expression testing.
Finally, we apply our method to two microarray data sets
and conduct a literature validation of the gene lists gener-
ated, revealing many potentially important genes that
were not detected by the UDE tests.

Theoretical background
Throughout, we assume that samples (arrays) x(1),... x(l)

are independent observations of an n-dimensional ran-
dom vector X = (X1,..., Xn), with class-conditional density
f(x|y), where y ∈ {-1, +1} is a class variable denoting the
biological condition. For simplicity we here restrict our-
selves to the two-class case, although the theory and meth-

Distribution exampleFigure 1
Distribution example. Example two-gene distributions with multivariate effects. Each square/cross denotes a sample from 
one of the classes. Black dashed/gray solid lines denote the corresponding class-conditional marginal distributions. A: A PCWT 
distribution where the gene X2 is UDE (since its class-conditional means differ) while X1 is not. B: A PCWT distribution where 
neither gene is UDE (and hence cannot be detected by standard differential expression tests). C: A non-PCWT distribution. In 
all cases, both genes are MDE.
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ods presented can easily be extended to multiple classes or
even continuous Y. For microarray data, we typically have
n Ŭ l.

We say that a gene Xi is univariate differentially expressed
(UDE) if the mean expression level for the two conditions
differ. Thus we define the set of UDE genes

U = {Xi : [Xi | Y = +1] ≠ [Xi | Y = -1]}. (1)
In figure 1A, this holds for gene X2 but not for gene X1; in
figures 1B,C neither gene is UDE. In higher dimensions,
similar situations may render a large fraction of the genes
MDE yet not UDE. A more general definition is the fol-
lowing: we say that a gene Xi is multivariate differentially
expressed (MDE) if there exists a gene set S ⊂ {X1,... Xn}
such that Xi is conditionally dependent on Y given S. Thus
the set of MDE genes is defined formally as

M = {Xi : ∃S ⊆ X : Xi Y | S}. (2)

where  denotes conditional dependence. This defini-
tion recognizes all genes in figures 1A,B,C as MDE. It was
initially proposed by Kohavi and John [13]. Clearly, the

criterion (1) implies criterion (2), so we have U ⊆ M.
Therefore MDE is a generalization of UDE. Genes which
are MDE but not UDE cannot be detected by univariate
differential expression tests, as shown in figure 1. The goal
of this paper is to estimate the set M from expression data.

The set M is typically larger than the set of genes optimal
for predicting Y, because some genes in M may be "redun-
dant" – their predictive information can be obtained from
other genes, and hence they can safely be excluded from
the predictor [13]. Therefore, machine learning tech-
niques that attempt to optimize a predictor (such as the
Recursive Feature Elimination [14] used herein) tend to
select only a subset of M. Hence, these methods are gener-
ally not suitable for our purpose.

Unfortunately, for arbitrary data distributions, determin-
ing whether equation (2) holds for a given gene Xi
requires exhaustive subset search, which is known to be
intractable for high-dimensional data. However, for a
large class of data distributions we herein refer to as the
PCWT class (short for Positive/Composition/Weak Tran-
sitivity; see Additional file 1 for a rigorous definition), we
will prove that the problem is tractable. We will then show
that this PCWT class is sufficiently general to be used as a
model for biological data, and in particular microarray
data.

Results
The RIT algorithm
We developed a recursive algorithm named Recursive
Independence Test (RIT) based on pairwise tests for mar-
ginal independencies. The algorithm pseudocode is given
in figure 2A. In the first round, RIT tests for the marginal
independencies Xi ⊥ Y | ∅ for each gene Xi and obtains a
gene set S of significant findings. Next, for each Xi ∈ S we
recursively call RIT to test for the marginal independencies
Xi ⊥ Xj | ∅ against each gene Xj ∉ S, and add the significant
findings to S. We continue in this fashion until no more
dependencies are found.

An illustrating example of an RIT run is given in figure 2B.
Here, the MDE genes are M = {X1,..., X11}, the UDE genes

are U = {X1,..., X4}, and the remaining genes are unrelated

to Y. In the first round of RIT we obtain the set S1. In this

case S1 differs from U, which of course may happen for

small sample sizes since the statistical tests used have lim-
ited power. In the next recursion, RIT tests the genes in S1

against X \ S1 = {X4,..., X20}; this discovers the set S2, which

is dependent on X2. Continuing the recursion, RIT eventu-

ally finds two more gene sets S3, S4, after which no more

significant genes are found and the algorithm terminates.

The final output of RIT is then the estimate  = S1 ∪ S2 ∪

S3 ∪ S4. In S3 we obtain a false positive X12, and since X4 ∉
S1, we also fail to detect X9 because the required test is

never made. Since the RIT algorithm only visits each Xi ∈

 once, it is easy to see that the number of tests made is

on the order of | |n. Thus, for reasonably small , the
algorithm scales approximately linearly with the number
of genes. This is important not only for computational
speed, but also to reduce multiplicity problems (see
below). Note also that since the first round of RIT is a uni-

variate differential expression test, the set  found by RIT
always includes the genes found by UDE testing. Hence,
RIT always has at least as much statistical power as a UDE
test.

Typically, one needs to use two different independence
tests with RIT, since the class variable Y is different from
the genes Xi. For simplicity, in our simulations (below) we
have used the well-known Student's t-test for Xi ⊥ Y | ∅
and Fisher's z-transformation for testing Xi ⊥ Xj | ∅. The t-
test is optimal (unbiased most powerful) for gaussian
marginal distributions [15], but on the other hand is cor-
rect only for these distributions, which constitute a subset
of larger PCWT distribution class (see Additional file 1).
Fisher's z is consistent regardless of distribution. While the
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gaussian assumption is frequently made in gene expres-
sion analysis, for example in gene network inference [16],
we emphasize that RIT is itself not restricted to this class.
As an example, we applied RIT to 100 samples drawn
from the non-linear distribution in figure 1B using the
distribution-free Kolmogorov-Smirnov test [17] for Xi ⊥ Y
and the Spearman Rank Test [17] for Xi ⊥ Xj, both at the
5% level. This produced the correct result (S1 = {X2}, S2 =
{X1}) in 99 runs out of 100 (the single error made was a
false positive X2 in S1). Applying same tests to the distribu-
tion in figure 1C gave no significant findings, since this
distribution is not in the PCWT class and therefore not
detectable by RIT.

Consistency of the RIT algorithm

Remarkably, the comparatively simple RIT algorithm can
be shown to be consistent for any PCWT distribution; that

is, as sample size increases, the RIT output  converges
to the set of MDE genes M. To prove this, note that RIT
constructs a path from Y to each gene Xk in the graph

whose edges (i, j) correspond to the pairwise marginal

dependencies Xi Xj | ∅ (i.e., the graph in figure 2B). The

following theorem states that for PCWT distributions, the

set of genes  reachable through such paths coincides
with the set M defined in equation (2).

Theorem 1 For any PCWT data distribution, the set of MDE

genes M is identical to the set of genes  = {Xk ∈ X} for which

there exists a sequence  = {Z1,..., Zm} ⊆ X between Z1 = Y

and Zm = Xk such that Zi Zi+1 | ∅, i = 1,..., m - 1.

The full proof of this theorem is given in Additional file 1.
If the data distribution is not PCWT, the theorem may not
hold; figure 1C shows a typical counter-example. Assum-
ing that the independence tests used are consistent, con-
sistency of the RIT algorithm immediately follows from
the above. This result is a good argument in favor of RIT,
since consistency is a widely accepted necessary condition
for a sound statistical procedure [15]. To our knowledge,
no other algorithm for detecting MDE genes has been
proven to be consistent.

Biological relevance of the PCWT class
Next, we will show that the PCWT class is a reasonable
model for gene expression data (or, more generally, for
any measurements of biological systems). Since cellular
systems are believed to be well described by complex net-
works [18], it is reasonable to assume that the distribution
of all variables X' comprising a cellular network (tran-
scripts, proteins, metabolites, etc.) can be modelled as a
Bayesian network [19]. The following theorem, given by
[20], asserts that the PCWT class contains all data distribu-
tions associated with such networks.

Theorem 2 Any strictly positive distribution faithful to a Baye-
sian network is PCWT.

However, we typically cannot measure all variables X', but
merely a subset X; for example, with microarrays we can
perhaps measure most transcripts but no proteins or
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The RIT AlgorithmFigure 2
The RIT Algorithm. A: Algorithm pseudocode. B: Algorithm example. Edges (solid lines) denote marginal dependencies 
between genes Xi (circles) and the class label variable Y (square). Gene sets found in each round of RIT are denoted S1,..., S4. 
The final output of the algorithm is the union of these.
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metabolites. Unfortunately, this means that in many cases
X cannot be modelled by a Bayesian network [21]. Never-
theless, the next theorem asserts that X is still PCWT.

Theorem 3 Let X' be a random vector with a PCWT distribu-
tion and let S, T be any two disjoint subsets of the components
of X'. Then with probability 1, the distribution of X = (X' \ {S,
T} | T = t) is also PCWT.

The proof is found in theorems 5 and 6 of [22]. Theorem
3 states that for PCWT distributions, we may fix some var-
iables T to constant values t and ignore other variables S,
and the remaining variables will still form a PCWT distri-
bution. Thus, given that the distribution of all variables X'
comprising the cellular network are PCWT, then any
measurements X we make will also have a PCWT distribu-
tion, even though we fail to measure many variables of the
system and perhaps fix others to constant values by exper-
imental design. We therefore conclude that PCWT is a
realistic distribution class for biological data.

Multiplicity and FDR control
Consistency is an asymptotic result however, and is still
far from satisfactory for the small sample sizes typical for
microarray data. Due to the large amounts of tests made,
it is necessary to properly adjust for multiplicity, or else
many findings are likely to be false positives. This issue
has been thoroughly investigated for univariate tests [1],
but our situation is more complicated since RIT performs
multiple iterations of testing, and also chooses which tests
to make in each iteration depending on the outcome of
the previous one.

To ensure multiplicity control, we employ an induction

argument. Fix an α ∈ [0, 1]. Assume as the induction
hypothesis that in the first foreach loop of the algorithm

(figure 2A) we have tested the null hypotheses  = Xi ⊥

Y | ∅ for each Xi and obtained p-values pi for each Xi. We

then sort these to obtain the order statistics p(1) ≤ p(2) ≤ ...

p(n), and apply a correction procedure to choose a gene set

S (a "top list") with corrected p-values i satisfying

P( i ≤ α | ) ≤ α, Xi ∈ S. (3)
This requirement is slightly weaker than FWER control,
and is satisfied by the FDR-controlling procedure of Ben-
jamini and Hochberg [23] (see Additional file 1 for a
proof), which we employ in this paper. Other FDR-con-
trolling procedures could probably also be used for
obtaining S, but we have not attempted to prove (3) in the
general case.

Now consider the recursive calls RIT(X \ S, Xi). For each Xi

∈ S, this will test the null hypotheses  = Xi ⊥ Xj | ∅ for

every Xj ∉ S, producing the p-values pij. We now combine

the previously obtained i with these pij to obtain a single

p-value pj for each Xj ∉ S. To accomplish this, note that by

theorem 1 Xj ∉ M is possible at this point only if, for every

Xi ∈ S, either or  holds true. Hence, the null

hypothesis for Xj is

This situation is known in statistics as intersection-union
testing [24,25]. By the intersection-union method, a level

α test for  is

reject  if ∃i ∈ S : max {pi, pij} ≤ α/|S|,

and the corresponding p-value pj is computed as

The factor |S| derives from a Bonferroni correction for the
outer intersection in (4). This completes the induction
step; as the induction hypothesis is easily satisfied in the
first round of testing, it follows by induction that with
these corrections, RIT always yields p-values. Finally, the
Benjamini-Hochberg procedure may be applied again to
control the false discovery rate. Alternatively, more strin-
gent measures such as family-wise error rate control [26]
may be used, if desired. Formal proofs of the correctness
of each of the above steps can be found in Additional file
1. A detailed pseudocode of RIT implementing each step
is given in Additional file 3.

Simulated data
To illustrate the above result and also to assess the statis-
tical power of RIT as a function of the sample size, we con-
ducted a simulation study. To this end, we designed a
distribution with multivariate differential expression,
chosen so that 10% of the genes were MDE, but only half
of these (5%) were UDE and thus detectable a univariate
test (see methods section for details). We compared the
performance of RIT against a typical univariate test,
namely Student's t-test [15] with FDR correction [23], and
also against the popular Recursive Feature Elimination
(RFE) feature selection method [14].

Figure 3 summarizes the results of this experiment. We
find that RIT does indeed control the FDR at the nominal
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level (α = 0.05), in the same way as the univariate test. The
power of the univarate test converges to 0.5 as expected
(since only half of the MDE genes were UDE), while the
RIT converges to 1.0, in agreement with our theoretical
results. Thus, when multivariate effects are present, RIT
affords more power than the univariate test at the same
FDR level. In contrast, the RFE method clearly does not
control the FDR, choosing many genes unrelated to Y. RFE
also displays low power, most likely because it considers
some MDE genes to be "redundant" for prediction and
consequently ignores these. Similar behavior is to be
expected from other feature selection methods, as
explained above. A second simulation study using a differ-
ent distribution was also performed, with similar results
(see Additional file 2). We conclude that it is feasible to
apply the RIT algorithm to small-sample data while con-
trolling the FDR at the desired level. Exact sample size
requirements cannot be inferred from figure 3 however, as
this depends on the data distribution, in particular the
fraction of MDE genes and the amount of noise.

Microarray data
We next tested the RIT algorithm on two publicly availa-
ble microarray data sets (see methods section). The diabe-
tes data contrasts pancreas islets expression from normal
vs. type 2 diabetic patients [27]. The original study identi-
fied 370 genes as UDE, but this did not account for mul-
tiplicity. The q-value method declared only the top three
genes of the original study to be significant: Arnt, Cdc14a,
and Ddx3y. The RIT algorithm identified an additional 21
transcripts as MDE, of which 5 were unknown EST:s and
16 were known genes according to the NCBI Gene data-
base [28]. We would like to stress that RIT is an hypothe-

ses-generating method, and that the discovered MDE
genes may or may not be of functionally related to the tar-
get variable. Nevertheless, we conducted a literature vali-
dation of the 16 known genes (table 1) to search for
possible biologically important findings. Five of these
(31%) were previously associated with diabetes. Among
the remaining 11 novel genes, several give rise to interest-
ing hypotheses: for example, Dopey1 was recently shown
to be active in the vesicle traffic system, the mechanism
that delivers insulin receptors to the cell surface. Four
genes encoded transcription factors, as do the majority of
previously discovered diabetes-associated genes [27]. The
Usp9y gene discovered by RIT is associated with male
infertility and Sertoli cell-only syndrome. Interestingly, so
is the UDE Ddx3Y gene. This is unlikely to be a coinci-
dence as only 6 human genes were annotated with this
function in NCBI Gene. This is an example of general ten-
dency we have observed in our experiments, that addi-
tional MDE genes discovered by RIT often are functionally
related to the UDE genes, which is hardly surprising given
that RIT relies on pairwise independence test. The chloride
channels Clca2 and Clcn1 are also highly interesting find-
ings, as ion channels in pancreas islets has been shown to
regulate insulin secretion [29]. The diabetes-associated
potassium ion channel Kcng1 was also discovered by RIT,
strengthening this hypothesis.

The breast cancer data contrasts good-prognosis vs. poor-
prognosis patients [30]. This set had large amounts of
pairwise correlations among genes, resulting in a highly
connected dependence graph. To limit the number of
findings in this case, we required significant correlations
to exceed a threshold 0.85 to be considered by RIT (see

Simulation resultsFigure 3
Simulation results. Simulation results for the RIT algorithm, differential expression using the t-test, and RFE. Left, statistical 
power (1 – false negative rate) as a function of sample size. Right, false discovery rate (FDR) as a function of sample size. Grey 
arrow marks the nominal FDR = 0.05.
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discussion). The original study identified a set of 70 can-
cer-related genes. In addition to these, the RIT algorithm
identified 43 MDE genes. Literature validation revealed
that 23 of these (53%) had a previously known function
in cancer development, whereof 6 (14%) were specifically
implicated in breast cancer (table 2). An additional 10
transcripts (23%) were cell cycle-related and may also be
considered as potential cancer proliferation genes. Our lit-
erature validation thus confirmed 39 (77%) of the genes
reported by RIT to be cancer-related. The higher percent-
age in this case as compared to the diabetes data may
reflect the fact that more genes are known for cancer than
for diabetes. To assessed the amount of cancer annota-
tions among the 5,000 genes considered, we examined an
additional 43 genes chosen at random. Indeed, we found
that about 25% of all genes had some cancer or cell cycle-
related annotation. Nevertheless, the above fraction of
77% validated genes is highly significant with a Binomial
tail p-value < 10-20.

Encouraged by the above result, we set out to investigate
the remaining 10 genes that were not previously associ-
ated with cancer. We found three histone proteins, which
may be related to chromatin remodelling. One novel gene
Gpr116 was recently identified as a G-protein with a
potential role in immune response. The novel gene Prr11
had predicted binding sites for the transcription factor
E2F, which in turn is known to be crucial in the control of
tumorigenesis. Ube2s is an essential component of the
ubiquitin-protein conjugation system, which is impli-
cated in various cancer forms. This gene is also function-
ally related to the known cancer gene Ube2c, which also
was discovered by RIT. Also interesting were the novel
proteins Depdc1 and Depdc1b, both containing RhoGAP
domains. This may implicate them in the regulation of

various Rho GTPases, which are currently being investi-
gated as cancer-therapy targets [31].

Discussion
At a first glance, RIT might seem similar to existing algo-
rithms for "local" network inference around "seed genes"
[32,33]. However, network inference is a much harder
problem than detecting MDE, and typically requires test-
ing for conditional independence (while RIT requires only
marginal independence tests). Consequently, these algo-
rithms require substantially larger samples and stronger
distribution assumptions, and their time-complexity is
exponential with respect to the number of genes found
[33].

RIT is less useful for data with large and strongly corre-
lated transcriptional changes, such as the breast cancer
data set considered herein. For cancer data, even the
(smaller) fraction of UDE genes has been estimated to be
on the order of 50% of all genes [34], and the set of MDE
genes is presumably much larger. Thus, the concept of
MDE is simply not very useful in this case, since most
genes turn out to be MDE. Thus, a principled approach for
prioritizing among all these genes is urgently needed. For
the cancer data, we let RIT prioritize the findings by con-
sidering stronger correlations to be more important. This
seems reasonable, and we were able to confirm the end
results in this case against the literature. However, this
problem is ultimately unsolvable by statistical methods,
and must instead be addressed by integrating other kinds
of information. A possible step towards a principled solu-
tion building upon the present work would be to combine
the independence tests used here with other data sources
and prior beliefs (perhaps in the form of Bayesian proba-

Table 1: Diabetes-related genes. Genes with multivariate expression patterns discovered by the RIT algorithm for the diabetes data. 

Gene Status Function Ref. (PMID)

Bcat1 D Candidate gene for the type I diabetes susceptibility locus Idd6. 14563018
Clca2 N Chloride channel. Multiple functions, colocalizes with adhesion molecule integrin β4. 15707651
Clcn1 N Chloride channel. Regulates electric excitability of the skeletal muscle membrane. 7735894
Cltb D Involved in insulin receptor internalization. 7821727
Dopey1 N Involved in Golgi/ER vesicle traffic. 1630131
Epha7 N Ephrin receptor subfamily. Ephrin receptors are associated with the pancreatic islets. 15681844
Hcap-G N Chromosome condensation protein, member of the condensin complex. 14593730
Kcng1 D Potassium channel. Potassium channels are involved in regulation of insulin secretion. 16567526
Loc51152 N Melanoma antigen.
Psmal D Glutamate carboxypeptidase. Inhibition prevents long-term type 1-diabetic neuropathy. 11809162
Sox5P N, T Transcription factor activity (GeneOntology). Related to the sex determining region Y-gene.
Sptlc2 N Sphingolipid biosynthesis enzyme, upregulated upon transepidermal water loss. 12445191
Ssx2 N, T Suggested role as transcriptional repressor. 12007189
Tfap2B D, T Genetic variations in this gene are associated with type 2 diabetes. 15940393
Usp9Y N Associated with male infertility and Sertoli cell-only (SCO) syndrome. 12871878
Zf N, T Specific inhibitor of the transcription factor Luman. Inhibits herpes virus replication. 16282471

Status column: D, diabetes-related; N, novel; T, transcription factor.
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bilities) to guide the RIT algorithm towards more "inter-
esting" genes.

It is important to realize that RIT does not perform feature
selection in the usual machine learning-sense: feature
selection aims to find the set of features (genes) optimal
for constructing an accurate predictor of the target varia-
ble, while RIT aims to find the MDE genes, which need
not be optimal for prediction.

These are two different problems, and they should be
treated separately.

In this study we have limited ourselves to two-class data.
However, it is straightforward to extend the RIT algorithm
to find multivariate expression patterns with other types
of target variables, such as multiple classes data or contin-
uous target variables such as survival times. To accom-
plish this, only the independence tests used need to be

Table 2: Breast cancer-related genes. Genes with multivariate expression patterns discovered by the RIT algorithm for the breast 
cancer data.

Gene Status Function Ref. (PMID)

Anln C Over-expressed in diverse common human tumors, may have potential as biomarker. 16203764
Aurka B Cell cycle-regulated kinase, possible prognostic indicator for patients with breast tumors. 12833450
Aurkb C Highly expressed in high-grade gliomas, correlated with malignancy and clinical outcomes. 15072448
Birc5 B Prevents apoptotic cell death, differentially expressed in breast cancer. 16142334
Blm C Cooperates with p53 in regulation of cell growth, associated with colorectal cancer. 11781842, 12242432
Brrn1 CC Required for the conversion of interphase chromatin into condensed chromosomes.
Bub1 C Mutations in this gene have been associated with aneuploidy and several forms of cancer. 15931389
Ccnb1 B Detected in various human breast cancer cell lines and breast tumor tissues. 11779217
Ccnb2 CC Essential component of the cell cycle regulatory machinery.
Cdc20 C Regulatory protein in the cell cycle, associated with gastric cancer. 15701830
Cdc25A C Known oncogene, required for progression from G1 to the S phase of the cell cycle. 14673957
Cdc45L CC Important for early steps of DNA replication in eukaryotes, loss may affect cell proliferation. 9660782
Cdca8 CC Required for stability of the bipolar mitotic spindle.
Depdc1 N Contains domain of unknown function often present together with the RhoGAP domain.
Depdc1B N Unknown function, has conserved RhoGAP domain (GTPase-activator protein).
Dlg7 C Potential oncogenic target of AURKA, may play a role in human carcinogenesis. 15987997, 12527899
Exo1 C Possible cancer predisposing gene. 15328369
Fam64A N Unknown function.
Fbxo5 CC Function in ubiquitination, inhibits the anaphase promoting complex.
Foxm1 C Stimulates the proliferation of tumor cells. 16489016
Gpr116 N Has two immunoglobulin-like repeats, may have a role in the immune system. 12435584
H2Afz C Chromatin remodeling at the c-myc oncogene involves the local exchange of this histone. 15878876
Hist1H1B N Histone protein.
Hist1H1E N Histone protein.
Hist1H4B N Histone protein.
Kif20A C Required for cytokinesis, related to AURKB. Likely to be involved in pancreatic cancer. 15263015, 15665285
Kif23 CC Interacts with CYK4, to form the centralspindlin complex. Essential for cell division. 11782313
Kif2C CC Important for anaphase chromosome segregation.
Kifc1 CC Involved in localization of PLK1, AURKB, and CDC14A during anaphase. 15263015
Mad2L1 C Mitotic checkpoint gene, involved mainly in colorectal carcinogenesis. 12970887
Nek2 B Significantly up-regulated in breast carcinomas. 15492258
Pitrm1 N Novel member of the metalloendoprotease superfamily. 10360838
Prr11 N Unknown function. Predicted interactions with E2F, which is involved in cancer. 16437386
Pttg2 C Potent oncogene, expressed at high levels in various human tumors and tumor cell lines. 10806349
Racgap1 B Implicated in in breast cancer cell proliferation 15863513
Rad54L B Candidate oncosupressor in breast or colon carcinomas, lymphomas and meningiomas. 12614485
Spbc25 CC Essential kinetochore component, significant role in mitotic events 14699129
Stil C Involved in mitosis and in increased mitotic activity in tumor cells.
Tk1 C Marker for non-small cell lung cancer. May be important in epithelial ovarian cancer. 15809747, 11992400
Tpx2 C May be important in both progression lung cancer, possible prognostic predictor. 16489064
Ttk CC Required for centrosome duplication and for the normal progression of mitosis. 15618221, 14657364
Ube2C C Required for destruction of mitotic cyclins. Highly expressed in human primary tumors. 12874022
Ube2S N Essential component of the ubiquitin-protein conjugation system. 15454246

Status column: B, Breast cancer-specific; C, Cancer-related; CC, Cell cycle-related; N, novel.
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replaced. This "modularity" is a useful property of RIT: to
handle different situations, it is sufficient to "plug in" dif-
ferent independence tests. For example, a continuous tar-
get variable could be handled by using the Fisher z-
transformation also for testing Xj ⊥ Y. More complex, non-
linear independence relations may be handled using non-
parametric tests such as the Kolmogorov-Smirnov test
[17] or kernel-based tests [35]. However, a basic limita-
tion of the RIT algorithm is that at least one gene must be
UDE for any MDE genes to be found. This is an inherent
property of the PCWT class.

Dynamic (time-series) data could also be considered,
although some additional assumptions may be necessary
to ensure PCWT distributions in this case. For example,
assuming a Markov condition, time-series data can be
modelled using Dynamic Bayesian Networks (DBNs)
[19]. The DBN methodology essentially transforms a
dynamic model over n nodes into an ordinary BN over 2n
nodes. Thus, DBNs also result in PCWT distributions as
described herein (albeit of twice the dimensionality) and
RIT is therefore applicable to detecting multivariate
changes in dynamic as well as in static data.

Conclusion
The RIT algorithm is a principled, general approach that
increases the power of small-sample, genome-wide
expression studies by considering not only univariate dif-
ferential expression but also multivariate effects. In con-
trast to previous approaches which focus on testing gene
sets [5-7,10,11], RIT gives a p-value for each gene and pro-
vides control over false positive findings in terms of indi-
vidual genes. RIT may be very useful in situations where
little univariate differential expression is observed, as
exemplified by the diabetes data experiment.

Methods
Simulation study
In our simulations, we used a multivariate gaussian distri-
bution with n = 1, 000 genes and |M| = 100 MDE genes,
of which |U| = 50 were differentially expressed. We first
designed a 4-dimensional gaussian distribution with a
class-dependent mean vector μy = 2y·(0, 0, 1, 1) and cov-
ariance matrix

equal for both classes. We then constructed the full distribution
for the 100 MDE genes using 25 of these 4-blocks. The remain-
ing features had the same covariance matrix but had mean μ =
(0, 0, 0, 0). We varied the sample size as 10, 20, 30,..., 100.

The Recursive Feature Elimination (RFE) procedure was
implemented as described [14], eliminating 20% of the
genes in each iteration. We used the radius-margin bound
proposed by [36] as a goodness measure for choosing the
optimal gene set.

Microarray data sets
The diabetes data set is from the study by Gunton et al.
[27] and is publicly available at the Diabetes Genome
Anatomy Project [37]. This data set contrasts human pan-
creas islets expression from normal (n = 7) vs. type 2 dia-
betic (n = 5) patients. The original data comprises 44,928
probesets from the Affymetrix U133A and B chips. We
used only the A chip in our experiments, since we needed
to evaluate our results against literature and the A chip
contains better annotated sequences. Moreover, since ini-
tial analysis using the full A chip resulted in no significant
findings, we reduced multiplicity by pre-filtering genes by
variance, keeping only the 5,000 most variable genes.

The breast cancer data set consist of 78 samples from
patients divided into one "good prognosis" group (n = 44)
and one a "poor prognosis" group (n = 34) based on the
time until relapse [30]. The data set is freely available from
Rosetta Inpharmatics [38]. The arrays used contains
approx. 25,000 transcripts, out of which 4,918 were
selected using the same quality filter as in the original
publication.
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