
A MOBILE COMPUTING SOLUTION FOR COLLECTING
FUNCTIONAL ANALYSIS DATA ON A POCKET PC

JAMES JACKSON AND MARK R. DIXON

SOUTHERN ILLINOIS UNIVERSITY

The present paper provides a task analysis for creating a computerized data system using a Pocket
PC and Microsoft Visual Basic. With Visual Basic software and any handheld device running the
Windows Moble operating system, this task analysis will allow behavior analysts to program and
customize their own functional analysis data-collection system. The program will allow the user
to select the type of behavior to be recorded, choose between interval and frequency data
collection, and summarize data for graphing and analysis. We also provide suggestions for
customizing the data-collection system for idiosyncratic research and clinical needs.

DESCRIPTORS: computers, data collection, functional analysis, Microsoft Visual Studio

Data collection is a key characteristic of
behavior analysis. Data guide clinical decision
making and provide evidence of scientific
discovery. Recently there have been a number
of commercial software programs that have
emerged to make the job of data collection
easier for behavior analysts (see Kahng & Iwata,
1998, for a review). As computers become
smaller, more commonplace, and less expensive,
mobile computer solutions for aiding the
behavior analyst continue to grow year after
year. Dixon (2003) described a means by which
a reader could create his or her own data-
collection system using a Pocket PC and
Microsoft Embedded Visual Basic. Although
this paper provided task analyses for obtaining
the necessary software, programming the com-
puter to collect duration and latency data,
deploying the software to a Pocket PC, and
downloading the data for further analysis, the
paper did not provide readers with a flexible
program that could be used under typical
clinical and applied research conditions.

Functional analyses (Iwata, Dorsey, Slifer,
Bauman, & Rchman, 1982/1994) have risen in

usage over the past decade such that their
inclusion in behavior treatment plans is often
required (Erchul & Martens, 2002), presum-
ably because they provide the foundation for
effective behavioral interventions (e.g., DeLeon,
Arnold, Rodriguez-Catter, & Uy, 2003; Han-
ley, Iwata, & McCord, 2003). Data are often
collected with laptop computers during func-
tional analyses, which can be difficult if the
observer is also required to deliver programmed
consequences. Furthermore, full-size computers
or laptops are often impractical when data are
collected in multiple sites, with multiple clients,
and with clients who may attempt to destroy
equipment during experimental sessions.

Therefore, the purpose of the present paper is
to provide readers with a straightforward de-
scription of how to create a customized, porta-
ble, and computerized data-collection system for
a Pocket PC that may be particularly, but not
exclusively, relevant to conducting functional
analyses. This system can be programmed by
persons with general computer knowledge of the
Microsoft operating and software systems. The
program described in this paper uses Microsoft’s
2005 version of Visual Basic programming
language. The Visual Basic 2005 language has
replaced the Embedded Visual Basic software
described by Dixon (2003), thus creating a need
for description of the new software’s features for
interested behavior analysts.

Address correspondence to Mark R. Dixon, Behavior
Analysis and Therapy Program, Rehabilitation Institute,
Southern Illinois University, Carbondale, Illinois 62901
(e-mail: mdixon@siu.edu).

doi: 10.1901/jaba.2007.46-06

This program will also function correctly with the
Windows Vista operating system.

JOURNAL OF APPLIED BEHAVIOR ANALYSIS 2007, 40, 359–384 NUMBER 2 (SUMMER 2007)

359

HARDWARE, SYSTEM, AND
SOFTWARE REQUIREMENTS

Readers interested in constructing this func-
tional analysis data-collection system should
refer to Table 1 for a list of hardware and
software requirements, along with expected skill
level and time commitments. In summary, the
user should have (a) a Pocket PC handheld
computer that runs Windows Mobile 2003 or
higher operating system, (b) a desktop or laptop
computer that runs the Microsoft XP pro-
fessional or home operating system, and (c)
purchased and correctly installed Microsoft
Visual Studio 2005, Visual Basic 2005, or
a higher version of this programming software.

Although the Visual Studio 2005 software
will run on any computer that can operate the
XP operating system, we recommend that the
user have a minimum of 512k RAM, a sound
card, and a Pentium-based processor. Faster
computers will make programming and testing
the system quicker.

The upfront costs for undertaking the pro-
gramming described in this paper will include
the price of a desktop computer if none is
currently available. Besides this cost, which has
broader use and utility beyond the current

project, a Pocket PC may cost between $200
and $500, and the Visual Studio software will
cost around $100 for the student/academic
version and up to $500 for the professional
version. The student/academic version contains
all the necessary tools to complete this project
and most other projects of interest to behavior
analysts (see Dixon & MacLin, 2003, for
desktop programming in Visual Studio.NET).
We have programmed this system using a $200
Pocket PC from Dell Computers with the
student version of the software purchased for
$99. We also field tested the program with
various other brands of Pocket PCs as well as
programmed the software using the professional
and enterprise versions of Visual Studio 2005.

OVERVIEW OF TASK ANALYSIS

We will first describe the overall rationale and
purpose of the application. We will then
illustrate how to start an application in Microsoft
Visual Studio 2005 and give an overview of some
of the controls that can be used to build
applications. We will then describe how to create
the needed interfaces and controls for the current
project and provide the essential computer code
for the application. Finally, we will provide

Table 1

Summary of Hardware, Software, and User Skills Necessary to Complete Program

Minimum hardware
requirements

Minimum software
requirements

Minimum computer
skills necessary

Minimum time
commitment to

complete program

Expected skills acquired
upon program

completion

Pocket PC handheld
computer running
Microsoft CE 2003
or higher

Microsoft XP
professional or home
operating system

General familiarity with
the Windows operating
system and office program
suite (i.e., Word, Excel,
etc.)

Mean of 4 hr
(range, 2–6 range)
for entire program
from start to finish

Ability to create and
implement
a computer-based
data-collection system

Desktop or laptop computer
with minimum of 512k
RAM and Pentium-based
processor

Microsoft Visual
Studio 2005 or
Visual Basic 2005
or higher version

General familiarity with
Windows software menu
options (i.e., save files,
cut and paste text, view
program options)

15 min for software
transfer to Excel for
data analysis

Ability to modify the
program to individual
data-collection needs

Sound card (optional) is
required for programming
auditory stimuli

30 min to download
interobserver
agreement program
from JABA website
and install on
desktop

An introductory
understanding of the
general programming
techniques in Visual
Basic

360 JAMES JACKSON and MARK R. DIXON

guidance for installing the program on a Pocket
PC and describe how the output files can be
imported into a statistical program such as
Microsoft Excel for data analysis and graphing.
Throughout each area of the task analysis, we will
provide the reader with prompts for building the
application, rationale for sections of code, and
descriptions of areas that might allow program-
mers to progress beyond this task analysis to
develop customized programs. Readers should
refer to Table 2 if difficulties arise during the
programming process.

OVERVIEW OF THE FUNCTIONAL
ANALYSIS PROGRAM

The current application will consist of two
computer screens, which we will design. These
screens are called forms in programming
language. The first form will serve as an
interface to allow the user to enter all of the
relevant information for a functional analysis,
including the condition, the length of the
session in minutes, the name of the participant,
the name of the observer, and a choice of
observation method (interval recording and

Table 2

A Summary of Possible Problems and Possible Solutions to Programming for the Pocket PC in Microsoft Visual

Basic 2005

Problem Possible solution

Software fails to deploy on Pocket PC Check communications cable, check to make sure Pocket PC is firmly in
docking cradle, make sure Microsoft ActiveSync is running on desktop
computer

Software takes unusually long time to compile onto
Pocket PC

Free additional memory space on Pocket PC, upgrade version of Windows CE
or Windows Mobile

Pocket PC emulator does not work or
generates error

Test program on actual Pocket PC

Data output file cannot be found Check ‘‘My Device’’ directory on Pocket PC, or use ‘‘Find Files Option’’ on
desktop if using emulator

Each subsequent observation overwrites old file Add a textbox on first form for ‘‘Observation Number,’’ declare a ‘‘Public’’
variable on module for observation number, make observation number part
of output file name

User wants to add ability to end program before
session timer reaches end of its interval

Add command button named ‘‘End,’’ copy all of the code for session timer
into button’s subroutine, exit program with switcher box

Switcher bar not present Click on Windows Icon in upper left of Pocket PC screen, select settings, select
‘‘System’’ tab, locate and click on switcher bar icon

Clicking ‘‘Start’’ button on first form generates
error and terminates program

Make sure input file for subject resides in ‘‘Input Files’’ folder, make sure to use
same spelling as input file name for the participant

lblHide fails to disappear at end of observation
interval

Check code under tmrObserve, make sure it includes lblHide. Visible 5 False

lblHide disappears prematurely during observation
interval, intervals are written multiple times to
output file

Check code under tmrRecord, make sure it includes tmrRecord. Enabled 5

False

Proper number of recording buttons fails to
appear for given client

Make sure number at top of input file corresponds with number of behaviors,
check select case statement under frmRecord_Load

More buttons for recording behavior are present
than are required

Check each button’s ‘‘Visible’’ property and make sure it is set to false

Text of behavior doesn’t fit on button Resize button, abbreviate behavior text
Text of behavior doesn’t show up on button Check select case statement under frmRecord_Load
During interval recording, buttons are not enabled on

subsequent intervals
Check code under tmrObserve, make sure each button’s ‘‘Enabled’’ property is

reset to true
Output file for interval recording session

shows behavior occurring more than once in
interval

Check code under tmrRecord, make sure behavior occurrence variable are reset
to zero

Cannot find the data file to transfer into Excel Use the ‘‘Find Files’’ option, make sure Excel’s file types option ‘‘All Files’’ is
selected

Data in Excel all appear in one row Make sure to import data using the ‘‘delimited’’ and ‘‘comma’’ options in
Excel

DATA-COLLECTION SYSTEM 361

frequency recording). The second form will
contain control buttons to record the occur-
rence of up to three behaviors of interest, and in
the case of interval recording, will prompt the
user when to observe the participant and when
to record behaviors.

In the current application, we will create an
interface that will allow data to be collected on
up to three behaviors (suggestions to allow more
behaviors to be recorded are provided later). To
individualize this recording system, the data-
collection form will read in the behaviors of
interest from a text file specific to the
participant of the analysis. The form will also
write the resulting observations to a text file that
can be opened in a spreadsheet or statistical
program such as Microsoft Excel or SPSS for
graphing and analysis.

The current application was designed to use
both frequency and interval recording methods.
Fortunately, all interval recording procedures
(e.g., whole, partial, or momentary) rely on the
same built-in functionality; the only difference
exists in the instructions given to the user of the
application. For example, the user would be
instructed to record an occurrence of the target
behavior if it occurred during any part of the
observation interval for partial-interval record-
ing, if it occurred throughout the entire
observation interval for whole-interval recording,
and if it occurred at the end of the observation
interval for momentary time sampling.

CREATING FORMS AND
CONTROL OBJECTS

Starting an Application in Microsoft Visual Basic

Once the user has successfully installed the
Visual Studio 2005 or Visual Basic 2005
programming language on his or her computer,
the software can be opened like any other
application. To begin creating the application,
open Microsoft Visual Studio 2005, click on
the ‘‘Start’’ icon in the lower left of the screen,
and select ‘‘All Programs.’’ Find ‘‘Microsoft
Visual Studio 2005’’ and click the icon to start

the program. From the ‘‘Recent Projects’’ box
in the upper left of the screen locate the
‘‘Create:’’ tab and click on the ‘‘Project’’ option.
In the resulting window the user should locate
the ‘‘Visual Basic’’ tab in the ‘‘Project Types’’
window. Beneath this tab is a subtab labeled
‘‘Smart Device.’’ The user should click on the +
tab next to the smart device tab to reveal the
different smart-device application templates
available for use. The user should locate and
click on the ‘‘Windows Mobile 5.0 Pocket PC’’
subtab. The different types of Pocket PC
application templates available for use should
be displayed in the ‘‘Visual Studio installed
templates’’ window on the right. For this
application, we will be creating a device
application for the Pocket PC. In the ‘‘Tem-
plates’’ window, click on ‘‘Device Application.’’
This menu also allows the user to enter a name
for the project in the textbox below the ‘‘Project
Types’’ and ‘‘Templates’’ windows. For this
application, type the name ‘‘FA PDA’’ and click
the ‘‘OK’’ button in the lower right of the
window.

Before moving on, save the program to
prevent losing any work. In the upper left of the
screen, locate and click on the ‘‘File’’ tab. From
the resulting options locate and click on ‘‘Save
All.’’ This will reveal a window prompting you
to choose a location to save the project. To the
right of the ‘‘Location’’ box is a button labeled
‘‘Browse.’’ Click on ‘‘Browse’’ to open the
project location window. For the current
application we will create a new folder in the
C drive. From the drop-down box to the right
of ‘‘Look in:’’ choose ‘‘Local Disk (C:)’’ and
click the new folder icon. Enter the name for
the new folder as ‘‘FA PDA’’ and click ‘‘OK’’ to
return to the save project window. Click ‘‘Save’’
in the lower right corner to return to the main
interface.

You will now see the graphic interface of the
program. In the main window of the program
you will see four to five smaller windows based
on how your display is set up. The top panel of

362 JAMES JACKSON and MARK R. DIXON

Figure 1 displays the graphical layout of the
programming interface. If any of the windows
described below are not present, they can be
added by clicking on ‘‘View’’ at the top of the
screen and selecting the needed window from
the available options. On the left of the screen
should be the ‘‘Toolbox’’ window that contains
various control objects that can be added to
your project. In the center of the screen should
be a window called the ‘‘Object Browser,’’ with
a box labeled ‘‘Form 1.’’ The form is essentially
the display that will be projected on the screen
of the Pocket PC with which the user will
interact, and consists of both a graphical or
‘‘Design’’ level and a syntax or code level. One
window is located directly below ‘‘Form 1’’
with tabs titled ‘‘Error List’’ and ‘‘Task List.’’
The ‘‘Task List’’ and ‘‘Error List’’ will show
errors and warnings that will prevent the
application from functioning as they occur
during programming. Two more windows
should appear to the right of ‘‘Form 1.’’ These
windows are named ‘‘Solution Explorer—FA
PDA’’ and ‘‘Properties.’’ The solution explorer
contains a file folder entitled ‘‘FA PDA’’ and
serves as a visual directory of all of the contents
of the project. The properties window lists
a variety of properties of the selected form or
control object including such things as size,
name, and color.

Control Objects

As described above, the ‘‘Toolbox’’ window
contains control objects such as buttons, timers,
and textboxes. that can be added to forms. For
the current project we will need to use several
different types of control objects (described
below).

We will need to use a control object that will
allow the user to input text through the use of
the Pocket PC’s built-in keyboard, or soft input
panel. This can be accomplished with a ‘‘Text-
Box’’ control. On the first form we will need to
include three textboxes to allow the user to
input the name of the participant, the name of
the observer, and the length of the session.

We will also need to use a control object
called a ‘‘ComboBox.’’ A combobox is a drop-
down box that allows the user to choose
between a collection of options. For the current
project we will use two comboboxes to allow the
user to select the condition being studied and
the type of recording method to be used.

We will also need to use control objects that
will visually orient the user to the purposes of
these items. To accomplish this, ‘‘Labels’’ can
be used to instruct users as to what needs to be
typed or selected from each control object.

For this project, we will also need to use
several ‘‘Button’’ controls. Buttons are used to
carry out some specified task when the user
clicks on the button with the Pocket PC’s
stylus. We will need to use one button on the
first form to move from the first to the second
form after all of the relevant information has
been entered. On the second form, we will need
three buttons to record the occurrence of target
behaviors. We will also need one button for
error correction and one button to start the
observation period.

The final type of control for this application
is a timer. A timer is an object that will perform
some specified task at the end of some specified
interval of time. For this project we will use
three timers. One timer will be used to end the
overall observation session. Two more timers
are needed for interval recording to signal
observation and recording periods and to write
the results of each interval to the output file. We
can now move on to creating the needed forms.

Creating the Program Forms: Renaming Form 1

Purpose and rationale. To start the project we
need to create the two forms described above.
To begin, we will change the name of Form 1.
No specific conventions exist for naming forms
or items within a project, but a good rule of
thumb is to choose a name that specifies the
function of an item. In this case, this form will
be the first that will be encountered when
running the application, so we will name it
‘‘frmStart.’’ Whenever a form’s name is changed,

DATA-COLLECTION SYSTEM 363

Figure 1. The initial computer programming interface (top) and initial user interface setup for the data-entry
form (bottom).

364 JAMES JACKSON and MARK R. DIXON

it must be changed under both the properties
window and the solution explorer window to
ensure the program works properly. Other
properties besides the name of the form can
also be changed, including the form’s color or
text property. The text property is what will be
seen at the top of the form when it is running
on the Pocket PC. Currently the text setting
should read ‘‘Form 1,’’ so we will change the
property to match the form’s new name.

Prompts and actions. To select Form 1, click
on it once. Under the properties window locate
the ‘‘(Name)’’ option. Highlight the text, and
hit delete. Under the ‘‘(Name)’’ option type
‘‘frmStart.’’ Use your mouse to highlight
‘‘Form1.vb’’ in the solution explorer window.
Click the right mouse button, choose the
‘‘Rename’’ option, type ‘‘frmStart.vb’’ and hit
enter. To change the text property, highlight the
form in the main window, then locate the
‘‘Text’’ property in the properties window.
Highlight the current text, hit delete, and type
‘‘frmStart.’’

Creating the Program Forms: frmRecord and
Module 1

Purpose and rationale. We will also need to
create a second form that will be used to record
instances of the target behaviors. Following the
naming conventions described above, we will
name this new form ‘‘frmRecord.’’ Another
item is needed to link the two forms to pass
variables and events between the two forms.
This can be accomplished by using a module.

Prompts and actions. With your mouse,
highlight the project ‘‘FA PDA’’ in the solution
explorer window. Click the right mouse button
and move the mouse pointer over the ‘‘Add’’
option. When you highlight ‘‘Add,’’ several
options should be presented. In this case, we
wish to add another windows form, so locate
this option and click on it to open the ‘‘Add
New Item’’ window. In this window, you will
be given the option of choosing a name for the
new form and choosing a template for the new
item. Make sure that ‘‘Windows Form’’ is

highlighted in the ‘‘Templates’’ window. In the
name box, type ‘‘frmRecord.vb,’’ and click
‘‘Add.’’ The text and name properties should
already be set as ‘‘frmRecord’’ for the new form,
but the user may wish to adjust other properties
such as the form’s border style, but for now
make sure the form’s color is left as the default
setting of white.

To add a module to the project, use your
mouse to highlight the project ‘‘FA PDA’’ in
the solution explorer. Click the right mouse
button and move the mouse pointer over the
‘‘Add’’ option. From the options listed click on
‘‘Add Module.’’ In the resulting new item
window you can choose a name for the module
or leave the name as ‘‘Module 1.’’ Click on
‘‘Add’’ to complete the addition.

Adding the Control Objects to the Forms

Purpose and rationale. The next step in
creating the application is to add all of the
controls with which we will need to interact
from the toolbox on the left of the screen. To
add objects from the toolbox to the form, the
user can click on the type of object needed and
then click on the form. Once the object has
been added to the form, the user may drag it to
the desired location and resize it to the desired
dimensions using the mouse. We will begin
adding items to frmStart.

As stated previously, we will need to use two
comboboxes to allow the user to select the
condition being examined and the type of
recording method used. Once added, we will
change the comboboxes’ name and items
properties. We will also use three textboxes to
allow the user to input the participant’s name,
the observer’s name, and the length of the
observation session in minutes. Once added, we
will change the textboxes’ name and text
properties. We will also include five label
objects to orient users to the purpose of each
control. Once added, we will change the labels’
Name and Text properties. The final item we
will need for frmStart is a button control to
allow the user to advance to the recording form

DATA-COLLECTION SYSTEM 365

once all of the relevant information has been
entered. Once added, we will need to change
the button’s name and text properties.

Prompts and actions. Across the top of the
object browser is a horizontal list of all of the
components of the current project. Locate and
click on ‘‘frmStart.vb [Design].’’ In the toolbox
menu to the left of the screen locate the
combobox object. Add the object to the form as
described above. Once the combobox has been
added the user can adjust the size and location
of the box either by using the mouse to drag it
to the desired parameters and location or by
adjusting the size and location settings in the
properties window. When one clicks on an
object on the form, the properties window will
change focus from the form to the object in
question.

The user should locate the ‘‘(Name)’’ option
for the combobox in the properties window and
highlight the existing text ‘‘ComboBox 1.’’
Following naming conventions described above,
the user should delete the text and type
‘‘cbCondition.’’ The next step for this combo-
box is to add a collection of options corre-
sponding to the conditions for which observa-
tions will occur. To add these options, locate
and click on the ‘‘Items’’ property and click on
the box to the right of ‘‘(Collection).’’

The user will now be presented with the string
collection editor into which the functional
analysis condition options can be entered. The
conditions we will use for this application will
be attention, demand, alone, tangible, and play.
The user should click on the center of the editor
and type ‘‘attention,’’ hit enter, type the next
condition ‘‘demand,’’ and so on, until each
condition has been entered, then click ‘‘OK’’ at
the bottom of the window.

Locate the textbox item in the toolbox to the
right of the screen and add it to the form as
described above. In the properties window,
locate the ‘‘Name’’ option and change the
textbox’s name to ‘‘txtSession.’’ The user should
now locate the ‘‘Text’’ option and delete the

text ‘‘Textbox 1,’’ so that the text property is
blank. Add a second textbox as described above,
change the name property to ‘‘txtSubject,’’ and
locate the text property and delete the current
text so that the property is blank. Add another
textbox as described above, change the name
property to ‘‘txtObserver,’’ and set the text
property to blank.

Add another combobox as described above
and change the name property to ‘‘cbRecord.’’
Locate the ‘‘Items’’ option in the properties
window, and click the box to the right of
‘‘(Collection)’’ to open the string collection
editor for the new combobox. With the mouse,
click on the center of the editor and type
‘‘frequency,’’ hit enter, type ‘‘partial interval,’’
type ‘‘whole interval,’’ type ‘‘momentary time
sampling,’’ and click ‘‘OK’’ along the bottom of
the window. The form should now have two
comboboxes and three textboxes. The bottom
panel of Figure 1 displays the progress so far.
In the toolbox, locate the ‘‘Label’’ object, and

add one to the form. Position the first label
directly above ‘‘cbCondition,’’ change the name
property to ‘‘lblCondition,’’ and the text
property to ‘‘FA Condition.’’ Add a second
label, position it directly above ‘‘txtSession,’’
and change the name property to ‘‘lblSession.’’
Change the text property to ‘‘session length
(min)’’ so that users will know that session
times should be entered in minutes. Add a third
label and position it directly above ‘‘txtSubject.’’
Change the name to ‘‘lblSubject’’ and the text
property to ‘‘subject.’’ Add a fourth label and
position it directly above ‘‘txtObserver.’’
Change the name property to ‘‘lblObserver’’
and the text to ‘‘observer.’’ Add a fifth and final
label directly above ‘‘cbRecord,’’ change the
name property to ‘‘lblRecord,’’ and change the
text to ‘‘recording method.’’ See the top panel
of Figure 2 for ideas on how to position all of
the objects.

In the toolbox to the left of the screen, locate
the ‘‘Button’’ object and add one to the form.
As described for other controls, change the

366 JAMES JACKSON and MARK R. DIXON

name property to ‘‘butStart’’ and the text
property to ‘‘start.’’ You may wish to experi-
ment with repositioning items on the form,
changing text and font properties of the labels
and textboxes to suit your tastes. The top panel
of Figure 2 displays a final layout of the
graphical interface of frmStart.

First Test of Program

Before moving on to adding needed objects
to the second form, test to ensure that the
layout works properly. Prior to this test, change
the project’s settings so that the program begins
with frmStart. With your mouse, locate and
click on ‘‘Project’’ at the top of the screen.
Select ‘‘FA PDA_Properties …’’ and in the
resulting window locate the ‘‘Startup Object’’
drop-down box. Click on the down arrow of the
box and select ‘‘frmStart.’’ Click on ‘‘Apply’’ at
the bottom of the window and click on ‘‘OK.’’

One of the strengths of developing applica-
tions in the compact framework is the option of
testing programs with the Pocket PC Emulator.
This ‘‘virtual Pocket PC’’ allows a test run of
the program before transferring it over to an
actual handheld device. The emulator is useful;
however, due to compatibility problems with
certain systems and the eventual need to transfer
the program to the Pocket PC, we will describe
how to test this application using an actual
Pocket PC and Microsoft ActiveSync to connect
the Pocket PC to the computer (the standard
connection software included with all Pocket
PCs).

First, be sure that the Pocket PC is plugged
into its docking cradle and that the cradle is
plugged into the computer. Second, make sure
that Microsoft ActiveSync is running. If it is not
already running, open Microsoft ActiveSync by
using the mouse to click on the ‘‘Start’’ button
in the lower left corner of the computer. Click
on ‘‘All Programs’’ and locate and click on
‘‘Microsoft ActiveSync.’’ Return to the open
instance of the application on your computer.
At the top of the screen, locate and click on
‘‘Debug.’’ Click on the ‘‘Start’’ option. A

window labeled ‘‘Deploy FA PDA’’ should
have opened. In this window you are given the
option of running the application in the Pocket
PC emulator or on the actual Pocket PC. The
emulator is the default setting, but in this
instance, run the program on the actual Pocket
PC. Click on ‘‘Windows Mobile 5.0 Pocket PC
Device’’ and click on ‘‘Deploy.’’

The application should now be running on
the Pocket PC sitting in its cradle. With the
stylus, tap on the ‘‘FA Condition’’ combobox
and make sure that all of the conditions entered
previously are available. Next, tap on the
‘‘Session Length (min)’’ textbox. In the lower
right corner of the screen should be an icon that
looks like a miniature keyboard; tap on this box
to open the keyboard. The keyboard works
much like any other keyboard, with the
exception of using the stylus instead of your
fingers to strike buttons. Be sure that all of the
textboxes are positioned high enough on the
form that they are not obscured by the open
keyboard. However, it doesn’t matter if the
‘‘Start’’ button is obscured because by the time
the user needs to tap it, all of the necessary text
will have been entered, and the keyboard can be
minimized. By contrast, if any of the textboxes
are obscured, they will need to be repositioned.
Be sure that you can enter text into all of the
textboxes and that all of the options entered
previously are available for the recording
method combobox. To minimize the keyboard,
click on the keyboard icon in the lower right
corner of the screen. Return to the open
instance of the application on your computer.
At the top of the screen, locate and click on
‘‘Debug’’ and click on ‘‘Stop Debugging.’’ If
any of the textboxes were obscured by the
keyboard, reposition them as needed and run
the test again.

Adding Controls to the Recording Form: Buttons

Purpose and rationale. On this form we will
need a method to allow users of the application
to start observation periods and to record
specific behaviors. To accomplish this, we can

DATA-COLLECTION SYSTEM 367

Figure 2. The final graphical setup for the first form (top) and the initial user interface for functional analysis data
collection (bottom).

368 JAMES JACKSON and MARK R. DIXON

use a series of buttons. For this application, we
want to build in the capability to observe and
record up to three specific behaviors for a given
participant. To do this we will need three
buttons corresponding to the three possible
behaviors.

At times, users will require more or fewer
buttons corresponding to target behaviors.
Fortunately, each button can be made visible
or hidden. To hide buttons set the ‘‘Visible’’
property to false. This will make the objects
invisible when the program is running unless
they are needed for a given participant.

As described earlier, we will use a text file to
input the behaviors in question to the program.
The program will read the behaviors from a text
file and display those behaviors as the text on
the buttons. Buttons need to be wide enough
for the text corresponding to the behavior, or
the behavior must be abbreviated to fit on the
button. To accommodate most behavior cate-
gories, the size property of the behaviors
recording buttons should be set to 128, 20.
We will also need one button to start the
observation period and one button for error
correction.

Prompts and actions. Along the top of the object
browser, locate and click on ‘‘frmRecord.
vb[Design].’’ Add three buttons to the form,
and change the names of the buttons to
‘‘butBeh1,’’ ‘‘butBeh2,’’ and ‘‘butBeh3.’’ Locate
the ‘‘Visible’’ property for each button and
change it to false. Set the size property of the
behavior buttons to 128, 20. Locate the ‘‘Text’’
property for each button and delete the current
text. Add another button, change the name to
‘‘butBegin,’’ and change the text to ‘‘Begin.’’ Add
another button, change the name to ‘‘butError,’’
and change the text property to ‘‘Error.’’

Adding Controls to the Recording Form: Timers

Purpose and rationale. As stated previously,
we will need three timer controls. One timer
will be used to end an observation session after
the desired number of minutes selected on the
first form, and the other two timers will be used

for observation and recording intervals for
interval recording. You will note that when
a timer is added to the form, it immediately
hops off the form and sits directly below it. This
is fine, and is done because the timer is really
not an object that anyone sees. We will then
have to address three properties on each of the
timers. The name of each timer will be changed
to correspond with its function. The ‘‘Enabled’’
property corresponds to whether the timer is on
or off. Because we want the timer to operate only
when the program tells it to, we will make sure
the enabled property is set to false for all three
timers. The timer’s interval property corresponds
to how long it runs before performing its
specified actions (in milliseconds). The interval
property for the overall session timer will be set
by the user by entering the session length on the
first form, but we will set the interval properties
for the observation and recording period timers.
The length of observation and recording intervals
is the prerogative of the person making the
observation, but for the sake of this application
we will use 10-s observation intervals and 5-s
recording intervals.

Prompts and actions. Locate the timer object
in the toolbox on the left of the screen, and add
three timers to the form as described for other
objects. For the first timer, change the name
property to ‘‘tmrSession’’ and make sure the
‘‘Enabled’’ property is set to false. Change the
name of the second timer to ‘‘tmrObserve,’’ and
set the enabled property to false. The interval
property is scaled in milliseconds, so change the
interval property of ‘‘tmrObserve’’ to 10000.
Change the name of the final timer to
‘‘tmrRecord,’’ set the enabled property to false,
and the interval to 5000. The bottom panel of
Figure 2 displays your progress so far with the
interface of ‘‘frmRecord.’’

WRITING CODE FOR
DATA COLLECTION

In this section, we will detail how to create
the variables necessary and how to develop the

DATA-COLLECTION SYSTEM 369

necessary syntax to allow the controls on the
forms to be functional. At times throughout the
rest of the paper, we will provide further
description of the purpose and rationale of
a specific area of code after the reader has been
prompted to enter the code on the application.

Declarations: Public Variables

Purpose and rationale. Variables are used to
keep track of information. In this application,
some of the information we need to keep track of
includes the information relevant to the func-
tional analysis including the participant’s name,
the condition, the type of recording method, the
session length, the number of specific target
behaviors for a given participant, and informa-
tion relating to the occurrence of the target
behaviors. In the Visual Basic 2005 program-
ming language, variables must be declared based
on the type of information they are used to track.
Variables that track nonnumeric or text data can
be declared as ‘‘String’’ variables, and variables
that track numeric data can be declared as
‘‘Integer’’ variables. The level of the variable is
also an important consideration. If the variable is
used to carry information across multiple forms,
it must be declared as a ‘‘Public’’ variable in
a module. For variables that track information
specific to only one form, they may be declared
on that form only.

For the current application, all of the
information entered on the first form will need
to be carried to the second recording form;
therefore, declare variables related to the in-
formation as ‘‘Public’’ variables on the module
that we created earlier. We will declare public
‘‘String’’ variables to track the condition, the
participant’s name, the name of the observer,
and the type of recording method used. We will
also declare public numeric or ‘‘Integer’’
variables for the length of the session and the
type of recording method used.

Prompts and actions. Across the top of the
object browser locate and click on ‘‘Module1.vb’’
to open the module. Under the text ‘‘Module
Module1’’ and above ‘‘End Module’’ type

Public vCondition, vSubject, vObserver, vRe
cordMethod As String

Public vSession, vRecord As Integer

Code for frmStart: Setting Values for Public
Variables and Opening frmRecord

Purpose and rationale. In the syntax for
frmStart, we will provide the information to set
the values for the variables we just declared. The
following code will allow the programmer to
create a subroutine that will be performed
whenever the user of the application clicks on
the ‘‘Start’’ button. When the user clicks on the
‘‘Start’’ button, we want to set the values of the
previously declared variables to the information
entered into all of the textboxes and comboboxes
on the form. We also want the program to close
the first form and open the recording form.

Prompts and actions. Across the top of the
object browser, locate and click on ‘‘frmStart.vb
[Design]’’ to return to the first form. Now
double click on the ‘‘Start’’ button. This will
open the syntax or code level of the form.
Initially the cursor will be flashing underneath
the text ‘‘Private Sub butStart_Click().’’ Di-
rectly below the text ‘‘Private Sub butStart_
Click ()’’ and above ‘‘End Sub’’ type

vSubject 5 txtSubject.Text

vCondition 5 cbCondition.Text

vObserver 5 txtObserver.Text

vRecordMethod5 cbRecord.Text

If cbRecord.Text 5 ‘‘Frequency’’ Then

vRecord 5 1

Else

vRecord 5 2

End If

vSession 5 txtSession.Text

Dim 3 As New frmRecord

x.Show ()

Me.Hide ()

Code for frmRecord: System and Form
Variable Declarations

Purpose and rationale. For the current
application, the program will read in the
behaviors of interest from a text or ‘‘.txt’’ input

370 JAMES JACKSON and MARK R. DIXON

file that we will create. The output will also be
written to a separate text file. For any Pocket
PC application that will read from or write to
a text file, a system declaration must be made
that will allow the program to use what are
called ‘‘StreamReaders’’ and ‘‘StreamWriters.’’

In the following code we will make the system
declaration described above. We will also
declare two numeric variables for tracking the
occurrence of target behaviors. One variable will
be used to track the occurrence of target
behaviors during individual intervals for interval
recording, and one will be used to track the
cumulative total of the target behaviors across
the whole session for both frequency and
interval recording. We will also need a few
variables for information retrieved from the
input files for a given participant. We will
declare a numeric variable for the number of
target behaviors specific to an individual
participant. We will declare string variables for
the text of those behaviors. We will also need to
declare numeric variables for tracking errors and
for tracking the number of intervals during the
session for interval recording. Finally, we will
declare an instance of a ‘‘StreamWriter’’ that
will open and write to an individual partici-
pant’s output file.

Prompts and actions. To begin, locate and click
on ‘‘frmRecord.vb [Design]’’ in the object
browser to get back to the recording form.
Double click on a blank area of the form. This
should take you to the code level of the form in
the ‘‘Private sub frmRecord_Load ()’’ subrou-
tine. With your mouse, scroll to the top of the
screen, click before ‘‘Public Class frmRecord,’’
and hit enter. On the resulting blank line at the
top of the screen, type

Option Explicit On

Imports System.IO

Imports System.Text

Directly below the text ‘‘Public Class frmRe
cord’’ type the following lines of code:

Dim vBeh1, vBeh2, vBeh3, vTotalBeh1, vTo-
talBeh2, vTotalBeh3 as Integer

Dim vBehaviors as Integer

Dim beh1, beh2, beh3 as String

Dim vError, vInt as Integer

Dim swBeh As StreamWriter 5 New IO.Stream-
Writer (‘‘FA Data\Output Files\’’ & vSub-
ject & vCondition & ‘‘output.txt’’)

CREATING AN INPUT FILE AND FILE
FOLDERS ON THE POCKET PC

Before adding any more code, we will describe
how to create an input file for an individual
participant and how to set up a file structure on
the Pocket PC for storing input and output files.
A simple way of creating an input file is to use
a simple text editor such as Microsoft Notepad.
The user should click on ‘‘Start’’ in the lower left
of the computer screen and move the mouse
pointer over ‘‘All Programs.’’ Notepad can be
found under the ‘‘Accessories’’ tab for all
computers running Windows XP. Locate and
click on ‘‘Notepad’’ to launch the program.

Let’s look at a hypothetical participant, John
Doe. John has a history of displaying three types
of self-injurious behaviors including head
banging, hair pulling, and skin gouging. In
Notepad, type the number of behaviors of
interest, hit enter, type the first behavior, hit
enter, type the second behavior, hit enter, and
so on until all of the behaviors have been listed.
For John the user should type

3

Head Banging

Hair Pulling

Skin Gouging

Now click on ‘‘File’’ at the top of the screen and
choose ‘‘Save As.’’ In the resulting window go
to the ‘‘Save In’’ drop-down menu and choose
the desktop. We will be moving this file to the
Pocket PC later and need to make it easy to
find. In the file name box, the user should type
‘‘John Doe.txt,’’ and click ‘‘Save.’’ The user can
now close Notepad.

The first thing we need to do before we can
test the program again is to develop the

DATA-COLLECTION SYSTEM 371

necessary file folders on the Pocket PC for
placing the input and output files. Make sure
the Pocket PC is plugged into its docking cradle
and that the cradle is plugged into the
computer. If it is not already running, open
Microsoft ActiveSync by using the mouse to
click on the ‘‘Start’’ button in the lower left
corner. Click on ‘‘All Programs’’ and locate and
click on ‘‘Microsoft ActiveSync.’’ Now click on
‘‘Explore’’ in the upper middle of the Microsoft
ActiveSync window. In the resulting window,
click on ‘‘My Windows Mobile-Based Device.’’
The user should now click the right mouse
button and select the ‘‘New Folder’’ option. Hit
the ‘‘delete’’ key to delete the text ‘‘New
Folder’’ and type ‘‘FA Data.’’ Double click on
the just-created ‘‘FA Data’’ folder.

We now need to create two subfolders for
input and output files. Click the right mouse
button and select the ‘‘New Folder’’ option.
Delete the current text and type ‘‘input files.’’
To create the second folder, click the right
mouse button and select the ‘‘New Folder’’
option. Delete the current name and type
‘‘output files.’’

We now need to place the ‘‘John Doe’’ text
file created earlier in the ‘‘Input Files’’ folder on
the Pocket PC. Return to the computer’s
desktop where we saved the ‘‘John Doe’’ file.
Highlight the file, click the right mouse button,
and choose the ‘‘Cut’’ option. Now return to
Microsoft ActiveSync. Click on ‘‘Explore,’’ and
in the resulting window click on ‘‘My Windows
Mobile-Based Device.’’ Double click on the
‘‘FA Data’’ folder, then double click on the
‘‘Input Files’’ folder. Click the right mouse
button, and choose the ‘‘Paste’’ option. We can
now move on to describing the code needed to
read from this file.

Writing Code to Read from a Text File

Purpose and rationale. The following code
will be used to read an individual participant’s
target behaviors from the text file that we just
created. The code will open an instance of
a ‘‘StreamReader’’ that will open the partici-

pant’s input file and read the specific number of
target behaviors for that client. The StreamRead-
er will also read the text of those behaviors,
place that text on the recording buttons, and
make the proper number of recording buttons
visible for the given participant. Because
different participants may have fewer than
three target behaviors, the following code will
use what is called a ‘‘Select Case’’ statement to
perform all of the needed actions based on the
specific number of target behaviors.

Prompts and actions. Return to the open
instance of the application on the computer.
(Please note that in the following code and
throughout the rest of the task analysis, an
underscore preceding a line of code indicates
that the code belongs on the same line as the
code above but was separated due to the format
of the article.) Type the following lines
immediately below ‘‘Private sub frmRecord_
Load ()’’ and above ‘‘End Sub’’:

Dim srBeh as StreamReader 5 New IO.Stream
‘‘_’’ Reader(‘‘FA Data\Input Files\’’ & vSubject
‘‘_’’ & ‘‘.txt’’)

vBehaviors 5 srBeh.ReadLine

Select Case vBehaviors

Case 1

butBeh1.Visible 5 True

beh1 5 srBeh.ReadLine

butBeh1.Text 5 beh1

srBeh.Close ()

Case 2

butBeh1.Visible 5 True

beh1 5 srBeh.ReadLine

butBeh1.Text 5 beh1

butBeh2.Visible 5 True

beh2 5 srBeh.ReadLine

butBeh2.Text 5 beh2

srBeh.Close ()

Case 3

butBeh1.Visible 5 True

beh1 5 srBeh.ReadLine

butBeh1.Text 5 beh1

butBeh2.Visible 5 True

beh2 5 srBeh.ReadLine

372 JAMES JACKSON and MARK R. DIXON

butBeh2.Text 5 beh2

butBeh3.Visible 5 True

beh3 5 SrBeh.ReadLine

butBeh3.Text 5 beh3

srBeh.Close ()

End Select

Second Test of Program
Before moving on to the rest of the code, test

the program again and make sure that all of the
behaviors load properly. Make sure the Pocket
PC is plugged into its docking cradle, the cradle
is plugged into the computer, and Microsoft
ActiveSync is running. As described previously,
locate and click on ‘‘Debug’’ at the top of the
screen and select ‘‘Start.’’ Choose ‘‘Windows
Mobile 5.0 Pocket PC Device’’ and click on
‘‘Deploy.’’

The application should now be running on
the Pocket PC sitting in its cradle. With the
stylus, tap on the ‘‘FA Condition’’ combobox
and choose the ‘‘Attention’’ condition. Tap on
the ‘‘Session Length (min)’’ textbox. Open the
keyboard by tapping on the icon in the lower
right corner of the screen. To test the program,
we will arrange brief 1-min sessions. Tap on the
1 on the keyboard, tap on the ‘‘Participant’’
textbox, and, using the stylus and keyboard,
enter the name ‘‘John Doe’’ (make sure that the
case of the letters and spelling match the file
name placed in the ‘‘Input Files’’ folder). Tap
on the ‘‘Observer’’ textbox and enter your
name. Minimize the keyboard by tapping on
the keyboard icon in the lower right corner of
the screen. Tap on the ‘‘Recording Method’’
combobox and choose the ‘‘Frequency’’ option.
Tap the ‘‘Start’’ button to move on to the data-
collection form.

You should now see the data-collection form
with three buttons for recording the specific
behaviors for ‘‘John Doe’’ and the ‘‘Begin’’ and
‘‘Error’’ buttons. If everything loaded properly,
the three specific behaviors should be displayed
on the recording buttons. We can now return to
the open instance of Visual Basic on the
computer, locate and click on ‘‘Debug,’’ and

click on ‘‘Stop Debugging.’’ The top panel of
Figure 3 displays your completed graphical
interface.

DEVELOPING FUNCTIONAL ANALYSIS
PROGRAM CODE

Writing Code for Recording the Occurrence of
Target Behaviors and Error Correction

Purpose and rationale. We will now create the
necessary code for tracking the occurrence of
the target behaviors and for tracking and
correcting errors during the data collection
process. During observation periods, the user of
the application should be able to track the
occurrence of target behaviors by clicking on
the recording buttons. If the user makes
a mistake, he or she should be able to subtract
one occurrence of the mistaken behavior by
tapping on the ‘‘Error’’ button then by tapping
on the behavior he or she wishes to correct. We
will describe the following code more thor-
oughly after it has been entered.

Prompts and actions. The user should return
to the design level of ‘‘frmRecord’’ by locating
and clicking on ‘‘frmRecord.vb [Design]’’ at the
top of the main window. On the form, locate
and double click on the first behavior recording
button, ‘‘butBeh1.’’ This should return the user
to the code level of the form and create a new
subroutine titled, ‘‘Private Sub butBeh1_Click
().’’ In this subroutine, type

If vError 5 1 Then

vBeh1 5 0

vTotalBeh1 5 vTotalBeh1- 1

If vTotalBeh1 , 0 then

vTotalBeh1 5 0

End If

butBeh1.Enabled 5 True

Me.BackColor 5 Color.White

Else

vBeh1 5 1

vTotalBeh1 5 vTotalBeh1 + 1

End If

If vRecord 5 2 Then

DATA-COLLECTION SYSTEM 373

Figure 3. A run-time graphic of the frmStart in which users can input the various data-collection parameters (top)
and the addition of a large ‘‘observe’’ label that will cover all other buttons during the final programming steps (bottom).

374 JAMES JACKSON and MARK R. DIXON

butBeh1.Enabled 5 False

End If

vError 5 0

Now return to the design level of the form as
described previously. Locate and double click on
the second button, ‘‘butBeh2,’’ to create a sub-
routine titled ‘‘Private sub butBeh2_Click ().’’
The user can save time and effort by copying and
pasting the code for the ‘‘Private sub butBeh1_
Click ()’’ subroutine into the new subroutine.
With the mouse, highlight the code in the
‘‘Private sub butBeh1_Click ()’’ subroutine, click
the right mouse button, and choose ‘‘Copy.’’
Click your mouse below ‘‘Private sub butBeh2_
Click (),’’ click the right mouse button, and
choose ‘‘Paste.’’ In the resulting code, replace all
10 instances of the text ‘‘Beh1’’ with ‘‘Beh2.’’
The user should now repeat this process for the
remaining button (‘‘butBeh3’’).

Return to the design level of the form as
previously described. Locate and double click the
‘‘Error’’ button, which will create the ‘‘Pub sub
butError_Click ()’’ subroutine. In this routine, type

vError 5 1

butBeh1.Enabled 5 True

butBeh2.Enabled 5 True

butBeh3.Enabled 5 True

Me.BackColor 5 Color.Red

Writing Code for Starting Observation Periods

Purpose and rationale. We can now focus on
the code necessary for starting observation
sessions. The user of the application will start
observation periods by clicking on the ‘‘Begin’’
button. When the user clicks on this button, we
want that button to become invisible because it
is no longer necessary. Previously, we set the
interval properties for the observation and re-
cording interval timers for interval recording. We
now need a line of code to set the interval property
of the overall session timer, ‘‘tmrSession,’’ to the
value the user entered on the first form. Because
the interval property for timers is scaled in
milliseconds and the value entered for the session
time on the first form was scaled in minutes, we

will need to multiply that value by 60,000. Once
the interval timer is set we need to turn on the
overall session timer by setting its ‘‘Enabled’’
property to true. If interval recording is the
recording method of choice, we also need to turn
on the observation timer and signal to the user
that he or she should be observing the participant.

Prompts and actions. Directly below ‘‘Private
Sub butBegin_Click ()’’ and before ‘‘End Sub,’’
type the following lines of code:

butBegin.Visible 5 False

tmrSession.Interval 5 (60000 * vSession)

tmrSession.Enabled 5 True

If vRecord 5 2 Then

lblHide.Visible 5 True

tmrObserve.Enabled 5 True

End If

The line of code ‘‘lblHide.Visible 5 True’’
should have generated an error visible in the
Error List window below the form. The error
should read ‘‘Name ‘lblHide’ is not declared’’
and occurred because as of yet there is no object
on the form named ‘‘lblHide.’’

During interval recording we need an object to
signal to the observer when to observe the
participant and when to record instances of
behavior. Return to the design level of the form
as described previously. Add a label to the form
and using the mouse resize and position the label
so that it covers all of the buttons on the form.
Change the name of the label to ‘‘lblHide,’’
change the text property to ‘‘Observe,’’ and
change the visible property to false. It may be
beneficial to enlarge the size of the text on the
label. Locate the font property and click on the
text. This should produce a box to the right of the
text, similar to what was seen with the combobox’s
‘‘Items’’ property previously. Click on the box and
in the resulting window change the size property
to 36 and click ‘‘OK.’’ The bottom panel of
Figure 3 displays the addition of lblHide.

Writing Code for the Output File: The Header

Purpose and rationale. When the observation
begins, we want the program to begin writing to

DATA-COLLECTION SYSTEM 375

the output file for the given participant. The
first bits of information we want the program to
write to the output file are a few header lines
that report all of the relevant information of the
functional analysis, including the observation’s
date and time and the details of the functional
analysis entered on the first form.

At this time, we also want the program to write
the behaviors of interest to the output file. We
will have it write all of the behaviors on a single
line of text separated by commas. This is done so
that later when the output file is imported into
a statistical program such as Microsoft Excel, the
line of text can be used as header for the
behaviors of interest. This process will be
discussed more thoroughly in a later section.
Because different participants will have different
numbers of behaviors of interest, we need to use
another select case statement. When interval
recording is used, we also need the interval to be
written into this statement. To accomplish this,
if … then statements within the select case
statement will be used.

Prompts and actions. Locate and click on
‘‘frmRecord.vb*’’ along the top of the object
browser to return to the code level of the form.
Under the last line of code in the ‘‘Private Sub
butBegin_Click ()’’ subroutine (e.g., ‘‘End If’’)
and before ‘‘End Sub,’’ type

swBeh.WriteLine (DateTime.Now)

swBeh.WriteLine (‘‘FACondition5, ‘‘ vCondition)

swBeh.WriteLine (‘‘Subject5, ‘‘ & vSubject)

swBeh.WriteLine (‘‘Observer5, ‘‘ & vObserver)

swBeh.WriteLine (‘‘Session Length5,‘‘ & vSess-
ion)

swBeh.WriteLine (‘‘RecordingMethod5, ‘‘ &
vRecordMethod)

swBeh.WriteLine(‘‘# of Behaviors5,’’ &
vBehaviors)

Select Case vBehaviors

Case 1

If vRecord 5 2 Then

swBeh.WriteLine (‘‘Interval, ‘‘ & beh1)

Else

swBeh.WriteLine (beh1)

End If

Case 2

If vRecord 5 2 Then

swBeh.WriteLine (‘‘Interval, ‘‘ & beh1
‘‘_’’ & ‘‘,’’ & beh2)

Else

swBeh.WriteLine (beh1 & ‘‘,’’ & beh2)

End If

Case 3

If vRecord 5 2 Then

swBeh.WriteLine (‘‘Interval, ‘‘ & beh1 &
‘‘_’’ ‘‘,’’ & beh2 & ‘‘,’’ _& beh3)

Else

swBeh.WriteLine(beh1 & ‘‘,’’ & beh2 & ‘‘,’’
‘‘_’’ & beh3)

End If

End Select

Writing Code for Timers: tmrObserve
Purpose and rationale. If interval recording is

the recording method of choice, the observation
timer will be turned on when the user hits the
‘‘Begin’’ button to start an observation session.
We have currently set the interval to 10 s. At
the end of those 10 s, we need the label we
included to prompt observations—lblHide—to
become invisible. We also need to enable all of
the recording buttons at this time. We can also
use this timer to cumulatively advance the
variable we declared to track the number of
intervals—vInt. We also need to turn off
tmrObserve, and turn on the timer for re-
cording behavior—tmrRecord.

Prompts and actions. Return to the design
level of frmRecord as described previously.
Double click on tmrObserve to return to the
code level of the form. This should have created
a new subroutine, ‘‘Private Sub tmrObserve_
Tick ().’’ In this subroutine, type

vInt 5 vInt + 1

tmrRecord.Enabled 5 True

tmrObserve.Enabled 5 False

lblHide.Visible 5 False

butBeh1.Enabled 5 True

butBeh2.Enabled 5 True

butBeh3.Enabled 5 True

376 JAMES JACKSON and MARK R. DIXON

Writing Code for Timers: tmrRecord

Purpose and rationale. We now need to address
what occurs when the recording timer, tmrRe-
cord, times out. Currently this timer is set at 5 s.
During that time, the user will record instances
of behavior. At the end of those 5 s, the timer
needs to turn off and the program needs to write
the results of the interval to the output file.

Recall previously that the last bit of code we
wrote in the subroutine for the ‘‘Begin’’ button
was intended to write all of the behaviors of
interest to a single line, separated by commas, in
the output file. We want the results of each
interval to be written the same way, in the same
order, on one line separated by commas, so that
when the file is imported into a spreadsheet
program, the results of each interval will line up
under the corresponding behavior. Due to the
fact that different participants will have differ-
ent numbers of behaviors, we once again need
to use a select case statement.

After the program has written the results of
the interval to the output file, it is ready to
move on to the next observation interval. To
progress, the program needs to reset the
variables for tracking the occurrence of the
target behaviors and errors back to zero, turn
the observation timer back on, and prompt the
user to begin observing the participant again by
making lblHide visible again.

Prompts and actions. Return to the design level
of the frmRecord and double click on tmrRecord.
This should open the ‘‘Private Sub tmrRecord_
Tick ()’’ subroutine. In the subroutine, type

Select Case vBehaviors

Case 1

swBeh.WriteLine (vInt & ‘‘,’’ & vBeh1)

Case 2

swBeh.WriteLine (vInt & ‘‘,’’ & vBeh1 & ‘‘,’’
‘‘_’’ & vBeh2)

Case 3

swBeh.WriteLine (vInt & ‘‘,’’ & vBeh1 & ‘‘,’’
‘‘_’’ & vBeh2 & ‘‘,’’ & _vBeh3)

End Select

lblHide.Visible 5 True

tmrObserve.Enabled 5 True

tmrRecord.Enabled 5 False

vBeh1 5 0

vBeh2 5 0

vBeh3 5 0

vError 5 0

Me.BackColor 5 Color.White

Writing Code for Timers: tmrSession

Purpose and rationale. We now need to
address what the program does at the end of
the entire session when the session timer,
tmrSession, reaches the end of its interval. At
the end of the session, all currently running
timers need to be turned off. For frequency
recording, we want the program to write the
cumulative total of all behaviors to the output
file. As described above, we want the results to
be written to the output file on one line
separated by commas. When interval recording
is used, we want the program to calculate the
percentage of intervals in which behaviors
occurred. We also want the program to write
these percentages to the output file on one line,
separated by commas, in the order of the
behaviors written to the output file when the
user hit the ‘‘Begin’’ button. To accomplish
these tasks, we will use two if … then
statements corresponding to whether the re-
cording method chosen is interval or frequency
recording. Due to the fact that different
participants will have different numbers of
behavior, we will also have to use a select case
statement within each if … then statement.

Prompts and actions. Return to the design
level of frmRecord and double click on
tmrSession. This should open the ‘‘Private
Sub tmrSession_Tick ()’’ subroutine in the
code level of the form. In this subroutine, type

tmrObserve.Enabled 5 False

tmrRecord.Enabled 5 False

tmrSession.Enabled 5 False

If vRecord 5 1 Then

Select Case vBehaviors

Case 1

DATA-COLLECTION SYSTEM 377

swBeh.WriteLine (vTotalBeh1)

Case 2

swBeh.WriteLine (vTotalBeh1 ‘‘,’’ &
vTotalBeh2)

Case 3

swBeh.WriteLine (vTotalBeh1 ‘‘,’’ &
vTotalBeh2 & ‘‘,’’ _& vTotalBeh3)

End Select

End If

If vRecord 5 2 Then

swBeh.WriteLine (‘‘Percentage of Intervals’’)

Dim a, b, c as integer

a 5 (vTotalBeh1 / vInt * 100)

b 5 (vTotalBeh2 / vInt * 100)

c 5 (vTotalBeh3 / vInt * 100)

Select Case vBehaviors

Case 1

swBeh.WriteLine (‘‘Intervals,’’ & beh1)

swBeh.WriteLine(vInt & ‘‘,’’ a)

Case 2

swBeh.WriteLine (‘‘Intervals,’’ & beh1 &
‘‘_’’ ‘‘,’’ & beh2)

swBeh.WriteLine (vInt & ‘‘,’’ & a & ‘‘,’’ &
‘‘_’’ b)

Case 3

swBeh.WriteLine (‘‘Intervals,’’ & beh1 &
‘‘_’’ ‘‘,’’ & beh2 & ‘‘,’’ _& beh3)

swBeh.WriteLine (vInt & ‘‘,’’ & a & ‘‘,’’ &
‘‘_’’ b & ‘‘,’’ & c)

End Select

End If

swBeh.Close ()

Dim 3 As New frmStart

x.Show ()

Me.Close ()

Third Test of Program
Test the application for the final time on the

Pocket PC. Make sure that the Pocket PC is
plugged into its cradle, then locate and click on
‘‘Debug’’ at the top of the screen. Select ‘‘Start’’
and in the next window, select ‘‘Windows
Mobile 5.0 Pocket PC Device’’ and click on
‘‘Deploy.’’

The application should now be running on
the Pocket PC sitting in its cradle. With the

stylus, tap on the ‘‘FA Condition’’ combobox
and choose the ‘‘Attention’’ condition. Tap on
the ‘‘Session Length (min)’’ textbox. Open the
keyboard, tap on the ‘‘1’’ on the keyboard, tap
on the ‘‘Participant’’ textbox, and enter the
name ‘‘John Doe,’’ making sure that the case of
the letters and spelling match the file name we
placed in the ‘‘Input Files’’ folder. Click on the
‘‘Observer’’ textbox and enter your name.
Minimize the keyboard by clicking on the
keyboard icon again in the lower right corner of
the screen. Click on the ‘‘Recording Method’’
combobox, choose the ‘‘Frequency’’ option, and
click on the ‘‘Start’’ button to move on to the
data-collection form.

You should now see the data-collection form
with three buttons for recording the specific
behaviors for ‘‘John Doe’’ and the ‘‘Begin’’
button. For the test, we want to make sure all
three recording buttons and the ‘‘Error’’ button
are working properly. Click on the ‘‘Begin’’
button to start the observation session. With the
stylus, tap each recording button six times. Tap
the ‘‘Error’’ button, then tap the ‘‘Head
Banging’’ button. Once again tap the ‘‘Error’’
button, then tap the ‘‘Hair Pulling’’ button.
Once again tap the ‘‘Error’’ button, then tap the
‘‘Skin Gouging’’ button. After the end of the 1-
min session, the application should return to
the first form.

Check the output file and make sure
everything was recorded correctly. Return to
the open instance of the application on your
computer. At the top of the screen, locate and
click on ‘‘Debug’’ and click on ‘‘Stop Debug-
ging.’’ Now return to the Pocket PC. With the
stylus, tap ‘‘Start’’ in the top left of the screen.
Tap ‘‘Programs’’ and on the resulting screen,
locate and tap ‘‘File Explorer.’’ This should
provide access to the ‘‘My Documents’’ folder,
but the ‘‘FA Data’’ folder that we are looking
for is located in the directory above this. In the
gray area near the top of the screen, tap ‘‘My
Documents’’ and in the resulting drop-down
menu tap ‘‘My Device.’’ On the resulting

378 JAMES JACKSON and MARK R. DIXON

screen, locate and tap the ‘‘FA Data’’ folder,
then tap the ‘‘Output Files’’ folder. You should
now see the ‘‘John DoeAttentionoutput’’ file.

Using the ‘‘StreamWriter’’ method of writing
output files creates a problem that will appear the
second time the user of this application wants to
observe the same participant under the same
condition. The way the ‘‘StreamWriter’’ works,
each additional observation will write over the
previous file. To prevent the loss of data, the user
of the application can either rename or move the
output file after each observation. To prevent
overwriting this output file, tap and hold the
stylus on the ‘‘John DoeAttentionoutput’’ file. In
the resulting window choose the ‘‘Rename’’
option. On the keyboard, tap the right arrow,
then add a 1 to the end of the file name and tap
the enter key. This will prevent the file from
being overwritten the next time a ‘‘John DoeAt-
tention’’ observation is made.

To determine if everything was written to the
output file correctly, tap on the file with the
stylus. The file should have opened in the
Pocket Word program. You should see several
lines of text beginning with the date and time
the observation was made, followed by the
condition, the participant’s name, the observer’s
name, the session length, the recording method,
the behaviors of interest, and finally the
frequency of each behavior. If everything
worked properly, the frequency of all behaviors
should be five, because we clicked each re-
cording button six times and then with the
‘‘Error’’ button subtracted one instance of each
behavior.

Check to be sure that the program works
properly when partial-interval recording is the
chosen recording method. With the stylus tap
‘‘OK’’ in the top right corner of the screen. Return
to the application on the computer. As described
above, start the program on the Pocket PC by
locating and clicking on ‘‘Debug’’ at the top of the
screen, then click on ‘‘Start.’’ In the resulting
window, choose ‘‘Windows Mobile 5.0 Pocket
PC Device,’’ and click on ‘‘Deploy.’’ Once the

program is running on the Pocket PC, follow the
instructions above for entering the relevant
information for the session, only this time in the
‘‘Recording Method’’ combobox choose ‘‘Partial
Interval.’’ Tap on the ‘‘Start’’ button to move to
the behavior recording form. Click on the begin
button to start the observation. The ‘‘Observe’’
label should appear, covering all of the buttons.
After 10 s, the ‘‘Observe’’ label should disappear,
and the buttons should be available for recording
behavior. To test whether the application is
working properly, at the end of the first
observation interval, tap all three recording
buttons. After the second interval, tap the ‘‘Head
Banging’’ button. After the third interval, tap the
‘‘Hair Pulling’’ button. After the fourth interval,
tap the ‘‘Skin Gouging’’ button. The program
should return to the first form at the end of 1 min.
Return to the application on the computer and
stop debugging as described previously.

On the Pocket PC a new ‘‘John DoeAtten-
tionoutput’’ file should have been written.
Rename the file as described previously to
prevent overwriting it on subsequent observa-
tions. Open the new output file as described
previously. As stated above, the file should
consist of the date and time of the observation
on the first line, followed by the condition, the
participant, the observer, the session length, the
recording method, the number of behaviors,
and the behaviors of interest. There should also
be three lines corresponding to the first three
intervals of the observation, with positive
instances of behaviors noted with a 1 and
absences noted with a 0. At this point you
might be wondering where the results of the
fourth interval are. A problem occurs in writing
to the output file because the overall session
timer (‘‘tmrSession’’) reaches the end of its
interval slightly before the recording timer
(‘‘tmrRecord’’) reaches the end of its interval
during the last interval of the session. The data
from the final interval are not actually lost. The
data from the final interval are still counted in
the overall session data, as can be seen by

DATA-COLLECTION SYSTEM 379

looking at the last few lines of the output file.
The program has calculated the percentage of
intervals for the observation period that each
behavior occurred. During the four intervals of
the observation, we recorded two instances of
each behavior, and the last line should demon-
strate this by reporting that four intervals were
observed, with each behavior occurring during
50% of those intervals. With the stylus, close
the file by tapping ‘‘OK’’ in the upper right
corner of the screen.

Including a Method for Exiting the Program

The final version of the program is almost
ready to install to the Pocket PC. However, we
have not yet included a method for exiting the
application without using the computer to end
debugging. This can be accomplished using the
Pocket PC’s ‘‘Switcher Bar.’’ The switcher bar is
an item that allows users to see all currently
running applications and either switch between
them or close them. If the switcher bar is not
already visible in the blue area at the top of the
screen, it can be added by clicking on the
windows icon in the top left of the screen and
selecting ‘‘Settings.’’ On the resulting screen
locate and tap on ‘‘System’’ along the bottom of
the screen. On the next screen locate and tap on
the ‘‘Switcher Bar’’ icon, then tap the X in the
top right corner of the screen.

Creating an Installation File and Installing the
Final Version of the Software on the Pocket PC

At this point we will create a file that can be
used to install the final version of the software
on any Pocket PC. To accomplish this we will
create a ‘‘CAB’’ file. Return to the open
instance of the application on the computer.
At the top of the screen above the object
browser, locate and click on the ‘‘File’’ menu
item. From the resulting list choose the ‘‘Add’’
option and from the options given click on
‘‘New Project.’’ This should open the ‘‘Add
New Project’’ window. Under the ‘‘Project
types:’’ box click on the + to the left of ‘‘Other
Project Types’’ and click on the ‘‘Setup and

Deployment’’ option. Under the ‘‘Templates:’’
window you should see an option called ‘‘Smart
Device Cab Project.’’ Make sure this template is
highlighted, then in the ‘‘Name:’’ box, replace
the text ‘‘SmartDeviceCab1’’ with ‘‘FA PDA
Setup’’ and click the ‘‘OK’’ button.

This should return you to the current project
with a few additions. The object browser should
now be set to a new screen with the title ‘‘File
System (FA PDA Setup).’’ From this screen you
can set where in the Pocket PC’s file structure
the program will be installed. In the solution
explorer you should now note the addition of
another project beneath the FA PDA project for
the setup file. Before we can actually build the
CAB file, we need to set some properties for this
new project. If you highlight the FA PDA Setup
project by clicking on it in the solution
explorer, you should see some new properties
in the properties window. From here you can
include the name of the software manufacturer
and the product name, and set some options for
the mimimum and maximum operating systems
a device must use for the software to install
correctly. We should not have to worry about
any of these, so we will move on to some more
important properties.

With the mouse right click on ‘‘FA PDA
Setup’’ in the solution explorer and from the
resulting options highlight ‘‘Add’’ and choose
‘‘Project Output.’’ In the resulting options
dialogue, select the ‘‘Primary Output’’ option,
and in the ‘‘Configuration’’ drop-down box
choose ‘‘Active’’ and click ‘‘OK.’’ This should
add all of the dependent files to the project.

Now look at the split screens in the ‘‘File
System (FA PDA Setup)’’ page in the object
browser. Now we make sure that a shortcut to
start the program will be created in the Pocket
PC’s programs menu. Locate and right click on
the text ‘‘File System on Target Machine.’’
From the resulting ‘‘Add Special Folder’’
options, select ‘‘Programs Folder.’’ Now high-
light the ‘‘Application Folder’’ in the left pane
by clicking on it. The contents of the

380 JAMES JACKSON and MARK R. DIXON

‘‘Application Folder’’ should now be visible in
the right pane. These contents should consist of
a single file called ‘‘Primary Output from FA
PDA (Active).’’ Right click on this file and
choose the ‘‘Create Shortcut …’’ option. Right
click on the newly created shortcut file and
choose the ‘‘Rename’’ option. Delete the
current text and type ‘‘FA PDA.’’ Now click
and drag the ‘‘FA PDA’’ file to the ‘‘Programs
Folder’’ in the left pane.

We are now ready to create the new CAB file.
Click on ‘‘Build’’ on the main menu. From the
resulting options click on ‘‘Build FA PDA
Setup.’’ Watch the bottom of the screen for
some text that will initially read ‘‘Build started
…’’ then ‘‘Building …’’ When this text changes
to ‘‘Build succeeded,’’ the file has been
constructed.

We will now locate the CAB file just
constructed and place it on the Pocket PC.
Before proceeding make sure that Microsoft
ActiveSync is currently running and that the
Pocket PC is connected to its cradle. Click on the
‘‘Start’’ icon in the lower left of the screen. From
the options given, click on ‘‘My Computer,’’ and
in the next window click on ‘‘Local Disc (C:).’’
On the resulting screen, locate and double click
on the ‘‘FA PDA’’ folder. This should take you to
another screen with another ‘‘FA PDA’’ folder.
Double click on the ‘‘FA PDA’’ folder. Locate
and double click on the ‘‘FA PDA Setup’’ folder,
and on the resulting page, locate and double click
on the ‘‘Debug’’ folder. From the resulting files
locate select the ‘‘FA PDA Setup.CAB’’ file. Click
the right mouse button and select copy. Return to
the open instance of Microsoft ActiveSync on the
computer. Locate and click on ‘‘Explore.’’ On the
resulting page, double click on ‘‘My Windows
Mobile-Based Device.’’ Click the right mouse
button and select ‘‘Paste.’’

Now return to the Pocket PC in its cradle.
Tap on the Windows icon in the upper left of the
screen. From the options listed, select ‘‘Pro-
grams’’ and in the resulting window, locate and
tap on ‘‘File Explorer.’’ This should take you to

the ‘‘My Device’’ folder. If not, tap on the gray
area at the top of the screen below the Windows
icon and select ‘‘My Device’’ from the available
options. You should see the file we just placed on
the Pocket PC at the bottom of the screen. To
install the final version of the program, tap on
the file ‘‘FA PDA Setup.’’ The file should install
and may produce a box either stating that the
program may not display properly because it was
designed for a previous version of Windows
Mobile software or that the manufacturer is
unknown and cannot be verified. If all of your
previous tests have functioned properly, ignore
these messages and tap ‘‘OK.’’

Final Test of Program

We can now test the application for the final
time. Remove the Pocket PC from its cradle. In
the blue area at the top of the screen, tap on the
Windows icon. From the resulting options, tap
on ‘‘Programs’’ and locate the ‘‘FA PDA’’ icon.
Tap on ‘‘FA PDA’’ to launch the application,
and run the same test for partial-interval
recording we previously completed. At the end
of the observation period, tap on the switcher bar
in the blue area of the top of the screen and select
‘‘Exit current program.’’ Rename and check the
output file as described previously, and if
everything checked out, then the program is
complete and ready for use. All that is required
for using the application with actual participants
is to construct input files as we did for ‘‘John
Doe,’’ and place them in the ‘‘Input Files’’ folder
on the Pocket PC. Figure 4 displays a Pocket PC
screen ready to collect data.

IMPORTING DATA INTO
MICROSOFT EXCEL

The data from the output files can be quickly
imported into Microsoft Excel. Readers should
refer to Carr and Burkholder (1998) for how to
create single-subject graphs in Microsoft Excel,
but we will describe how to import the output
files into Microsoft Excel. Return to the open
instance of Microsoft ActiveSync on the

DATA-COLLECTION SYSTEM 381

Figure 4. An actual Pocket PC screen with the programmed software installed and ready to collect data.

382 JAMES JACKSON and MARK R. DIXON

computer. Click on ‘‘Explore.’’ Double click on
‘‘My Pocket PC,’’ double click on the ‘‘FA
Data’’ folder, and then double click on the
‘‘Output Files’’ folder. Highlight any one of the
output files in the folder. Click the right mouse
button and select ‘‘Copy.’’ You should now
return to the computer’s desktop, click the right
mouse button, and select ‘‘Paste.’’ We now need
to open Microsoft Excel.

Click on the ‘‘start’’ button in the lower left
corner and click on ‘‘All Programs.’’ Locate and
click on ‘‘Microsoft Office,’’ and then locate and
click on ‘‘Microsoft Excel.’’ In Microsoft Excel,
locate and click on ‘‘File’’ and then ‘‘Open.’’ In
the resulting window, locate the ‘‘Look in:’’
drop-down box. Click on the box and change the
focus to ‘‘Desktop.’’ You now need to locate the
‘‘Files of type:’’ drop-down box at the bottom of
the window. Click on this box and from the
options listed select ‘‘Text Files.’’ Now locate and
highlight the output file that we placed on the
desktop from the available files and click
‘‘Open.’’ You should now be presented with
the ‘‘Text Import Wizard’’ window.

In the Text Import Wizard you are first
presented with two options of how data are
separated in the text file, either delimited or fixed
width. In our example, we used commas to
separate the data, so make sure the ‘‘Delimited’’
option is checked. Now click on ‘‘Next’’ in the
lower right corner. In Step 2 of the Text Import
Wizard, you will be presented with options for
how data are delimited. Make sure that
‘‘Commas’’ is checked and click ‘‘Finish’’ in
the lower left corner. The data should now be
presented in spreadsheet format with all behav-
iors in separate columns ready to be graphed.

POSSIBILITIES FOR EXTENDING THE
FUNCTIONALITY OF THE

CURRENT PROGRAM

The current example consists of a very basic
yet functional program for collecting functional
analysis data using either frequency or multiple
forms of interval recording. The intent of the

current paper was to create a task analysis that
allows a novice programmer to build a functional
program and gain some experience that might
aid him or her in developing a programming
repertoire. There are many ways that the
functionality and complexity of the current
program could be extended, and readers may
use some of the suggestions offered here to
attempt to further their programming repertoire.

One potential area of flexibility in this
program is the possibility of recording the
occurrence of more than three behaviors. If
one wished to construct an application with
the capability of recording more than the
three behaviors described here, one would
need to simply include more buttons on
the recording form and expand the ‘‘Select Case’’
statements used in the current appli-
cation. The number of target behaviors is limited
only by the number of buttons one can fit on the
Pocket PC screen. One could also use the current
program to track therapist’s behaviors as well.
Buttons could be included to track the delivery of
attention, noncontingent reinforcement, physi-
cal contact, demands, and so on.

Another area of potential flexibility is the use
of an auditory cue for observation and re-
cording intervals. Although the use of sound
files is a bit more difficult for Pocket PC
applications than for applications for a full-size
computer, ‘‘wav’’ files could be used to cue
observation and recording intervals.

A user may also consider incorporating the
use of separate observation and recording
intervals. It is possible to eliminate the label
that hides the buttons (lblHide) and combine
the code for the observation and recording
timers so that the results of individual intervals
would be written to the output file at the end of
a single interval. In this case, the user would
record target behaviors as they occur, and the
need for separate observation and recording
intervals would be eliminated.

Another area of potential flexibility concerns
the length of observation and recording inter-

DATA-COLLECTION SYSTEM 383

vals. In the current example, they were set
permanently at 10 s and 5 s, respectively, but it
is also possible to allow the user the option of
selecting other intervals. To accomplish this, the
programmer could include textboxes or com-
boboxes on the first form to allow the user to
input the intervals as we did for the overall
session timer.

A final area of possible extension for the
current program concerns the calculation of
interobserver agreement. Although the current
program automates the collection of actual real-
time data, it does not automate the calculation
of interobserver agreement. We have developed
a separate application in Microsoft Visual Basic
2005 that is capable of reading the output files
from the current application and calculating
agreement for frequency recording, as well
as both total and occurrence agreement for
interval recording. This software can be down-
loaded free of charge from http://www.siu.edu/
,rehabbat/IOA/IOAindex.html and includes
step-by-step instructions for installation.

SUMMARY

Precise data collection, storage, and analysis
are formidable tasks. Functional analyses in
particular often require frequent observations of
complex behavioral phenomena. Computer
technology can aid in the collection of such
data. The present paper described a means by
which the process of data collection for func-
tional analyses can in fact be computerized, and
modifiable by the user for their own customized
data-collection needs. The entire programming

process requires about 4 hr, and a functional
program along with a rudimentary repertoire of
programming skills are the direct benefits of this
investment. As more behavior analysts become
aware of and capable of capitalizing on existing
computer technologies, the more productive our
field will become in creating solutions for socially
important problems.

REFERENCES

Carr, J. E., & Burkholder, E. O. (1998). Creating single-
subject design graphs with Microsoft ExcelTM. Journal
of Applied Behavior Analysis, 31, 245–251.

DeLeon, I. G., Arnold, K. L., Rodriguez-Catter, V., &
Uy, M. L. (2003). Covariation between bizarre and
nonbizarre speech as a function of the content of
verbal attention. Journal of Applied Behavior Analysis,
36, 101–104.

Dixon, M. R. (2003). Creating a portable data-collection
system with MicrosoftH embedded visual tools for the
Pocket PC. Journal of Applied Behavior Analysis, 36,
271–284.

Dixon, M. R., & MacLin, O. H. (2003). Visual basic for
behavioral psychologists. Reno, NV: Context Press.

Erchul, W. P., & Martens, N. K. (2002). School
consultation. New York: Springer.

Hanley, G. P., Iwata, B. A., & McCord, B. E. (2003).
Functional analysis of problem behavior: A review.
Journal of Applied Behavior Analysis, 36, 147–185.

Iwata, B. A., Dorsey, M. F., Slifer, K. J., Bauman, K. E.,
& Richman, G. S. (1994). Toward a functional
analysis of self-injury. Journal of Applied Behavior
Analysis, 27, 197–209. (Reprinted from Analysis and
Intervention in Developmental Disabilities, 2, 3–20,
1982)

Kahng, S., & Iwata, B. A. (1998). Computerized systems
for collecting real-time observational data. Journal of
Applied Behavior Analysis, 31, 253–261.

Received March 23, 2006
Final acceptance October 27, 2006
Action Editor, Gregory Hanley

384 JAMES JACKSON and MARK R. DIXON

