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ABSTRACT

Although the vital role of the androgen receptor (AR)
has been well demonstrated in primary prostate
cancers, its role in the androgen-insensitive pros-
tate cancers still remains unclear. Here, we used a
small hairpin RNA approach to directly assess AR
activity in prostate cancer cells. Reduction of AR
expression in the two androgen-sensitive prostate
cancer cell lines, LNCaP and LAPC4, significantly
decreased AR-mediated transcription and cell
growth. Intriguingly, in two androgen-insensitive
prostate cell lines, LNCaP-C42B4 and CWR22Rv1,
knockdown of AR expression showed a more
pronounced effect on AR-induced transcription
and cell growth than androgen depletion. Using
cDNA microarrays, we also compared the transcrip-
tional profiles induced by either androgen depletion
or AR knockdown. Although a significant nhumber
of transcripts appear to be regulated by both
androgen depletion and AR knockdown, we
observed a subset of transcripts affected only by
androgen depletion but not by AR knockdown,
and vice versa. Finally, we demonstrated a
direct role for AR in promoting tumor formation
and growth in a xenograft model. Taken together,
our results elucidate an important role for the AR
in androgen-insensitive prostate cancer cells, and
suggest that AR can be used as a therapeutic target
for androgen-insensitive prostate cancers.

INTRODUCTION

The androgen-signaling pathway plays a critical role in
the regulation of prostate cancer cell growth and survival.
Consequently, androgen ablation has been used as an
effective treatment for the majority of advanced prostate

cancers (1-3). Androgens exert their biological
effects mainly through androgen receptor (AR),
a member of the steroid hormone receptor superfamily
(4). The AR is expressed in normal prostate epithelial
cells, in virtually all primary prostate cancer cells, and
in most refractory prostate cancer cells (4—6). Although
the mechanisms by which prostate cancer cells become
androgen insensitive (AI) are currently unclear, it is
believed that the tumor cells must either bypass or
adapt the AR-mediated cell growth pathway in order
to survive in a low-androgen microenvironment
during androgen ablation therapy (3,7). Several lines of
evidence suggest that the AR-signaling pathway remains
active in Al prostate cancer. Mutated AR proteins
have been identified in a significant portion of Al prostate
cancers. Some of the mutations identified in the
AR-ligand-binding domain can result in activation of
the receptor by other steroid hormones (8,9).
Amplification of the AR gene also occurs in prostate
cancer samples after androgen ablation therapy (10).
Finally, multiple lines of evidence have shown that
dysregulation of AR co-regulators can modify AR activity
to compensate for lower androgen levels during androgen
ablation therapies (11).

In this article, we directly assess AR-mediated
transcription and cell growth of prostate cancer cells
using a small hairpin RNA (shRNA) approach to attempt
to address a longstanding unresolved question: does the
AR still play a dominant role in Al prostate cancer cells?
Using in vitro and in vivo model systems, we assessed
AR-mediated transcription and cell growth in both
androgen-sensitive and -insensitive prostate cancer cells
through the knockdown of AR expression. Our data
provide additional evidence that the AR continues to play
a critical role in transcriptional regulation and cell growth
in Al prostate cancer cells. Our findings suggest that the
AR remains a viable therapeutic target in Al prostate
cancers.
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MATERIALS AND METHODS
Cells and tissue culture

The LNCaP cell line and its subline C4-2B4 were
maintained in T-medium containing 5% fetal bovine
serum (FBS; HyClone, Denver, CO). LAPC4 and
CWR22RvI1 cells were maintained in phenol-red free or
regular RPMI 1640 medium containing 10% FBS,
respectively.

Plasmids

The PSA promoter/reporter plasmid (pPSA7Kb-Luc) was
kindly provided by Dr Jan Trapman (Department of
Pathology, Erasmus University, Rotterdam, the
Netherlands) (12). The pARE-luc reporter was obtained
from Dr Chawnshang Chang (13). The MMTV pA3LUC
reporter was a gift from Dr Richard Pestell (Albert
Einstein Medical College, New York, NY) (8). The
cytomegalovirus-driven B-galactosidase (B-gal) reporter
(pcDNA3-B-gal) was generated in our laboratory pre-
viously (14). The AR shRNA constructs were created by
inserting double-stranded oligonucleotides corresponding
to the human AR cDNA sequences 5-GGACACTTGA
ACTGCCGTCT-3' [amino acids (aa) 335-342], 5-GGAC
ATGCGTTTGGAGACTG-3' (aa: 535-542), and 5-GGT
GTCACTATGGAGCTCTC-3 (aa 568-575) downstream
of U6 promoter in the pBS/U6 vector (15).

Adenovirus and lentivirus production

The pBS/U6-AR shRNA constructs were released by
restriction-enzyme digestions and cloned into the
pAdTrack shuttle vector (16). The plasmids were then
cleaved with Pmel, and transformed into BJ5183 cells that
contain pAdEasy-1 vector. Adenoviral vectors were
amplified in DHS5a cells, and propagated in HEK?293
cells. Viral titers were determined using plaque assays.

To make the AR shRNA lentiviral constructs, the
pBS/U6-AR shRNA constructs were digested and the
DNA fragments containing U6 promoter and AR
sequences were subcloned into the pLenti-super vector
(17). Lentiviruses of AR shRNA were produced in 293T
cells as described previously (18).

Immunofluorescence

Cells infected with adenoviruses or lentiviruses were
cultured in 8-well Lab Tek chamber slides (Nalge Nunc
International, Naperville, IL). Three days post-infection,
cells were fixed for 30min with 3% formaldehyde in
phosphate-buffered saline (PBS), permeabilized with 95%
ethanol at —20°C for 10 min, blocked in 10% normal goat
serum for 1h, and then incubated with the antibody
against the AR and H1 (Santa Cruz Biotechnology, Santa
Cruz, CA) overnight at 4°C. Slides were washed three
times with PBS followed by incubation with appropriate
secondary antibodies (Molecular Probes, Eugene, OR),
and analyzed with Zeiss LSM 510 confocal, two-photon
laser scanning microscope.

Western blotting

Whole-cell lysates were prepared from transfected or
infected cells by extraction in lysis buffer containing
50 mM Tris (pH 8), 150 mM NaCl, 1% NP-40, 0.1% SDS,
10 mM NaF, I mM Na3;VO,, 1 mM phenylmethylsulfonyl
fluoride, 1 pg/ml leupeptin, 1 pg/ml aprotinin and 1 mM
dithiothreitol. ~ Proteins were resolved by 10%
SDS-PAGE, transferred onto nitrocellulose membranes,
probed with appropriate antibodies and developed using
the ECL kit (Amersham Biosciences, Piscataway, NJ).

Transfection, luciferase and -gal assays

Cells were infected with adenovirus for 6h and then
transfected with different plasmids using Lipofect AMINE
2000 (Invitrogen, Carlsbad, CA). Dihydrotestosterone
(DHT) was added into cells 24 h after infection if required.
Luciferase and B-gal activities were measured in total cell
lysates after 18-24 h. The relative light units (RLUs) from
individual transfections were normalized by B-gal activity
in the same samples. Individual transfection experiments
were done in triplicate, and the results are reported as the
means =+ standard deviations (SD) from representative
experiments.

Northern blotting and RT-PCR

Total RNA was isolated from cells infected with control
or AR shRNA adenoviruses in the presence or absence of
DHT using RNAwiz extraction reagent (Ambion, Austin,
TX). Five micrograms of RNA were fractionated on a 1%
agarose-formaldehyde gel, transferred to Hybond-N
nylon membranes (Amersham Biosciences, Piscataway,
NJ), and hybridized with a DNA fragment derived from
either the human prostate-specific antigen (PSA) cDNA
(aa: 1-261) or from the human kallikrein 2 (KLK2) cDNA
(aa: 1-224). The blots were stripped and rehybridized with
a human glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) fragment (aa: 104—-168).

Two micrograms of total RNA isolated from LNCaP or
LAPCH4 cells infected with either the adenoviral vector as a
control or AR shRNA adenoviruses in the presence or
absence of DHT was reverse transcribed using oligo dT
and random primers, and then amplified with appropriate
primers for PSA (5-ACCATGTGGGTCCCGGTTGT-3
and 5-GAGTTGATAGGGGTGCTCAGG-3), KLK2
(5-CTGTGTCAGCATGTGGGACCT-3 and 5-CCAT
GATGTGATACCTTGAAGCA-3), and GAPDH
cDNAs  (5-CCATGGAGAAGGCTGGGG-3"  and
S-CAAAGTTGTCATGGATGACC-3'), respectively.

Proliferation and colony formation assays

Cells were infected with adenoviruses for 3h and seeded
on 96-well plates. The growth rate of cells was measured
every other day by the MTS assay following the
manufacturer’s protocol (Promega, Madison, WI).
For the colony formation assay, infected cells were
seeded on 24-well plates at ~400 cells/well and incubated
at 37°C for 14 days. Colonies were then fixed with
2% formaldehyde and stained with 0.2% crystal violet



(Sigma, St. Louis, MO). The experiments were conducted
in triplicate and repeated more than three times.

c¢DNA microarray hybridizations

Fluorescently labeled ¢cDNA probes were prepared
from 50 to 70 ug of total RNA isolated from CS-treated
or AR-knockdown LNCaP cells (Cy5 labeled) and
Universal Human Reference RNA (Stratagene, La Jolla,
CA) (Cy3-labeled) by reverse transcription with a 17-mer
Oligo dT primer (QIAGEN, Valencia, CA) as described
previously (19). Labeled probes prepared from LNCaP
cell RNA and reference RNA were mixed and hybridized
overnight to spotted cDNA microarrays with 42,941
elements (Stanford Functional Genomics Facility).
Microarray slides were then washed and scanned with a
GenePix 4000B scanner (Axon Instruments, Inc., Union
City, CA).

Data processing and analysis

Fluorescence intensities for each fluoroprobe were ana-
lyzed with GenePix Pro3.0 software (Axon Instruments).
Spots of poor quality were removed from further analysis
by visual inspection. Data files containing fluorescence
ratios were entered into the Stanford Microarray
Database where biological data were associated with
fluorescence ratios, and genes were selected for further
analysis (20). Only spots with a signal intensity >150%
above background in either Cy5 or Cy3 channels were
used in the subsequent analysis. We arbitrarily selected
transcripts whose expression level decreased at least
1.5-fold after CS treatment or AR knockdown compared
with controls.

Xenografts

LAPC4 cells were transduced with the AR shRNA and
control GFP lentiviruses at a multiplicity of infection
(MOI) of 3 for 24h, and then harvested, resuspended in
PBS, and mixed with equal volume of Matrigel ECM
(Becton Dickinson, Bedford, MA). Here, 100 ul of cell
suspension (1 x 107 cells/ml) infected with either control
or AR shRNA lentiviruses was injected subcutaneously
into opposite lateral flanks of 6-8-week-old athymic male
mice (Harlan Sprague Dawley, Inc., Indianapolis, IN).
Mice were monitored twice weekly. Tumors were
measured in two dimensions with calipers, and tumor
volume (mm®) was calculated with the formula
V = (length x width?)/2. All the animal experiments were
done in accordance with NIH animal use guidelines and
the protocol approved by the University Committee on
Animal Resources at Stanford University.

Immunohistochemical staining

Tumor specimens were fixed in 10% neutral-buffered
formalin and embedded in paraffin. Serial sections (5 um
thick) were cut on a microtome and mounted on glass
slides. Sections were deparaffinized in xylene and hydrated
in graded ethanol solutions and distilled water. Antigen
retrieval was performed by microwave processing at full
power for 5min, followed by half power for 20min in
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10uM citrate buffer, pH 6.0. Endogenous peroxidase
activity was blocked with 3% hydrogen peroxide in
methanol for 30min followed by washing in PBS pH
7.4. The sections were then incubated with the antibody
against the AR (Santa Cruz Biotechnology, Santa Cruz,
CA), PSA (Dako, Carpinteria, CA), green fluorescent
protein (GFP) (Upstate, Charlottesville, VA), caspase 3
(Cell Signaling Technology, Danvers, MA) or PCNA
(Santa Cruz Biotechnology, Santa Cruz, CA) overnight at
4°C. Biotinylated goat anti-rabbit or goat anti-mouse
secondary antibodies (Vector Labs, Burlingame, CA) were
then applied. Slides were treated with horseradish
peroxidase streptavidin (Vector Labs) and developed
using the diaminobenzidine tetrahydrochloride (DAB)
substrate kit (Vector Labs). All sections were counter-
stained with hematoxylin.

Statistical analysis

Tumor volumes were represented as mean + SD. Relative
fold activation/suppression  was  represented  as
mean &+ SD. Student’s ¢ test was used for the statistical
analysis. Probabilities of P<0.05 were considered
significant.

RESULTS

Knockdown of AR expression in androgen-sensitive
prostate cells

Multiple lines of evidence have shown that AR activity is
required for the growth and survival of prostate cancer
cells. To directly test the role of AR in transcriptional
regulation and cell growth, we created three adenoviral-
based AR shRNA constructs and tested them in prostate
cancer cells. Infection of three AR shRNA adenoviruses
into two AR-positive prostate cancer cell lines, LNCaP
and LAPC4, showed an obvious reduction of AR protein
expression (Figure 1A and B). The knockdown effect
appeared to be sequence specific since the expression
of other proteins in the infected cells was unchanged.
Among these AR shRNA adenoviruses, AR shRNA virus
3 appeared the most effective at the silencing of AR
expression in both LNCaP and LAPC4 cells when we
infected cells with different MOI (data not shown).
Immunofluorescent microscopy confirmed the knockdown
of AR protein expression by the AR shRNA in prostate
cancer cells. Since the adenoviral constructs used in this
study express GFP, we monitored the infection efficiency
directly by examining GFP expression. Here, ~90% of
cells infected with either the control or AR shRNA
adenoviruses appeared GFP positive after 72h of
transduction (middle panels, Figure 1C and D). The AR
proteins were mainly localized in the nuclei of both
LNCaP and LAPC4 cells. Notably, the levels of AR
proteins were much lower in the cells infected with the
AR shRNA viruses than with the GFP viruses (Left
panels, Figure 1C and D). These data demonstrate that
the AR shRNA adenoviruses efficiently and specifically
knockdown the expression of endogenous AR proteins in
AR-positive prostate cancer cells.



2770 Nucleic Acids Research, 2007, Vol. 35, No. 8

A AR-shRNA B AR-shRNA
vV 1 2 3 vV 1 2 3

|<AR

| — — — — |< E-cadherin

|—~— - —|

[ s e e | |- - -—-|< B-catenin

|—‘ F— -—| |— R —p— |<Tubulin

LNCaP |- PR —— |< ps3

LAPC4

Dapi

¢ AR GFP
- - - o
" e

LNCaP

D
- - - -

LAPC4

GFP-
AR-
shRNA3

GFP-
AR-
shRNA3

Figure 1. Down-regulation of endogenous AR expression by AR
shRNA in prostate cancer cells. (A) LNCaP cells were infected with
either the GFP adenovirus or the different AR shRNA adenovirus at
an MOI of 40. Whole-cell lysates were prepared after 48h of viral
infection, and then analyzed by western blotting. Specific antibodies
used to detect protein expression are labeled in the figure. (B) Identical
experiments performed in LAPC4 cells. (C) LNCaP cells were infected
with either the GFP adenovirus or AR shRNA3 adenovirus at an MOI
of 40. Cells were fixed and immunostained 72h after viral infection.
Representative confocal laser scanning microscopy images of cells are
shown. (D) Identical experiments performed in LAPC4 cells.

Knockdown of AR-mediated transactivation by AR shRNA
adenovirus

Next we examined the effects of AR knockdown
on androgen-induced transcription. The human PSA
is an AR-regulated target that has been widely used as
a prostate-specific tumor marker (12). To determine if the
knockdown of AR could affect the activation of the PSA
promoter, transient transfections were carried out with a
luciferase reporter driven by the 7-kb PSA promoter in
both LNCaP and LAPC4 cells (34). Ligand-dependent
induction of PSA  promoter/reporter  activities
was observed in both cell lines (left panels, Figure 2A
and B). The expression of AR shRNA adenovirus

3 significantly reduced the activities of endogenous AR
on PSA promoter/reporter in both LNCaP and LAPC4
cells. In addition, the basal levels of AR activity were
also decreased in the cells infected with the AR shRNA
viruses in the absence of DHT compared to those infected
with the control viruses. We repeated the transient
transfection experiments with the other two androgen-
inducible promoter/reporters, MMTV-LTR (21) and
ARE luciferase (14). Both LNCaP and LAPC4 cells
transfected with the AR shRNA plasmids showed greatly
reduced activity with both promoters/reporters (middle
and right panels, Figure 2A and B). These results
demonstrate that the AR shRNA viruses specifically
silence the transactivation potential of endogenous
AR proteins.

Knockdown of endogenous AR affects the expression of AR
target genes

To further evaluate the AR shRNA-mediated knockdown
effect in a physiologically relevant cellular context, we
examined the expression of PSA and kallikrein 2 (KLK?2),
two AR downstream target genes, in LNCaP and LAPC4
cells. Here, ~10-fold induction of PSA and KLK2
transcripts was observed in LNCaP cells in the presence
of 10nM of DHT (Figure 2C). Infection of the AR
shRNA adenovirus significantly reduced the expression of
PSA and KLK2 transcripts to basal levels. The expression
of B-actin or GAPDH, used as a negative control, was
unchanged in the same samples. RT-PCR demonstrated a
similar reduction of PSA and KLK2 transcript levels in
the AR shRNA adenovirus-infected LAPC4 cells (Figure
2D). These results were consistent with the transactivation
assays and provide additional evidence for the specificity
of the AR shRNA adenoviruses in silencing AR-mediated
transcription.

Androgen-induced transcription is mediated primarily
through the AR

The AR and other ligand-dependent nuclear hormone
receptors possess identifiable activation domains that
confer transactivation potential when fused to a heterol-
ogous DNA-binding domain (22). However, one impor-
tant feature of the AR and other nuclear hormone
receptors, which distinguishes them from other transcrip-
tion factors, is that the transcriptional activities of
the receptors can only be induced by specific ligands
through binding to the ligand-binding domains of the
receptors (23). Therefore, androgen-induction has been
widely used to assess AR-mediated transcription. Although
androgen-induced transcription is mainly mediated
through the AR, it is possible that other signaling pathways
could be involved in androgen induced transcription. To
attempt to distinguish between the direct effects of ligand
and those of the AR protein, we compared effects of
androgen depletion and AR knockdown on global gene
expression profiles. RNA samples isolated from LNCaP
cells that were either cultured in the absence of DHT for
overnight or infected with the AR shRNA lentiviruses were
analyzed using spotted cDNA microarrays (Figure 3A).
Here, 302 genes were down-regulated in both groups, likely
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Figure 2. Down-regulation of AR expression reduces AR transactivation in prostate cancer cells. (A) LNCaP cells infected with either the GFP

adenovirus (control) or AR shRNA3 adenovirus at an MOI of 40 for
MMTV-Luc or ARE2-Luc reporter and pcDNA3-B-gal in T-medium with

6h were transiently transfected with PSA7kb-Luc (PSA-Luc), reporter,
5% CS-FBS for 24 h, and then incubated in different amounts of DHT for

another 24 h. Luciferase and B-gal activities were measured and reported as RLU. (B) Transient transfection experiments carried out in LAPC4 cells

infected with the AR shRNA3 or control adenoviruses at an MOI of 40.

(C) LNCaP cells infected with control or AR shRNA3 adenovirus in the

presence or absence of 10nM DHT. Total RNA was isolated and analyzed by northern blot using radiolabeled probes for PSA, KLK2 and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). (D) LAPC4 cells

were infected with control adenovirus or AR shRNA3 adenovirus in the

presence or absence of 10nM DHT. Total RNA was isolated, reverse transcribed and analyzed by PCR.

reflecting that these genes are regulated by androgens
through the AR. Among them, 36 genes showed >4-fold
decrease, including PSA (KLK3), a well-known AR target
gene. Interestingly, there were 162 genes found to be down-
regulated uniquely in samples isolated from the cells
cultured in the absence of DHT. In the cells infected with
the AR shRNA lentiviruses, there were 764 genes that were
uniquely down-regulated. Complete gene expression data-
sets are available at http://www.stanford.edu/~hongjuan/
AR. Although the precise mechanisms by which androgens
or AR independently regulate gene expression are not clear,
the difference in the transcriptional profiles from cells
treated either with androgen ablation or AR knockdown

suggests that alternative non-AR-dependent pathways may
be involved in androgen-induced transcription and that
AR might activate transcription for some genes in the
absence of DHT.

Knockdown of AR expression inhibits androgen-induced cell
growth

Multiple lines of evidence have shown that the depletion
of androgens significantly suppresses the growth of
prostate cancer cells, implying an essential role of
androgens in prostate cancer cell growth (1,24). To further
confirm that the growth-promoting effects of androgens
in prostate cells are directly mediated through the AR,
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we examined the androgen-induced cell growth in LNCaP
cells with the AR shRNA viruses. As shown in Figure 4A,
cells infected with the control virus grew faster in the full
medium than in the CS-FBS medium, which is consistent
with the previous reports showing the growth-promoting
role of androgens in LNCaP cells. The cells infected with
the AR shRNA virus grew more slowly than the cells
infected with the control virus, suggesting that the
knockdown of AR expression inhibits the growth of
LNCaP cells. In addition, infection with the AR shRNA
virus significantly inhibited growth of LNCaP cells in
colony formation assays (Figure 4C). Both the MTS
and colony formation assay demonstrated similar
growth inhibition by the AR shRNA adenovirus in
LAPC4 cells, which contain a wild-type AR protein (25)
(Figure 4B and D).

Knockdown of AR expression affects AR-mediated
transcription and cell growth in Al prostate cancer cells

Compared to LNCaP and LAPC4, LNCaP C4-2B4
and CWR22Rvl show blunted androgen-induced
transcription and cell growth in response to androgens,
even though both cell lines express the AR (26-28).
Infection of the AR shRNA virus significantly decreased

the expression of different forms of AR proteins in
both LNCaP C4-2B4 and CWR22Rvl cells (Figure 5A).
Transient transfection of these cells with the 7-kb
PSA promoter/reporter was carried out to assess
the effects of the AR shRNA on AR-regulated transcrip-
tion. In the absence of DHT, the activity of the
PSA promoter/reporter was slightly higher in LNCaP
C4-2B4 than in its parent line, LNCaP (Figure 5B).
However, LNCaP cells were more responsive to DHT
as compared to C4-2B4 cells, shown in the higher
luciferase  activities (Figure 5B), consistent with
results reported previously (29). Intriguingly, knockdown
of AR expression in C4-2B4 cells reduced PSA-luciferase
activity to levels comparable to LNCaP cells,
suggesting that the AR still plays a critical role in the
regulation of PSA transcription in these Al prostate
cancer cells.

To further investigate the role of AR in LNCaP C4-2B4
and CWR22-Rvl cells, we infected the cells with the AR
shRNA and control lentiviruses and then cultured them
in medium either with FBS or CS-FBS. As shown in
Figure 5C, both cell lines infected with the control virus
showed similar growth patterns in the presence or absence
of androgens, indicating that androgens are not essential
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in LAPC4 cells.

for the growth of these cells. However, cells infected with
the AR shRNA viruses and cultured in the presence of
androgens grew more slowly than the cells infected with
the control virus (Figure 5C). Similarly, in the colony
formation assays, depletion of androgens slightly reduced
the growth of LNCaP C4-2B4 and CWR22-Rvl cells
in comparison with LNCaP and LAPC4 cells (Figure 4C
and D). However, the knockdown of AR expression in
these cells profoundly inhibited cell growth, resulting in no
colony formation after a 12-day incubation (Figure 5D).
Taken together, these data indicate an essential role for
AR in the transcription and cell growth of AI prostate
cancer cells.
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Reduction of AR expression delays tumor formation in a
xenograft model

Next, we explored the AR’s role in tumor formation using
a xenograft model. LAPC4 cells infected with AR shRNA
or GFP lentiviruses were implanted into male athymic
nude mice. As shown in Figure 6A, LAPC4 cells that were
infected with the AR shRNA lentiviruses developed
palpable tumors later than the cells infected with GFP
(control) viruses. By Day 42 post-infection, tumors
formed by LAPC4 cells infected with the AR shRNA
viruses were significantly smaller than their counterparts
infected with control viruses (P<0.05). Interestingly, by
Day 42, staining of the tumor tissues from LAPC4 cells
infected with the AR shRNA viruses showed that most
tumor cells were AR positive (data not shown), whereas
tumor samples isolated at D15 post-infection were largely
AR negative (Figure 6B). While the reasons for this
change are unclear, and could be due to loss of expression
of the lentivirus, growth of a subpopulation of the cells
lacking the lentivirus or escape from AR knockdown by
other mechanisms. Regardless, the data suggest a critical
role for AR in prostate cancer tumor growth in vivo.

DISCUSSION

Androgen ablation, through either surgical or biochemical
approaches, to reduce the level of serum testosterone or
competitively repress AR function is frequently used in the
treatment of prostate cancer patients (1,24). Initially, most
tumors respond to androgen ablation, implying that
the androgen-signaling pathway is required in the
growth of prostate cancer cells in vivo. It has been
shown that androgen-induced transcription and cell
growth are mediated mainly through the AR (3,7,11).
Thus, modification of AR activity directly affects the
growth and progression of prostate cancer cells. Mice
engineered to overexpress AR develop lesions similar to
prostatic intraepithelial neoplasia (PIN), a putative
prostate cancer precursor lesion (30). Increasing cellular
levels of the AR not only enhances androgen-induced cell
growth but increases the sensitivity of prostate cancer cells
to androgens, allowing the tumor cells to grow in a low
androgen environment (31). To understand whether the
AR is critical in prostate carcinogenesis, we used an RNA
interference approach to directly assess the AR’s effect on
androgen-induced transcription and cell growth (15).
Three AR shRNA constructs that contain 21-mer
sequences derived from different coding regions of the
human AR all showed specific silencing of AR expression.
Using these vectors, we evaluated the downstream
consequences of AR knockdown in prostate cancer cells.
We observed that the silencing of AR expression fully
abolished androgen-induced transcription in three
ARE-containing promoters/reporters in two AR-positive
prostate cancer cell lines. In addition, the expression of
two AR downstream target genes, PS4 and KLK2, was
also significantly reduced in cells infected with the AR
shRNA viruses. These data are consistent with previous
studies by others and confirm the critical role of AR in
androgen-induced transcription. Moreover, in both cases,
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Figure 5. Down-regulation of AR expression affects AR-mediated transcription and cell growth in androgen-insensitive prostate cancer cells.
(A) LNCaP, LNCaP C4-2B4 and CWR22-Rvl cells were infected with control or AR shRNA3 lentivirus, and incubated in medium with 10 pg/ml
blastcidin for selection. Whole-cell lysates were prepared at Day 7, and analyzed by western blotting with AR and tubulin antibodies. (B) LNCaP
and LNCaP C4-2B4 cells were infected with either control or AR shRNA3 adenovirus at an MOI of 20 for 6 h, and transfected with PSA7 kb-luc
reporter (PSA-Luc) and pcDNA3-B-gal. Cells were incubated in T-medium with 5% CS-FBS for 24 h, and then induced with different amounts of
DHT for another 24 h. Luciferase and B-gal activities were measured and reported as RLU. (C) LNCaP C4-2B4 and CWR22-Rv1 cells were infected
with control or AR shRNA3 lentivirus and incubated with medium containing 10 pg/ml of blastcidin for 7 days. Cell growth was measured by the
MTS assay. The data represent the mean £+ SD of three independent experiments. (D) CWR22-Rvl and LNCaP C4-2B4 cells were infected with the
control or AR shRNA3 lentivirus, and cultured with 10 pg/ml blastcidin for 7 days. Cells resistant to the selection were re-plated into 12-well plates
and cultured for 14 days. Colonies were fixed and stained with crystal violet.

it appears that the repression of androgen-induced
transcription is more pronounced by the AR knockdown
than by the androgen ablation, implying that transcription
of PSA and KLK2 in LNCaP and LAPC4 cells is solely
regulated through the AR.

Using the AR shRNA constructs, we also directly
assessed the effect of the AR on androgen-induced
prostate cancer cell growth. Both colony formation and
MTS assays showed that knockdown of the AR expres-
sion by the AR shRNA affects the growth of LNCaP
and LAPC4 cells, even when androgens were supplied
in the media. The effect of the AR shRNA adeno-
viruses on cell growth appears more potent than
that induced by androgen depletion. Consistent
with these findings, AR shRNA affected significantly
more transcripts than androgen deprivation alone.
Although the precise targets of AR, that are primarily
responsible for prostate cancer cell growth are currently

unknown, candidate target genes are likely to be directly
involved in promoting prostate cancer initiation and
progression. Our demonstration that knockdown of AR
expression reduces both androgen-induced transcription
and cell growth argues for an essential role for
AR-mediated transcription in prostate cancer growth
and progression in hormone naive and hormone refrac-
tory tumors.

Over time, clinical prostate cancers become unrespon-
sive to androgen deprivation therapies (become Al)
because of poorly understood molecular changes
(3,7,11,32). Current hypotheses propose that prostate
cancer cells either bypass the AR-signaling pathway
altogether or adapt its function to a low androgen
environment. Our data suggest that AR retains a
critical role in prostate cancer growth in Al cancers.
In two AI prostate cancer cell lines, we showed that
the knockdown of AR expression still reduces
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Figure 6. Reduction of AR expression inhibits tumor xenograft
formation in athymic mice. (A) LAPC4 cells were transduced with
the AR shRNA or GFP lentiviruses at a MOI of 3 for 24 h. Cells were
harvested, resuspended in PBS and mixed with an equal volume of
Matrigel ECM. Here, 100l of cell suspension (1 x 107 cells/ml) was
injected subcutaneously in opposite lateral flanks of 6-8-week-old
athymic male mice. Mice were monitored twice weekly. Tumors were
measured in two dimensions with calipers, and tumor volume (mm?)
was calculated with the formula ¥ =(length x width?)/2. ‘Asterisk’
indicates a significant difference (P<0.05) between the two groups of
animals. (B) The tumor specimens isolated from xenograft animals at
Day 15 were fixed in 10% neutral-buffered formalin and embedded in
paraffin, and then analyzed by immunohistochemistry using anti-AR
antibodies.

AR-mediated transcription in reporter assays and the
expression of endogenous AR target genes as examined
by northern blotting and RT-PCR. Intriguingly, the
silencing of AR expression also inhibits the growth of
these cells in vitro and in vivo. Our data demonstrate an
essential role for the AR in the regulation of transcription
and cell growth in AT cells, implying that Al cells may still
be ‘AR sensitive’.

Previous studies have shown that androgen-induced
transcription is mainly mediated through the AR (33).
Using the AR shRNA approach, we were able to
readdress this question by comparing the transcript
profiles induced by the AR knockdown and androgen
depletion. We identified a group of genes that appear to be
regulated by both androgen depletion and knockdown of
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AR protein, including the well known AR target gene,
PSA. Interestingly, we also identified two subsets of
genes that are only regulated by the either androgen
depletion or AR knockdown. Although the precise
mechanisms underlying the regulation of these two subsets
of genes are not clear, these data suggest that androgen
ligand and the AR might have effects on pathways outside
the androgen ligand-induced, AR-signaling pathway.
Further investigation of these pathways and regulatory
mechanisms may enhance our current knowledge of
androgen signaling and its role in the development of Al
prostate cancer.

Finally, AR appears to play a direct role in prostate
cancer growth in vivo. We demonstrated that reduction of
endogenous AR expression in LAPC4 cells inhibits the
onset and growth of tumors in nude mice. Intriguingly, at
later stages of tumor growth, most cells in the tumors that
developed from the AR shRNA-virus-infected LAPC4
cells were AR positive. This finding suggests that the
tumors that grew out were derived from a subset of
LAPC4 cells that had lost expression of the AR shRNA
viruses or escaped AR inhibition, and underscores the
importance of AR expression in LAPC4 tumor growth.
Based on these data, we have begun to assess the potential
therapeutic role of the AR shRNA in prostate cancer
xenograft models.
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