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The receptive fields for simple cells in visual cortex show a strong
preference for edges of a particular orientation and display adjacent
excitatory and inhibitory subfields. These subfields are projections
from ON-center and OFF-center lateral geniculate nucleus cells, re-
spectively. Here we present a single-cell model using ON and OFF
channels, a natural scene environment, and synaptic modification
according to the Bienenstock, Cooper, and Munro (BCM) theory. Our
results indicate that lateral geniculate nucleus cells must act predom-
inantly in the linear region around the level of spontaneous activity,
to lead to the observed segregation of ONyOFF subfields.

The Bienenstock, Cooper, and Munro (BCM) theory of
cortical plasticity (1) yields consequences that are in agree-

ment with the observed response properties of visual cortical
neurons in natural and various deprived visual environments.
These response properties include orientation selectivity (2),
ocular dominance (3, 4), and direction selectivity (5). The BCM
theory allows modeling and theoretical analysis of various visual
deprivation experiments, such as monocular deprivation (MD),
binocular deprivation (BD), and reverse suture (RS), and is in
agreement with many experimental results on visual cortical
plasticity (6–9).

It has, further, been shown that the postulates of this theory
[homosynaptic modification as a function of postsynaptic depolar-
ization as well as the moving threshold–the crossover point between
long-term depression (LTD) and long-term potentiation (LTP)]
are consistent with experimental results on LTD and LTP (10–12).

In this paper, we extend the BCM theory to the analysis of
ON-center and OFF-center retinal and LGN cells, and investi-
gate whether BCM synaptic modification can account for the
segregation of the ONyOFF subfields. There is evidence that the
adjacent excitatory and inhibitory subfields (13) of orientation-
selective cells in visual cortex are projections from ON-center
and OFF-center retinal and LGN cells, respectively (14), and
that the proper development of the cortical receptive fields
requires activity [for review, see Fregnac and Imbert (15)].

We explore the segregation of the ON- and OFF-center LGN
afferents, by using a model of a single cortical cell with inputs
from ON and OFF LGN cells, and an environment composed of
natural scenes. Our results indicate that there is a relation
between the organization of simple receptive fields and the
shape of the input distribution.

Methods
In our simulations of the receptive field development of single cells
in visual cortex, the neuron receives input from two channels; one
corresponds to ON-center lateral geniculate cells, and the other to
OFF-center cells. See Fig. 1 for the visual environment, and Fig. 2
for the visual pathway in a (monocular) ONyOFF channel model.

The two pathways (ON and OFF) do not interact at the level
of the LGN but converge in the cortex (16). We represent the
total input to the BCM neuron by d 5 [dON,dOFF], which is
measured relative to the LGN spontaneous activity or some
other baseline activity (see below), and the synaptic weights† by
m 5 [mON,mOFF]. The response of the cortical cell is given by c 5

scort(mzd), where scort(z) is a rectifying sigmoid that sets the
minimum and maximum values of the postsynaptic response (see
Fig. 2 Inset) relative to spontaneous cortical activity.

We assume that the ON and OFF pathways have the same
retinotopic organization and overlapping ganglion receptive
fields. This assumption is consistent with the complete coverage
of the visual field by both ON and OFF cells (18). The vectors
dON and dOFF are then related according to

Hdi
ON 5 s~Di! 1 K

di
OFF 5 s~2Di! 1 K [1]

where K is a constant, and the values Di represent the input
pattern after retinal processing with an excitatory-center differ-
ence-of-Gaussians (DOG) filter. Note that the DOG filter is
balanced so that uniform illumination of the ganglionyLGN
receptive field leads to Di 5 0 (di

ON 5 di
OFF 5 K), which we call

the spontaneous activity of the LGN.‡ The LGN activation
function s is given by

s~Di! 5 HDi if Di $ Dmin

Dmin if Di , Dmin ,

where the lower cut-off Dmin is negative.
We use BCM synaptic modification (1) to simulate plasticity

in the thalamo-cortical synapses. BCM postulates that potenti-
ation of an active synapse occurs when the postsynaptic response
exceeds a critical value—called the modification threshold
(uM)—and depression occurs when postsynaptic activity falls
below uM. For the ONyOFF channel model, we write

Abbreviations: BCM, Bienenstock, Cooper, and Munro; LGN, lateral geniculate nucleus.
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†Synaptic weights are interpreted as ‘‘effective’’ weights that incorporate the net effect of
inhibition in a many-neuron system [see the mean-field theory of Cooper and Scofield
(17)]. They can thus be both positive (excitatory) and negative (inhibitory).

‡The LGN (or ganglion-cell) activity measured relative to the spontaneous activity is given
by

H da,i
ON 2 ds 5 s(Di)

da,i
OFF 2 ds 5 s(2Di) , [2]

where da,iON is the actual firing frequency of the ith ON-center cell, da,iOFF the actual firing
frequency of the ith OFF-center cell, and ds the average spontaneous activity of an LGN
cell. The non-linearity in s restricts the absolute activities da,i to be positive. Eq. 1
represents the general case, where d is measured with respect to a ‘‘baseline level’’ (d0)
that may be different from spontaneous; that is

H di
ON 5 da,i

ON 2 d0 5 s(Di) 1 K
di

OFF 5 da,i
OFF 2 d0 5 s(2Di) 1 K [3]

with K 5 ds 2 d0. In Non-Linear Region, we choose the minimal activity of the LGN cells as
a ‘‘baseline’’; i.e., K 5 ds 2 d0 5 uDminu.
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c 5 scort~mONzdON 1 mOFFzdOFF!

Hṁi
ON 5 mf~c, uM!di

ON

ṁi
OFF 5 mf~c, uM!di

OFF ,
[4]

where f 5 c(c 2 uM) and the modification threshold is given by

uM 5 Et@c2# 5
1
t E

2 `

t

dt9c2e 2 @~t 2 t9!/t# . [5]

Table 1 summarizes the BCM equations and parameters used
in the simulations.

Results
We know from previous BCM simulations, with an ON channel
only and total input d 5 dON 5 D, that the neuron develops
receptive fields with adjacent excitatory and inhibitory bands,
similar to the fields of simple cells found in striate cortex. Fig. 3

shows some typical examples of receptive fields or synaptic
weights msingle from a ‘‘single-channel’’ model.

In this section, we extend the previous work to study receptive
field formation in the presence of both ON and OFF channels.
We study two cases of Eq. 1, which we call ‘‘linear’’ and
‘‘non-linear,’’ respectively.

Linear Region. In the linear region, the cortical neuron receives
inputs from both ON and OFF channels with the condition that
LGN cell activities satisfy 2uDminu , Di , uDminu (see linear
region in Fig. 5a). As before, LGN activities are measured
relative to spontaneous activity. Eq. 1 then reduces to

Hdi
ON 5 Di

di
OFF 5 2Di , [6]

where Di are the input values after retinal preprocessing with an
ON-center DOG filter. Note, in particular, that ON and OFF
cells that see the same part of the retina display opposite
responses to light of any intensity. As we shall see later, this fact
has important consequences for the segregation of ON and OFF
projections during development.

Fig. 4a shows the probability distributions of inputs from ON
and OFF cells. Under the current assumptions on the visual
environment and the retinal preprocessing, linear LGN re-
sponses are equivalent to distributions symmetric around the
level of spontaneous LGN activity.

Fig. 4b shows the simulation results. The first two rows
represent the synaptic weights mON and mOFF. The brightness
codes for the strengths of the synaptic weights. In the simu-
lation, we have allowed the synaptic weights to change polarity
during learning.§ The weights could be interpreted as effective
synapses in a mean-field approximation (17) of a network of
BCM neurons, rather than single-cell synapses. In the figure,
bright regions correspond to excitatory effective synapses, and
dark regions represent inhibitory effective synapses. Because

§However, restricting the weights to positive values by, for example, imposing hard bounds
on the weight values, has no noticeable effect on the receptive field arrangement.

Fig. 1. Visual environment. To model the visual environment, we use 12
gray-scale images of size 256 3 256 pixels; the figure shows three sample
images. A circle of diameter 13 pixels (white circle in left image) defines the
visual field or retinal patch of a simulated neuron in V1. In each step of the
simulation, we sample a small part of the environment by randomly
shifting the position of the circle. The inputs from this region of the visual
field are then preprocessed by the retinal machinery and serve as input to
the cortical cell.

Fig. 2. Visual pathway in a monocular ONyOFF channel model. The retina is
composed of arrays of receptors (Image Plane) and ganglion cells (ON Channel
Retina and OFF Channel Retina). Each ganglion-cell receptive field has an
antagonistic center-surround structure that we model by convolving the
images with difference-of-Gaussians filters (ON-center or OFF-center), with
the biologically observed 3-to-1 ratio of the radii for the surround to the
center (22). The ON and OFF pathways do not interact at the level of the LGN
but converge in the cortex.

Fig. 3. Example of simple cell receptive fields in a ‘‘single-channel’’ model,
where the total input is d 5 dON 5 D. The light areas represent excitatory
regions, and the dark areas represent inhibitory regions.

Table 1. Summary of BCM equations and the parameters used in
the simulation

Equations
Synaptic modification ṁ 5 mfd

f 5 c(c 2 uM)
uṀ 5 1

t
(c2 2 uM)

Cortical output c 5 scort (mzd)
scort (2`) 5 21
scort (1`) 5 100

Parameters
Retinal patch diameter 13 pixels
Retinal DOG ratio 1:3
Initial synaptic weights Random 0.0–0.1
Initial threshold u0 5 0.7
Learning rate m 5 1026

Memory constant t 5 300–1000
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the net effect of the mean field is background inhibition, this
result is consistent with having subregions of strong and weak
(excitatory) thalamo-cortical connections, respectively.

The relation between mON and mOFF is perhaps more obvious
in the third and fourth rows in Fig. 4b, where we have introduced
the ‘‘sum’’ and ‘‘difference’’ configurations m1 and m2:

5m 1 5
1
Î2

~mON 1 mOFF!

m 2 5
1
Î2

~mON 2 mOFF! .
[7]

We see that the summed configuration m1 lacks significant
structure. Furthermore, the mean of m1 is around zero. The
above indicates that mi

ON ' 2mi
OFF, i.e., the synapses from ON

and OFF cells that see the same part of the retina become
opposite in strength or density during development.

By analyzing the BCM equations, one can show that¶

m 2 ~t! } msingle~t! [8]

m 1 ~t! 5 m 1 ~t 5 0! [9]

where msingle is the weight configuration for a single channel
model.i The relation predicts that (i) the final ON and OFF
receptive fields display the same type of elongated subregions of
strong and weak connections as in previous single-channel
models, and (ii) subregions of strong ON synapses overlap
subregions of weak OFF synapses and vice versa. These two
predictions are in agreement with the simulation results in Fig.
4b. The results also agree with experimental findings, for exam-
ple Reid and Alonso (14), that both the subregion organization
and the orientation of simple receptive fields are well established
by converging thalamic inputs. The simulation results are fur-
thermore robust to random noise, inexact coincidence of ONy
OFF fields, restricting the synaptic weights to positive values, and
a shift in the ‘‘baseline level’’ for LGN activity.**

Non-Linear Region. The segregation of ON and OFF thalamo-
cortical projections obtained above follows from the assumption

that ON and OFF geniculate cells that see the same part of the
retina have opposite responses relative to spontaneous LGN
activity (Eq. 6). Obviously, this assumption cannot be valid for
light of any intensity, because the absolute LGN cell activity must
be positive. For example, assume that the spontaneous activity
is 14 Hz for all LGN cells. If an ON (OFF) cell fires with
frequency 24 Hz, the OFF (ON) cell that sees the same part of
the retina fires with frequency 4 Hz. However, light that leads to
a response above 30 Hz of an ON (OFF) cell, will inhibit all
activity of the corresponding OFF (ON) cell.

LGN cells operate in the linear region (‘‘symmetric’’ re-
sponses) when 2uDminu , Di , uDminu, and in the non-linear
region (‘‘non-symmetric’’ responses) when Di . uDminu or Di ,
2uDminu (see Fig. 5a). With the LGN activation function s
defined by Eq. 4, the magnitude of the lower cut-off Dmin can be
interpreted as the difference between the spontaneous activity
and the minimal activity of the LGN cells.

In the simulations below, we choose the minimal LGN activity
as the ‘‘baseline’’ (i.e., d0 in Eq. 3). For robustness (see below),
we also add Gaussian noise to the input for each synapse. The
inputs are

Hdi
ON 5 s~Di! 1 uDminu 1 ni

ON~t!
di

OFF 5 s~2Di! 1 uDminu 1 ni
OFF~t! , [10]

where ni
ON(t) and ni

OFF(t) are independent Gaussian random
numbers with mean zero and standard deviation SDn.

To investigate the effect of the non-linear region where
responses are ‘‘non-symmetric,’’ we perform simulations with a
cut-off at different values between Dmin 5 23 and Dmin 5 21.5.
Note that, whereas the input distributions are almost symmet-
rical around spontaneous activity for linear cells (Fig. 4a), they
are asymmetrical with this cut-off. Fig. 5 b and c shows the
probability distributions of inputs from ON and OFF cells when
Dmin 5 23 and Dmin 5 21.5, respectively.

The results of simulations, for different values of Dmin are
shown in Fig. 6. The noise level SDn 5 0.7. One observes that a
stronger asymmetry in the inputs qualitatively changes the
results, from reversed ONyOFF configurations mON ' 2mOFF or
m1 ' 0 (see, for example, Dmin 5 23) to equal ONyOFF
configurations mON ' mOFF or m2 ' 0 (see, for example, Dmin
5 21.5).

We have repeated the simulations for a range of different
noise levels and found that the type of ONyOFF configuration
(‘‘reversed’’ or ‘‘equal’’) depends on both the noise level SDn
and the cut-off Dmin. If no noise is present, any cut-off in the
inputs leads to ‘‘equal’’ weight configurations, i.e., no segre-
gation of ON and OFF subfields. In the presence of noise,

¶See Appendix B: Analysis of Subfield Segregation, which is published as supplementary
data on the PNAS web site, www.pnas.org.

iFor the shifted inputs in Eq. 3, we get m1(t) 5 m1(t50) 1 a small constant.

**See Appendix A: Robustness of Results, which is published as supplementary data on the
PNAS web site, www.pnas.org.

Fig. 4. LGN in the linear region, where di
ON 5 Di and di

OFF 5
2Di. (a) Probability distributions (log-scale) of inputs from linear
ON and OFF cells. Note that the distributions are almost sym-
metrical around spontaneous activity (di 5 0). (b) Examples of
final weight configurations mON, mOFF, m1, and m2 (see text).
Different columns (ex 1, ex 2, ex 3) represent results from simu-
lations with different initial conditions and different sequences
of inputs.

Lee et al. PNAS u November 7, 2000 u vol. 97 u no. 23 u 12877

N
EU

RO
BI

O
LO

G
Y



however, we obtain reversed weight configurations for almost
symmetric inputs and equal configurations for very asymmetric
inputs. As a rule, the model becomes less sensitive to an
asymmetry in the LGN responses for larger noise levels, i.e.,
we can push the transition from ‘‘reversed’’ to ‘‘equal’’ weight
configurations toward sharper cut-offs (larger values of Dmin)
by increasing the noise level. Fig. 7 shows that ON and OFF
afferents fail to segregate for a cut-off at Dmin 5 22.5 when no
or little noise is present (see, for example, SDn 5 0.2). The
same asymmetry, however, leads to segregated ON and OFF
subfields for higher noise levels (see, for example, SDn 5 0.7).

Discussion
Receptive fields of orientation-selective cells in visual cortex are
composed of excitatory and inhibitory subfields connected to
ON and OFF center retinal and LGN cells, respectively. Various
theoretical ideas have been proposed to account for the manner
in which this subfield segregation develops.

In this paper we show that BCM synaptic modification can
account for the subfield segregation observed after eye opening
if the input from LGN cells is almost symmetric about their level
of spontaneous activity (the linear region as defined in Results).
This result is robust to large levels of noise. A significant
non-linearity in LGN responses can break the subfield segrega-
tion and can even effect orientation selectivity. The degree of
non-linearity required for breaking the subfield segregation is
inversely proportional to the degree of noise in LGN responses.

This observation suggests an interesting connection between
the statistical distribution of LGN activity and the segregation
of ONyOFF subfields that can be tested experimentally by
examining the statistics of LGN neurons under natural viewing
conditions. Two simple statistics would need to be extracted
from such measurements: the noise level and the degree of
non-linearity. These measurements would test the validity of
BCM synaptic modification in ONyOFF segregation of simple
receptive fields.

As a comparison, others (19–21) have modeled the segrega-
tion of ON-OFF subfields by using a model based on competi-

Fig. 5. The magnitude of the lower cut-off Dmin can be interpreted as the difference between the spontaneous activity and the minimal activity of the LGN
cells. (a) Linear vs. the non-linear working regions of the LGN cells. The cells operate in the linear region (‘‘symmetric’’ responses) when 2uDminu , Di , uDminu, and
in the non-linear region (‘‘non-symmetric’’ responses) when Di . uDminu or Di , 2uDminu. (b and c) Probability distributions (y axis; log-scale) of inputs from ON and
OFF cells when Dmin 5 23 and Dmin 5 21.5, respectively. Note that, whereas the input distributions are almost symmetrical around spontaneous activity for linear
LGN cells (Fig. 4a), they are strongly asymmetrical for Dmin 5 21.5.

Fig. 6. Simulations results for cut-off at different values of Dmin; the per-
centage shows the fraction of the inputs that are cut-off at Dmin. The noise
level SDn 5 0.7. The figure shows that a stronger asymmetry in the inputs yields
a change in the results, from reversed ONyOFF configurations mON ' 2mOFF or
m1 ' 0 (see, for example, Dmin 5 23) to equal ONyOFF configurations mON '
mOFF or m2 ' 0 (see, for example, Dmin 5 21.5).

Fig. 7. Final weight configurations for a cut-off at Dmin 5 22.5 and different
noise levels SDn. We see that the ON and OFF afferents fail to segregate (mON

' mOFF or m2 ' 0) when no or little noise, for example SDn # 0.2, is present.
The same asymmetry, however, leads to segregated ON and OFF subfields
(mON ' 2mOFF or m1 ' 0) for higher noise levels, for example SDn $ 0.7.

12878 u www.pnas.org Lee et al.



tion. These models, however, cannot be compared with the
current work in a straightforward manner because they focus on
the pre–eye-opening development of orientation selectivity.
Furthermore, they start by constructing the correlation functions
needed to obtain ONyOFF segregation (see refs. 20 and 21) for
some of the constraints that are imposed by the requirement for
ONyOFF segregation), rather than by using the correlations that
arise from a natural environment and the preprocessing it
undergoes in retina and LGN. The results of these models seem
to depend critically on the details of the correlation functions,
and a test for the validity of the models would here be to
experimentally measure the ON and OFF correlation functions
for realistic inputs.

These different views about the observed phenomenon of
ONyOFF center subfield segregation provide an opportunity for
further experimental tests (see, for example, above) to elucidate
the situation.

The simulation results in this paper and others are repro-
ducible by using the PLASTICITY SIMULATION PACKAGE avail-
able at the site http:yywww.cns.brown.eduyibnsycoopery
index.html.
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