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Programmed cell death plays critical roles in a wide
variety of physiological processes during fetal devel-
opment and in adult tissues. In most cases, physio-
logical cell death occurs by apoptosis as opposed to
necrosis. Defects in apoptotic cell death regulation
contribute to many diseases, including disorders
where cell accumulation occurs (cancer, restenosis)
or where cell loss ensues (stroke, heart failure, neu-
rodegeneration, AIDS). In recent years, the molecular
machinery responsible for apoptosis has been eluci-
dated, revealing a family of intracellular proteases,
the caspases, which are responsible directly or indi-
rectly for the morphological and biochemical
changes that characterize the phenomenon of apo-
ptosis. Diverse regulators of the caspases have also
been discovered, including activators and inhibitors
of these cell death proteases. Inputs from signal trans-
duction pathways into the core of the cell death ma-
chinery have also been identified, demonstrating
ways of linking environmental stimuli to cell death
responses or cell survival maintenance. Knowledge of
the molecular mechanisms of apoptosis is providing
insights into the causes of multiple pathologies where
aberrant cell death regulation occurs and is beginning
to provide new approaches to the treatment of human
diseases. (Am J Pathol 2000, 157:1415–1430)

Apoptosis is a morphological phenomenon. As viewed
with the assistance of the light (or, preferably, the elec-
tron) microscope, the characteristics of the apoptotic cell
include chromatin condensation and nuclear fragmenta-
tion (pyknosis), plasma membrane blebbing, and cell
shrinkage. Eventually, the cells breaks into small mem-
brane-surrounded fragments (apoptotic bodies), which
are cleared by phagocytosis without inciting an inflam-
matory response. The release of apoptotic bodies is what
inspired the term “apoptosis” from the Greek, meaning
“to fall away from” and conjuring notions of the falling of
leaves in the autumn from deciduous trees.1

Apoptosis Is Caused by Caspases

What causes these morphological changes that we rec-
ognize as apoptosis and the biochemical changes often
associated with this phenomenon? The answer is pro-
teases. Specifically, activation of a family of intracellular
cysteine proteases which cleave their substrates at aspartic
acid residues, known as caspases for Cysteine Aspartyl-
specific Proteases.2 These proteases are present as inac-
tive zymogens in essentially all animal cells, but can be
triggered to assume active states, generally involving
their proteolytic processing at conserved aspartic acid
(Asp) residues. During activation, the zymogen pro-pro-
teins are cleaved to generate the large (;20 kd) and
small (;10 kd) subunits of the active enzymes, typically
liberating an N-terminal prodomain from the processed
polypeptide chain. The active enzymes consist of het-
erotetramers composed of two large and two small sub-
units, with two active sites per molecule.3,4 Analysis of the
structures of the active sites of these enzymes, experi-
ments with combinatorial peptide libraries, and other
data suggest that caspases recognize the Asp residues
they cleave within the context of tetrapeptide motifs,
where the most proximal (N-terminal) residue recognized
is designated P4 (position #4) and target Asp is P1 (po-
sition #1), and where cleavage occurs at the peptidyl
bond distal (C-terminal) to the targeted Asp. This infor-
mation about the structures and mechanisms of
caspases has been exploited for developing small-mol-
ecule inhibitors, which are finding their way into clinical
trials for stroke, liver failure, inflammatory diseases, and a
wide variety of other ailments.5,6

The observation that caspases cleave their substrates
at Asp residues and are also activated by proteolytic
processing at Asp residues makes evident that these
proteases collaborate in proteolytic cascades, whereby
caspases activate themselves and each other. In humans
and mice, approximately 14 caspases have been identi-
fied. They can be subgrouped according to either their
amino acid sequence similarities or their protease spec-
ificities. From a functional perceptive, it is useful to view
the caspases as either upstream (initiator) caspases or
downstream (effector) caspases.7 The proforms of up-
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stream initiator caspases possess large N-terminal pro-
domains, which function as protein interaction modules,
allowing them to interact with various proteins that trigger
caspase activation. In contrast, the proforms of down-
stream effector caspases contain only short N-terminal
prodomains, serving no apparent function. Downstream
caspases are largely dependent on upstream caspases
for their proteolytic processing and activation. Accord-
ingly, the sequence of the cleavage sites separating the
large and small subunits of the zymogen forms of the
effector caspases generally match the preferred tet-
rapeptide specificities of the upstream initiator caspases.
Similarly, examination of the cleavage sites of multiple
cellular proteins, which have been identified as caspase
substrates and which are known to undergo processing
during apoptosis, reveals (in most instances) coinci-
dence with the preferred tetrapeptide sequences
cleaved by the effector caspases.8 These substrates of
effector caspases include protein kinases (often separat-
ing the autorepressing regulatory domains from catalytic
domains) and other signal transduction proteins, cy-
toskeletal and nuclear matrix proteins, chromatin-modify-
ing (eg, polyADP ribosyl polymerase) and DNA repair
proteins, and inhibitory subunits of endonucleases (CIDE
family proteins).3,4,7

Though most caspases are directly involved in cell
death, a few are not, at least in mammals and higher
eukaryotes. A subgroup of caspases, including caspase-
1,- 4, and -5 in humans, is involved in processing of
pro-inflammatory cytokines such as pro-interleukin-1b
(pro-IL-1b) and pro-IL-18. Unlike the effector caspases,
which induce apoptosis, the tetrapeptide specificities of
these cytokine-processing proteases do not match the
cleavage sites of most of the proteins known to undergo
cleavage during apoptosis, but they do coincide with the
sequences of the cleavage sites within pro-cytokines.6,7

Caspase Activation Mechanisms

A diversity of mechanisms exists for activating initiator
caspases, thus setting the wheels of the apoptotic ma-
chinery in motion. However, fundamentally, the biochem-
ical mechanisms appear to be remarkably similar and
can be explained by a single model, known as the in-
duced proximity model.9 The induced proximity model is
predicated on the empirical observation that the zymo-
gen forms of unprocessed caspases are not entirely in-
active but rather possess weak protease activity (mea-
sured in some cases at ;1% of the fully active enzymes).
When brought into close apposition through protein inter-
actions, the zymogens can trans-process each other,
producing the fully active proteases.

Though many pathways for activating caspases may
exist, only two have been elucidated in detail. One of
these centers on tumor necrosis factor (TNF) family re-
ceptors, which use caspase activation as a signaling
mechanism, thus connecting ligand binding at the cell
surface to apoptosis induction.7,10,11 The other involves
the participation of mitochondria, which release caspase-
activating proteins into the cytosol, thereby triggering

apoptosis.12,13 The death receptor and mitochondrial
pathways for caspase activation are sometimes referred
to as the extrinsic and intrinsic apoptosis pathways (Fig-
ure 1), respectively, though this is an oversimplification.
Also, though commonly viewed as separate pathways
and capable of functioning independently, cross-talk can
occur between these pathways at multiple levels, de-
pending on the repertoire of apoptosis-modulating pro-
teins expressed.

A wide variety of experimental evidence, including
gene ablation (knockout) experiments in mice, has dem-
onstrated that caspase-8 represents the apical caspase
in the TNF family death receptor pathway, whereas
caspase-9 serves as the apical caspase of the mitochon-
drial pathway.14–17 With regard to the extrinsic pathway,
a network of protein interactions, involving adaptor pro-
teins such as Fadd (Mort1), indirectly links the cytosolic
domains of TNF family death receptors such as Fas
(Apo1/CD95) to the zymogen forms of caspase-8, result-
ing in recruitment of pro-caspase-8 to liganded death
receptor complexes and causing caspase-8 activation
through the induced proximity mechanism.18–22 In the
case of the intrinsic pathway, release of cytochrome c
from mitochondria triggers caspase activation by binding
to the caspase-activating protein Apaf-1.23 The Apaf-1
protein normally resides in an inactive conformation in the
cytosol, but on binding cytochrome c, an ATP/dATP-
binding oligomerization domain within this protein medi-
ates Apaf-1 aggregation.24,25 The oligomerized complex
then binds pro-caspase-9, and facilitates trans-process-
ing of caspase-9 zymogens via the induced proximity
mechanism.26 However, unlike caspase-8, where the N-
terminal prodomain of the zymogen is cleaved off and the

Figure 1. Pathways for caspase activation. Two of the major pathways for
caspase activation in mammalian cells are presented, the extrinsic (left) and
intrinsic (right). The extrinsic pathway can be induced by members of the
TNF family of cytokine receptors, such as TNFR1 and Fas. These proteins
recruit adapter proteins to their cytosolic DDs, including Fadd, which then
binds DED-containing pro-caspases, particularly pro-caspase-8. The intrinsic
pathway can be induced by release of cytochrome c from mitochondria,
induced by various stimuli, including elevations in the levels of pore-forming
pro-apoptotic Bcl-2 family proteins such as Bax. In the cytosol, cytochrome
c binds and activates Apaf-1, allowing it to bind and activate pro-caspase-9.
Active caspase-9 (intrinsic) and caspase-8 (extrinsic) have been shown to
directly cleave and activate the effector protease, caspase-3. Other caspases
can also become involved in these pathways (not shown); thus, the sche-
matic represents an oversimplification of the events that occur in vivo.

1416 Reed
AJP November 2000, Vol. 157, No. 5



active protease is released into the cytosol,20 the
caspase-9 enzyme must remain bound to Apaf-1 for full
activity, and its N-terminal prodomain is retained.27,28

Protein Domains Associated with Apoptosis
Regulation

The proteins that directly control the intrinsic, extrinsic,
and other less understood caspase activation pathways
often exist as families that can be recognized based on
their amino acid sequence and/or structural similarity.
Moreover, interactions among these proteins are com-
monly mediated by domains that are intimately associ-
ated with apoptosis regulation, including caspase-asso-
ciated recruitment domains (CARDs), death domains
(DDs), death effector domains (DEDs), Bcl-2 homology
(BH) domains of Bcl-2 family proteins, baculovirus inhib-
itor of apoptosis proteins (IAP) repeat (BIR) domains of
IAP family proteins, and NB-ARC domains representing
the nucleotide-binding oligomerization domains of CED-
4/Apaf-1 family proteins (Table 1). A summary of the
proteins that constitute the known members of these
families of apoptosis regulators follows, along with infor-
mation about their mechanisms and some examples of
their relevance to diseases.

Death Domain Proteins

The DD is a protein interaction module consisting of a
compact bundle of six a-helices.29 DDs bind each other,
probably forming oligomers of unknown stoichiometry.
Specificity for partner selection among DDs is dictated by
differences in surface residues. Several of the members
of the TNF family of cytokine receptors contain DDs in
their cytosolic regions, including TNFR1, Fas (Apo1),
DR3 (Apo2), DR4 (TrailR1), DR5 (TrailR2), DR6 in hu-
mans, mice, and probably other mammals (Figure 2). The
p75 nerve growth factor receptor (p75-NGFR) also con-
tains a modified (type II) DD30 and has been reported to
induce apoptosis under some circumstances.31 The TNF
family receptors, TNFR1, DR3, and DR6, are known to
bind an adapter protein, Tradd, via its homologous
DD.32–34 The DD of Tradd is capable of binding certain
other DD-containing proteins, including the adapter pro-
tein Fadd. The Fadd (Mort1) protein contains two protein
interaction modules, a DD and a DED. Fadd links TNF
family death receptors to caspases, using its DD to bind
Tradd or to interact directly with the cytosolic DD of the
TNFR family member Fas, and employing its DED to bind
DED-containing caspases (see below). Experimental ev-
idence has demonstrated the presence of Fadd within

the receptor complexes of all known DD-containing mem-
bers of the TNF family except p75-NGFR. Thus, this pro-
tein plays a central role in linking caspases to TNF family
death receptors, a notion borne out by gene ablation
studies in mice, which have demonstrated an inability of
TNFR1, Fas, and other death receptors tested thus far to
induce apoptosis in the absence of Fadd.35–38

An analogous mechanism for recruiting pro-caspases
to death receptor complexes has been revealed in the
case of Raidd (Cradd). This adapter protein contains a
DD in combination with a CARD, allowing it to bind the
corresponding CARD found within the prodomain of pro-
caspase-2.39,40 Based on the aforementioned Fadd knock-
out studies, however, it remains questionable how important
this alternative pathway for caspase activation is.

Additional DD-containing proteins have been impli-
cated in apoptosis, such as the DAP kinase, which mod-
ulates apoptosis induction by TNF family death receptors
through mechanisms that are not understood.41 This ki-
nase has been implicated in suppression of metastasis.
Several cytoskeleton-associated ankryin family proteins
contain DDs, but their relevance to apoptosis remains
uncertain. Given evidence, however, that caspase-8 ac-
tivation is triggered by suspension of adherent epithelial
cells,42,43 an event that disturbs the cytoskeleton, it is
intriguing to speculate a possible role in the phenomenon
of anoikis (ie, apoptosis induced by depriving cells of
integrin-mediated attachments to extracellular matrix).
Avoidance of anoikis represents an important aspect of
tumor invasion, metastasis, and angiogenesis.44 It is also
fundamental to correct positioning of cells during devel-
opment, possibly accounting for the embryonic lethality
of Fadd and caspase-8 gene ablation in mice.

DDs, however, are not always involved in caspase
activation or apoptosis induction. In fact, DDs have been
found in proteins involved in two other receptor signaling
systems, namely Toll family receptors and UNC family
receptors. Nevertheless, some of the signal transduction
pathways in which non-caspase-activating DD proteins
are involved at least indirectly regulate apoptosis through
effects on NF-kB, suppressing rather than inducing ap-
optosis. For example, the RIP protein binds Tradd and
activates kinases that induce degradation of IkB, thus
releasing NF-kB so that it can translocate to the nucleus
and fulfill its function as a transcription factor.45–47

Among NF-kB-inducible genes are several that block
apoptosis, including anti-apoptotic Bcl-2 family members
Bfl-1 (A1) and Bcl-X, and IAP family member cIAP2 and
possibly cIAP1 and XIAP.48,50–54 The dual function of
Tradd, as a partner for both caspase-activator Fadd and
NF-kB activator RIP, causes many of the TNF family
receptors to nullify their own apoptosis-inducing activity.
Thus, TNFR1, DR3, and DR6 are uncertain apoptosis
inducers unless NF-kB induction is inhibited.55,56 In con-
trast, Fas and the Trail receptors DR4 and DR5 only rarely
activate NF-kB, probably because these receptor com-
plexes contain Fadd but not Tradd.20,37,38,57 In fact, it is
because Trail receptors (DR4 and DR5) do not induce
NF-kB-mediated pro-inflammatory responses in vivo that
the Trail ligand is under consideration for clinical use in

Table 1. Domains Associated with Apoptosis

1. Caspase (catalytic) Domains
2. Death Domains (DDs)
3. Death Effector Domains (DEDs)
4. Caspase-Associated Recruitment Domains (CARDs)
5. BIR Domains (IAPs)
6. Bcl-2 Homology (BH) Domains
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the treatment of cancer, whereas NF-kB-inducing TNF-a
proved to be unacceptable.

Multiple mechanisms for modulating signaling by TNF
family death receptors probably exist. One that acts di-
rectly on DDs involves the silencer of death domains
protein (SODD), also know as BAG4.58,59 SODD contains
a C-terminal BAG domain that allows it to bind Hsc70/
Hsp70 family molecular chaperones.59 An N-terminal do-
main in SODD mediates its interactions with the DDs of
TNFR1 and DR3. Overexpression of SODD prevents
TNFR1 and DR3 from spontaneously aggregating and
signaling in the absence of ligand.58 Though unproven, it
has been suggested that recruitment of Hsp70/Hsc70 to
these death receptors induces conformational changes
in the DD that prevent self-oligomerization until the recep-
tors are appropriately triggered by cognate ligands.60

Another resistance mechanism has been attributed to
FAP, a protein tyrosine phosphatase that uses PDZ do-
mains to interact with the C-termini of Fas and p75-NGFR,
suppressing apoptosis signaling by these receptors
through uncertain mechanisms.61,62 Overexpression of
FAP-1 in tumors has been associated with resistance to
Fas-induced apoptosis.63,64

Defects in the regulation, structure, or function of DD
proteins are associated with multiple human diseases.
For example, elevations in Fas expression are induced by
hypoxia in cultured cardiomyocytes.65 Inappropriate ex-

pression of Fas and Fas ligand (FasL) on lymphocytes
and other immune cells has also been documented in
patients with HIV infection and has been implicated in the
loss of lymphocytes that characterizes this immunodefi-
ciency syndrome.66 Conversely, hereditary mutations in
the DD of the FAS (APO1) gene cause an autoimmune
lymphoproliferative syndrome in humans and mice.67,68

The accumulation of autoreactive lymphocytes in these
patients can presumably be explained by the important
role the Fas plays in ensuring death of potentially auto-
reactive immune cells (through activation-induced lym-
phocyte apoptosis) and in down-regulation of lympho-
cyte numbers after immune responses.69,70 Somatic
mutations and deletions of the FAS gene have also been
described in some malignancies, affording cancer cells
resistance to immune-mediated attack.71 Production of a
soluble version of Fas has also been associated with the
autoimmune disease lupus. This secreted isoform of Fas
lacking the transmembrane domain is generated by al-
ternative mRNA splicing, and increases in levels in asso-
ciation with exacerbation of symptoms in patients with
lupus.72 Soluble Fas competes with membrane-associ-
ated Fas for binding to ligand, thus interfering with FasL-
mediated apoptosis. Similarly, soluble FasL has been
shown to interfere with some Fas-mediated responses
relevant to immune responses against tumors,73 proba-
bly because FasL is normally expressed on the surface of

Figure 2. Human death domain (DD) family proteins. The domain arrangements of the known members of the human DD family are presented. Numbers
represent amino acid residue positions.
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cytolytic T cells (CTLs), where it can induce higher-order
aggregation (cross-linking) of Fas on target cells. A novel
member of the TNF family that is also overexpressed in
some tumors, DcR3, encodes a decoy receptor that com-
petes with Fas for binding of FasL.74 Additionally, three
decoy receptors have been identified for the death li-
gand, Trail, which protect DR4- and DR5-expressing
cells from Trail-induced apoptosis.75–77 Surprisingly, it
seems that most normal cells express sufficient levels of
Trail decoy receptors to be spared from apoptosis,
whereas many tumor cells do not.78,79 Finally, p53 has
been reported to induce transcription of the death recep-
tors Fas and DR5 in some types of tumor cells, thus
linking the extrinsic pathway for apoptosis to genotoxic
injury in specific cell contexts.80

Death Effector Domain (DED) Proteins

The structure of the DED is similar to the DD, comprised
of 6 a-helices.81 DEDs are found in the initiator caspases,
caspase-8 and -10 in humans (a caspase-10 orthologue
has yet to be identified in mice). The prodomain regions
of pro-caspase-8 and -10 contain two tandem DEDs,
which are responsible their interactions with the DED of
Fadd, and thus mediate their recruitment to death recep-
tor complexes. Multiple DED-containing modulators of
apoptosis have been identified (Figure 3). Flash, for ex-

ample, is a large protein containing two DED-like do-
mains which reportedly enhances caspase-8 activation
by Fas. DEDD (DEFT) is another DED-containing protein
which reportedly enhances Fas-induced apoptosis.
DEDD contains an N-terminal DED and a C-terminal his-
tone-like domain.82,83 DEDD is present in the cytosol, but
during Fas-induced apoptosis it translocates to nuclei in
a caspase-dependent manner, localizing to nucleoli and
possibly shutting off ribosomal RNA gene transcription.82

DEDD associates with Fadd, and to some extent pro-
caspase-8, via DED-mediated interactions.82,83

In contrast to Flash and DEDD (DEFT), which enhance
Fas-induced apoptosis, the DED-containing protein Flip
(also known as Flame, CASH, Clarp, MRIT, Casper, I-
Flice, Usurpin) is capable of suppressing caspase-8 ac-
tivation by Fas and other death receptors. Flip shares
extensive amino acid sequence similarity with pro-
caspase-8 and -10, containing two N-terminal DEDs fol-
lowed by a pseudo-caspase domain that lacks critical
residues required for protease activity, including the cat-
alytic cysteine.84,85 Flip associates with pro-caspase-8
and also competes with pro-caspases-8 and -10 for bind-
ing to Fadd, thus squelching death receptor signaling.
Interestingly, some tumors have been reported to contain
inappropriately elevated levels of Flip, rendering them
resistant to apoptosis induction by Fas-expressing
CTLs.86 Though controversial, Flip-mediated resistance
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to Fas may even permit tumor cells to tolerate expressing
FasL, using this death ligand as a weapon against neigh-
boring normal cells and triggering apoptosis of immune
cells.87–89 Interestingly, some viruses also encode DED-
containing proteins analogous to Flip that similarly suppress
apoptosis induced by Fas.90–93 By thwarting Fas-induced
apoptosis, viruses presumably can avoid CTL-mediated
eradication of the host cells they infect, allowing more time
for viral replication.

Decreased expression of the DED-containing apopto-
sis suppressor, Flip (Usurpin), occurs in myocardial tis-
sue damaged by ischemia-reperfusion injury,96 suggest-
ing increased sensitivity to apoptosis induction via the
death receptor pathway.

In contrast to Flip, which is a soluble cytosolic protein,
membrane-anchored DED-containing proteins have also
been identified that are capable of modulating caspase-8
activation. Bap31 resides in the membranes of the endo-
plasmic reticulum (ER), possessing three putative mem-
brane-spanning domains and a cytosolic DED-like do-
main.94 BAR is found in the membranes of mitochondria
and ER, with the bulk of the protein oriented toward the
cytosol. The BAR protein contains a C-terminal mem-
brane-anchoring domain and a DED which binds pro-
caspase-8 and -10, suppressing Fas-induced apopto-
sis.95 Both Bap31 and BAR contain additional domains
that mediate their direct or indirect association with anti-
apoptotic members of the Bcl-2 family such as Bcl-2 and

Bcl-XL, thus defining points of cross-talk in the extrinsic
(death receptor) and intrinsic (mitochondrial) pathway.

CARD Family Proteins

Several pro-caspases contain N-terminal CARDs in their
prodomains, including caspases 1, 2, 4, 5, and 9 in
humans and caspases 1, 2, 9, 11, and 12 in mice (Figure
4). (To date, orthologues of human caspases 4 and 5
have not been observed in mice and conversely ortho-
logues of murine caspases 11 and 12 have not been
found in humans.) Roles for CARD-carrying caspases in
diseases have been revealed through gene ablation
studies in mice. For example, caspase-1 knockout mice
exhibit marked resistance to endotoxin-induced sepsis.97

Caspase-1, as well as caspase-2 and caspase-11,
knockout mice also suffer less tissue loss in stroke mod-
els.98–100 Inhibition of caspase-1 also slows progression
in a mouse model of Huntington’s disease.101 In addition,
cells from caspase-12 knockout mice are resistant to
apoptosis induced by amyloid b-peptide,102 a finding of
potential relevance to Alzheimer’s disease. In this regard,
caspase-12 appears to be associated with the endoplas-
mic reticulum (ER) and becomes specifically activated by
ER stress, thus linking ER damage to a caspase activa-
tion pathway independently of the mitochondrial (cyto-
chrome c) and death receptor (TNF family) pathways.102

The overall structure of the CARD is similar to DDs and
DEDs, comprised of 6 a-helices.103–106 Homotypic inter-
actions among CARD-carrying proteins play important
roles in caspase activation throughout animal evolution.
One of the paradigms used for caspase activation is
embodied in CED-4/Apaf-1 family proteins. These pro-
teins contain a CARD domain in combination with a nu-
cleotide-binding oligomerization domain, known as a NB-
ARC (NACHT) domain for Nucleotide-Binding domain
homologous to Apaf-1, CED-4 and plant R gene prod-
ucts.107 The N-terminal CARDs of Apaf-1 in humans and
CED-4 in the nematode Caenorhabditis elegans mediate
interactions with the CARDs of specific initiator caspases,
pro-caspase-9 and pro-CED-3, respectively.26,108,109 Oli-
gomerized Apaf-1 and CED-4 activate caspases by the
induced proximity method.24,25,110

With the CED-4 protein of C. elegans, binding and
activation of the caspase pro-CED-3 is spontaneous. In
contrast, the human and Drosophila Apaf-1 proteins con-
tain an additional regulatory domain, comprised of sev-
eral WD repeat domains, which renders them dependent
on cytochrome c.12,111 Though less is known about the fly
protein, biochemical analysis of human Apaf-1 using in
vitro reconstituted systems with purified components in-
dicates that cytochrome c, in combination with dATP,
induces oligomerization of Apaf-1 molecules, followed by
binding to and activation of pro-caspase-924,25 (Figure
4). Several mechanisms for suppressing caspase activa-
tion by Apaf-1 have been identified, including expression
of a shorter noncatalytic isoform of pro-caspase-9 that
competes with full-length caspase-9 for binding Apaf-1,
phosphorylation of human caspase-9 by the kinase Akt,

Figure 3. Death effector domain (DED) family proteins. The domain ar-
rangements of some of the known members of the DED family are presented.
Numbers represent amino acid residue positions. Included in the diagram are
the Drosophila caspase, Dronc, and the viral DED proteins from Kaposi’s
sarcoma virus and MCV.
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Figure 4. Caspase-associated recruitment domain (CARD) family proteins. Non-caspase CARD family proteins are shown. The domain arrangements of the known
members of the CARD family are presented. Numbers represent amino acid residue positions. In addition to human proteins, the diagram includes the murine
caspase-11 and caspase-12 proteins, C. elegans CED-3 and CED-4 proteins, and the Drosophila Dronc protein. Additional family members in lower organisms are
not presented.
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overexpression of heat shock proteins, and alkaline
pH.112–116

Additional CARD-carrying proteins are also involved
caspase activation. Nod-1 (CARD4) reportedly activates
caspases when overexpressed in cells.117,118 This pro-
tein contains a CARD, followed by a nucleotide-binding
domain and several leucine-rich repeats, which presum-
ably represent protein interaction domains somehow in-
volved in the regulation of this protein. The NB domain of
Nod-1 can self-associate, suggesting parallels with the
mechanisms used by Apaf-1 and CED-4 for activating
caspases. Because Nod-1 readily co-immunoprecipi-
tates with pro-caspase-9, it may represent an alternative
activator of this initiator caspase. However, because the
phenotypes of apaf-1 and pro-caspase-9 knockout mice
are highly similar,16,17,119 Nod-1 presumably substitutes
for Apaf-1 in only rare circumstances in vivo. Also, unlike
Apaf-1, Nod-1 is a potent inducer of NF-kB, suggesting
additional actions besides caspase activation.117,118

Another CARD family protein that associates with pro-
caspase-9 is Bcl-10 (huE10; CIPER).120–122 In addition to
its CARD, Bcl-10 contains a proline-rich domain that me-
diates associations directly or indirectly with pro-
caspase-9. When overexpressed, Bcl-10 induces apo-
ptosis and activates NF-kB. Mutant versions of Bcl-10
lacking the C-terminal domain implicated in pro-
caspase-9 binding have been reported in cancers,
though the frequency of such gene mutations is debat-
ed.120,123,124 These truncated forms of Bcl-10 retain NF-
kB-inducing activity but fail to induce apoptosis when
overexpressed in cells, instead manifesting transforming
activity in classical rodent cell-based assays in vitro.120

The herpes equine virus encodes a very similar protein,
called E10.122

Another CARD-carrying caspase activator is Cardiak
(RIP2; Rick) (Figure 3). This protein contains a CARD and
a protein kinase domain similar to that found in the NF-
kB-inducing DD-containing protein RIP1 (Figure 2) and in
the NF-kB-modulator RIP-3.125–128 The CARD of Cardiak
binds the CARD-containing prodomain of pro-caspase-1
and induces caspase-1 activation, presumably through
the induced-proximity method. Cardiak has been re-
ported to bind certain TRAF family proteins, which may

link it to signaling by various TNF and Toll/IL-1/LPS family
receptors,127 thus explaining the ability of certain cyto-
kine to induce pro-IL-1b processing, yielding bioactive
IL-1b.6 Though Cardiak can induce apoptosis when over-
expressed, it is questionable whether this represents a
physiological role for this protein. Activation of pro-
caspase-2 by the CARD-carrying protein, Raidd (Cradd),
was mentioned above (Figures 2 and 4) in the context of
TNFR1 signaling where the DD of these adapter proteins
links them to certain DD-containing TNF family receptors
and the CARD domain interacts with the CARD-contain-
ing pro-domain of pro-caspase-2.39,40

IAP Family Proteins

The IAPs represent a family of evolutionarily conserved
apoptosis suppressors.129–131 IAPs are found in the ge-
nomes of mammals, insects, and certain animal viruses.
All members of this family, by definition, contain at least
one copy of a so-called BIR (baculovirus iap repeat)
domain, a zinc-binding fold132–134 important for their anti-
apoptotic activity. In addition to 1 to 3 copies of a BIR
domain, many IAP family proteins also contain other do-
mains, including RING zinc-fingers, CARDs, Ubiquitin-
conjugating enzyme (E2s) domains, or putative nucleo-
tide-binding domains (Figure 5). Interestingly, the RINGs
of IAPs have recently been implicated in interactions with
the cellular components of the ubiquitination machin-
ery,135 thus controlling turnover of these proteins and
possibly other proteins with which they associate. Also,
the BIR-containing protein, Apollon (Bruce) contains a
domain with ubiquitin-conjugating enzyme (E2) activity,
further suggesting links of BIR family proteins to the cel-
lular ubiquitination machinery.136 Though the overall rel-
evance to apoptosis of this protein remains uncertain,
antisense-mediated down-regulation of Apollon report-
edly can sensitize tumor cell lines to apoptosis induced
by anti-cancer drugs.137 In this regard, it bears noting
that the mere presence of a BIR domain does not nec-
essarily indicate anti-apoptotic activity. For example, BIR-
containing proteins, which regulate mitosis and meiosis
but have no apparent effect on cell death regulation,
have been studied in yeast and C. elegans.138,139

Though IAP family proteins may possess other func-
tions,129 several of them have been shown to bind and
potently inhibit activated caspases. Among the caspases
inhibited by human IAP family members XIAP, cIAP1, and
cIAP2 are the effector caspases-3 and -7, as well as the
initiator caspase-9.140–142 Suppression of the effector
caspases maps to the N-terminal half of the protein in the
region encompassing the first two BIR domains, BIR1
and BIR2,132,143 whereas the third BIR domain is re-
quired for suppression of caspase-9.142 Importantly, IAPs
are selective caspase inhibitors and lack activity against
many members of the caspase family of cell death pro-
teases. This stands in marked contrast to the baculovirus
p35 protein, an apoptosis suppressor that displays broad
activity against caspases but for which no cellular homo-
logue has been identified.144

Figure 5. Human IAP family proteins. The domain arrangements of the
known members of the human IAP family are presented. Numbers represent
amino acid residue positions. Shown are BIR, nucleotide-binding (NB),
ubiquitin-conjugating (Ubc), and RING zinc-finger domains.
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Human IAPs can arrest apoptosis induced via either
the intrinsic (mitochondrial) or extrinsic (death receptor)
pathways, probably because they target effector
caspases common to both pathways.145 In contrast, in-
sect IAPs may inhibit primarily initiator caspases within
the mitochondria-dependent pathway, possibly reflecting
the later evolution of the death receptor (TNF family)
pathway.146

Alterations in the expression of IAPs in association with
diseases have been observed. For example, the first of
the human IAP family genes to be discovered, NAIP,
suffers inactivating mutations in a subgroup of patients
with severe forms of spinal muscular atrophy (SMA), a
motor-neuron degenerative disease.147 In addition, over-
expression of the IAP member Survivin has been docu-
mented in many common types of cancer.148 Survivin is
highly expressed in the developing fetus but largely ab-
sent from normal adult tissues.149 Through unclear mech-
anisms, Survivin expression appears to be deregulated in
cancers. Indeed, genome-wide transcription profiling
suggests that Survivin is among the most tumor-specific
genes thus far identifiable.150 The promoter of the Sur-
vivin gene is normally cell cycle-regulated, becoming
activated specifically in late G2/M phase.151 Moreover,
the Survivin protein is associated with the mitotic chro-
mosomes during mitosis and the mitotic spindle appara-
tus, where it appears to play a critical role in ensuring
proper control chromosome segregation during an-
aphase and in the final execution of cytokinesis. Suppres-
sion of survivin expression using antisense methods or
interference with Survivin function using dominant-inhib-
itory mutants results in polyploidy, aneuploidy, and apo-
ptosis.152 Apparent Survivin orthologues in yeast and C.
elegans also participate in cell cycle regulation but lack
effects on cell life/death,139,153 suggesting that Survivin
evolved this function later as a possible way of creating
a cell cycle checkpoint to ensure apoptotic elimination of
cells that fail to properly sort their genetic material during
cell division. Elevated expression of other IAP family
members in cancer also occurs.154

Regulators of the IAPs have only recently been identi-
fied in mammalian cells, but several examples were pre-
viously derived from analysis of programmed cell death
in Drosophila.111,155 In the fly, the death gene-products
Reaper, Grim, and Hid (and possibly Doom) directly bind
insect IAPs, apparently precluding them from inhibiting
caspases and enhancing apoptosis.156–159 Reaper,
Grim and Hid share a conserved ;14 amino acid domain
that is necessary and sufficient for binding IAPs and
inducing apoptosis. In vitro, synthetic peptides corre-
sponding to this region can directly suppress the
caspase-inhibiting activity of insect IAPs.146 Regulation
of the expression of Reaper, Grim, and Hid can be con-
trolled in interesting ways. For example, Reaper (rpr) is a
p53-responsive gene in Drosophila, and is induced in
response to x-irradiation.160

Ectopic expression of Hid in mammalian cells induces
apoptosis, suggesting a conserved mechanism.161 How-
ever, humans and other mammals contain no recogniz-
able Reaper, Grim, or Hid homologues, suggesting that
IAP suppression can be accomplished using diverse

protein structures that may have in common only small
structural elements such as that embodied in the con-
served ;14 amino acid regions of the fly proteins men-
tioned above. In this regard, a mammalian IAP inhibitor
Smac (Diablo) was recently described, which binds mul-
tiple IAP family members including XIAP, cIAP1, cIAP2,
and Survivin, and which allows caspases to induce apo-
ptosis.162,163 In addition, Xenopus lavis has been demon-
strated to possess a nuclear protein, Scythe, which binds
the fly Reaper protein in vitro and which modulates apo-
ptosis in some situations,164 suggesting that it may also
somehow be involved indirectly in the regulation of IAPs.
Little is known about the human homologue of Scythe.
Some inhibitors of IAP have begun to emerge through
analysis of apoptosis in humans, and it seems likely that
many more are yet to be discovered, given that flies have
devoted at least 3 (possibly 4) genes to this task and that
the human genome may contain as many as 9 times more
genes than Drosophila.

Bcl-2 Family Proteins

The mitochondria-dependent pathway for apoptosis is
governed by Bcl-2 family proteins. Bcl-2 family proteins
are conserved throughout metazoan evolution, with ho-
mologues found in mammalian, avian, fish, and amphib-
ian species, as well as in invertebrates such as C. el-
egans, Drosophila, and marine sponges. Several types of
animal viruses also harbor Bcl-2 family genes within their
genomes. Both pro- and anti-apoptotic Bcl-2 family pro-
teins exist, and many of these proteins physically bind
each other, forming a complex network of homo- and
heterodimers.165–169 The relative ratios of anti- and pro-
apoptotic Bcl-2 family proteins dictate the ultimate sen-
sitivity or resistance of cells to various apoptotic stimuli,
including growth factor/neurotrophin deprivation, hyp-
oxia, radiation, anti-cancer drugs, oxidants, and Ca21

overload. Not surprisingly, then, alterations in the
amounts of these proteins have been associated with a
variety of pathological conditions, characterized by either
too much (cell loss) or too little (cell accumulation) cell
death. These diseases include cancer, autoimmune dis-
orders such as lupus (where a failure to eradicate auto-
reactive lymphocytes occurs), immunodeficiency associ-
ated with HIV infection, and ischemia-reperfusion injury
during stroke and myocardial infarction, among oth-
ers.170 For example, the Bcl-2 gene (anti-apoptotic) is
activated by chromosomal translocations in the majority
of non-Hodgkin’s lymphomas171,172 and is also inappro-
priately overexpressed in many solid tumors, contributing
to resistance to chemotherapy- and radiation-induced
apoptosis.173 Conversely, loss-of-function mutations
have been identified in the BAX genes (pro-apoptotic) of
human tumors174 and analysis of bax gene knockout
mice indicates that Bax is a tumor suppressor in vivo.175

Transcription of the BAX genes is also indirectly regu-
lated by p53, thus providing another connection of this
important tumor suppressor to apoptosis pathways.176 In
contrast to cancer, where insufficient Bax expression
occurs, it has been shown that Bax is induced in neurons
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after ischemia-reperfusion injury.177 Furthermore, bax
gene knockout mice display marked resistance to neuro-
nal cell death induced by ischemia, axotomy, and other
insults.178,179 Bax is also increased in apoptosing neu-
rons in patients with Alzheimer’s disease.180 Many, many
more examples of associations of diseases with changes
in the relative amounts of Bcl-2 family proteins exist,
besides the few provided here.

In humans, 20 members of the Bcl-2 family gene family
have been described to date. These genes encode the
anti-apoptotic proteins, Bcl-2, Bcl-XL, Mcl-1, Bfl-1 (A1),
Bcl-W, and Boo (Diva), as well as the pro-apoptotic pro-
teins Bax, Bak, Bok (Mtd), Bad, Bid, Bim, Bik, Hrk, Bcl-XS,
APR (Noxa), p193, Bcl-G, Nip3, and Nix (BNIP). Some of
the Bcl-2 family genes produce two or more proteins
through alternative mRNA splicing, sometimes exerting
opposing effects on cell death regulation (eg, Bcl-XL

versus Bcl-XS). Also, some of these proteins may display
anti-apoptotic activity in some cellular backgrounds and
have pro-apoptotic functions in other cellular contexts
(eg, Boo/Diva, Bcl-2, Bax).181–184 Gene ablation studies
in mice suggest that each of the Bcl-2 family members
plays unique roles in controlling cell survival in vivo, re-
flecting their tissue-specific patterns of expression or
cell-context-dependent requirements for these proteins.

Based on their predicted (or experimentally deter-
mined) three-dimensional structures, Bcl-2 family pro-

teins can be broadly divided into two groups. One subset
of these proteins is probably similar in structure to the
pore-forming domains of bacterial toxins, such as the
colicins and diphtheria toxin.185–188 These a-helical pore/
channel-like proteins include both pro-apoptotic proteins
(Bcl-2, Bcl-XL, Mcl-1, Bfl-1, Bcl-W, and possibly Boo), as
well as pro-apoptotic proteins (Bax, Bak, Bok, and Bid).
Most of these protein in this subcategory can be recog-
nized by conserved stretches of amino acid sequence
homology, including the presence of Bcl-2 homology
(BH) domains BH1, BH2, BH3, and sometimes BH4 (Fig-
ure 6). However, this is not uniformly the case, as the Bid
protein contains only a BH3 domain but has been deter-
mined to share the same overall protein fold with
Bcl-XL.186,187 Where tested, these proteins, including
Bcl-2, Bcl-XL, Bax, and Bid, have all been shown to form
ion-conducting channels in synthetic membranes in
vitro.189–193

The other subset of Bcl-2 family proteins appears to
have in common only the presence of the BH3 domain,
including Bad, Bik, Bim, Hrk, Bcl-GS, p193, and APR
(Noxa). These proteins are all pro-apoptotic in their func-
tion, and their cell death-inducing activity depends on
their ability to dimerize with anti-apoptotic Bcl-2 family
members, typically functioning as trans-dominant inhibi-
tors of proteins such as Bcl-2 and Bcl-XL.169 In this re-
gard, the BH3 domain has been shown to mediate dimer-
ization among Bcl-2 family proteins. This domain consists
of an amphipathic a-helix ;16 amino acids in length that
inserts into a hydrophobic crevice on the surface of anti-
apoptotic proteins such as Bcl-XL.194 Thus, mutations in
the BH3 domain of proteins such as Bad, Bik, Bim, Bcl-
GS, and Hrk that abolish their ability to bind other Bcl-2
family member also abrogate their capacity to induce apo-
ptosis.

Nip3 and Nix (and their counterpart in C. elegans,
CeBNIP) may define a third subgroup of Bcl-2 family
proteins (Figure 6). Though these proteins contain BH3-
like domains, mutagenesis studies suggest that these
domains do not entirely account for their pro-apoptotic
function, and instead a carboxyl-terminal membrane-an-
choring domain may play an important role.195 It should
also be noted that BH3-mediated interactions among
Bcl-2 family proteins do not always result in antagonism.
For example, binding of the BH3 domain of Bid to Bax
appears to activate Bax, perhaps promoting its insertion
into membranes and allowing it to assume a cytotoxic
conformation.196,197

Many Bcl-2 family proteins are constitutively localized
to the membranes of mitochondria, whereas others are
induced to target these organelles in response to specific
stimuli. For example, Bcl-2, Bcl-XL, and many other mem-
bers of the Bcl-2 family have a hydrophobic stretch of
amino acids near their C-termini (transmembrane do-
mains) that anchors them in the outer mitochondrial mem-
brane. Some of these proteins also insert into endoplas-
mic reticulum and nuclear envelope, though their effects
on cell death regulation in these compartments are poorly
understood compared to those of mitochondria.13 In con-
trast to Bcl-2, Bcl-XL, and many of the Bcl-2 family pro-
teins, the pro-apoptotic proteins Bid, Bim, and BAD lack

Figure 6. Bcl-2 family proteins. The domain arrangements of the known
members of the Bcl-2 family are presented. The BH1, BH2, BH3, BH4, and
transmembrane domains are indicated. In addition to human or murine
proteins, included in the diagram are the chicken Nr13 protein, C. elegans
proteins CED-9, EGL1, and CeBNIP, and the Drosophila proteins DBok
(Drob1, dBorg 1, Debcl). Homologues from viruses, xenopas, and marine
sponges are not depicted. Human noxa (APR) has only one BH3 domain.
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C-terminal transmembrane domains. These proteins are
normally found in the cytosol but can be induced to target
mitochondria. In the case of Bid, cleavage by caspase-8
is required, removing the N-terminal 52 amino acids and
exposing both the BH3 dimerization domain and the hy-
drophobic core of the protein, which is believed to be
responsible for its insertion into mitochondrial mem-
branes.193,198,199 This caspase-8-mediated activation of
Bid represents an important mechanism accounting for
cross-talk between the death receptor (extrinsic) and
mitochondrial (intrinsic) pathways.200 With Bim, isoforms
of this protein have been found that associate with mi-
crotubules via direct binding to microtubule-associated
dynein light-chain.201 Disruption of these protein interac-
tions frees Bim, allowing it to dimerize through its BH3
domain with anti-apoptotic Bcl-2 family proteins on the
surface of mitochondria. In addition to cleavage by
caspases (Bid) and sequestration by interacting proteins
(Bim), targeting to mitochondria of some pro-apoptotic
Bcl-2 family members is controlled by phosphorylation.
The BH3-only protein BAD, for example, translocates
between the cytosolic and mitochondria compartments
depending on whether it is phosphorylated. Several pro-
tein kinases, including Akt (PKB), PKA, Raf1, Rsk1, and
Pak1 have been reported to phosphorylate BAD, thus
inactivating the protein so that it cannot dimerize with and
antagonize Bcl-2 or Bcl-XL.202,203 Phosphorylated BAD is
therefore found in the cytosol, sometimes found in a
complex with 14-3-3. Evidence has been presented that
BAD is inactivated by this phosphorylation mechanism in
many cancers.203 Conversely, dephosphorylation of BAD
has been implicated in apoptosis induction in response
to agents that induce sustained elevation in intracellular
cytosolic free Ca21, causing activation of the Ca21/cal-
modulin-dependent phosphatase, calcineurin. In hip-
pocampal neurons, for example, the NMDA receptor ag-
onist L-glutamate induces calcineurin-dependent BAD
dephosphorylation and dimerization with Bcl-XL, correlat-
ing with translocation of BAD from cytosol to mitochon-
dria.204 Finally, at least one Bcl-2 family member (Bax)
contains a C-terminal transmembrane domain but never-
theless displays regulated movement between cytosolic
and mitochondrial compartments. Bax appears to as-
sume a latent confirmation in the cytosol of many healthy
cells, where its transmembrane domain is evidently
masked.205 On delivery of a variety of apoptotic stimuli,
Bax undergoes a conformational change associated with
translocation to and insertion into mitochondria mem-
branes. The nature of the signal that controls Bax activa-
tion remains unclear, though changes in cellular pH have
been suggested to play a role.206

What do Bcl-2 family proteins do when they reach
mitochondria? This question is still debated among work-
ers in the field.13,168,207 What can be stated with confi-
dence is that Bcl-2 family proteins regulate the release of
cytochrome c from mitochondria, with pro-apoptotic
Bcl-2 family proteins inducing or making it easier to in-
duce release of this caspase-activating protein and anti-
apoptotic members of the family suppressing cyto-
chrome c release. Still unclear are the issues of whether
the control of cytochrome c release is directly attributable

to the pore/channel-like properties of some Bcl-2 family
proteins and whether cytochrome c release reflects a
primary effect on the outer membrane in which proteins
are allowed to escape versus a direct or indirect influence
on the inner membrane, where changes in osmotic ho-
meostasis dictate organelle volume regulation and con-
sequently release of cytochrome c due to swelling and
rupture of mitochondria.13,168,207 It has also become
clear that whatever the mechanism, it is caspase-inde-
pendent and controls cell death commitment, though
exceptions may exist in some lower organisms, particu-
larly C. elegans.166 In mammalian cells, even when
caspases are completely inhibited and apoptosis is thus
prevented, the Bcl-2-regulated changes in mitochondrial
membrane barrier function responsible for deciding se-
questration versus release of cytochrome c dictate cell
life-death decisions (clonigenic survival). In such in-
stances where caspases are inhibited, cell death occurs
via necrosis but is nevertheless regulated by members of
the Bcl-2 family.

In addition to cytochrome c, Bcl-2 family proteins have
been reported to control the release of other proteins
from mitochondria. These proteins include (i) certain
caspases (caspase-2, -3, and -9) which reportedly are
sequestered inside mitochondria in some types of
cells,208–210 (ii) apoptosis inducing factor (AIF), a fla-
voprotein implicated in nuclear manifestations of apopto-
sis via caspase-independent mechanisms,211 and (iii)
Smac/Diablo, the inhibitor of IAP family proteins.162,163 All
of these proteins are encoded within the nuclear genome,
transported into mitochondria, and stored in the space
between the inner and outer membranes, thus awaiting
release into the cytosol upon breakdown of the outer
membrane. Also, the proforms of cytochrome c, AIF, and
Smac/Diablo are inactive in terms of cell death induction,
requiring modifications such as attachment of prosthetic
groups (heme for cytochrome c; flavin adenine dinucle-
otide (FAD) for AIF) and/or proteolytic processing of their
N-terminal mitochondria-targeting leader peptides (AIF
and Smac/Diablo), which occurs only within mitochon-
dria. In this way, apoptosis is avoided during biosynthe-
sis of the apoproteins and is functionally linked to disrup-
tion of mitochondrial membrane barrier function,
providing cells with a suicide mechanism that can be
triggered in response to mitochondrial damage.

Conclusions

Advances in elucidating the molecular mechanisms of
apoptosis and its regulation have laid the foundation for a
deeper understanding of the pathophysiology of many
diseases. More importantly, this work has revealed strat-
egies for therapeutic intervention in a wide range of ail-
ments, including cancer, autoimmune disorders, immu-
nodeficiency, inflammation, ischemic heart disease,
stroke, and neurodegenerative diseases.212 Small-mole-
cule inhibitors of caspases, for example, are now in early
clinical trials, with more to come in the near future. Anti-
cancer therapies based on antisense oligonucleotide-
mediated suppression of BCL-2 expression have ad-
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vanced to Phase III trials. Biological agents that control
apoptosis, such as Trail-ligand (Apo2L), will also soon
enter clinical trials for patients with refractory metastatic
cancers. This progress in translating knowledge about
apoptosis mechanisms into the clinical arena suggests
rich opportunities for new and more effective treatments
for many of the medical illnesses for which adequate
therapies currently do not exist.
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