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Functional inhibition of tissue factor (TF) has been
shown to improve coronary blood flow after myocar-
dial ischemia/reperfusion (I/R) injury. TF initiates the
coagulation protease cascade, resulting in the gener-
ation of the serine protease thrombin and fibrin dep-
osition. Thrombin can also contribute to an inflam-
matory response by activating various cell types,
including vascular endothelial cells. We used a rabbit
coronary ligation model to investigate the role of TF
in acute myocardial I/R injury. At-risk areas of myo-
cardium showed increased TF expression in the sar-
colemma of cardiomyocytes, which was associated
with a low level of extravascular fibrin deposition.
Functional inhibition of TF activity with an anti-rabbit
TF monoclonal antibody administered either 15 min-
utes before or 30 minutes after coronary ligation re-
duced infarct size by 61% (P 5 0.004) and 44% (P 5
0.014), respectively. Similarly, we found that inhibi-
tion of thrombin with hirudin reduced infarct size by
59% (P 5 0.014). In contrast, defibrinogenating the
rabbits with ancrod had no effect on infarct size,
suggesting that fibrin deposition does not signifi-
cantly contribute to infarct size. Functional inhibition
of thrombin reduced chemokine expression and in-
hibition of either TF or thrombin reduced leukocyte
infiltration. We propose that cardiomyocyte TF ini-
tiates extravascular thrombin generation, which en-
hances inflammation and injury during myocardial
I/R. (Am J Pathol 2000, 157:1849–1862)

Myocardial ischemia-reperfusion (I/R) injury exists as a
continuum ranging from mild stunning, which is charac-
terized by reversible postischemic organ dysfunction, to
permanent tissue damage, which is characterized by

irreversible myocellular necrosis.1 I/R injury contributes to
loss of myocardial tissue after restoration of blood flow
after angioplasty, coronary artery bypass grafts, and
reperfusion therapies, including thrombolytics. Although
reperfusion of ischemic myocardium is essential for the
survival of cardiomyocytes, the restoration of blood flow
to ischemic myocardium is associated with an acute
inflammatory response2 Cytokines, chemokines, and
adhesion molecules are induced during I/R injury.3–5

These molecules promote the recruitment of polymorpho-
nucleocytes (PMNs) and monocytes,4,6 which secrete
cytotoxic molecules that lead to damage of ischemic
myocardium. Additionally, a no reflow effect leads to
continued ischemia.7,8

Tissue factor (TF) is the transmembrane receptor and
cofactor for plasma factor VII/VIIa that functions as the
primary cellular initiator of blood coagulation.9 TF is con-
stitutively expressed at extravascular sites, including the
vascular adventitia, where it is proposed to play a hemo-
static role to limit hemorrhage in the event of vessel
damage.10 In pathological settings, TF can initiate intra-
vascular thrombosis. For instance, disruption of athero-
sclerotic plaques exposes TF-positive foam cells within
the plaque to plasma-clotting factors,11 leading to throm-
bosis, occlusion of coronary vessels, and myocardial
infarction. Patients with unstable angina, myocardial in-
farction, and patients postangioplasty also exhibit ele-
vated levels of circulating TF on the surface of monocytes
and in vesicles in plasma,12–14 which may contribute to
the occlusion and re-occlusion of coronary vessels.

TF may contribute to inflammation observed in various
disease states, such as sepsis,15 trauma,16 and glomer-
ulonephritis.17 The proinflammatory role of TF seems to
require thrombin generation but may be independent of
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fibrin deposition. Thrombin can contribute to local inflam-
mation and tissue damage by activation of a family of
protease-activated receptors18,19 that stimulate cells to
express cytokines, such as interleukin (IL)-1, and IL-6;
chemokines, such as IL-8 and monocyte chemotactic
protein-1 (MCP-1); and adhesion molecules such as P-
selectin, E-selectin, and ICAM-1.5,20–22

A recent study demonstrated that TF activity was in-
creased in the hearts of rabbits subjected to myocardial
I/R injury.23 Moreover, administration of an inhibitory anti-
rabbit TF monoclonal antibody improved coronary blood
flow.23 In the present study, we used a similar rabbit
model of myocardial I/R injury to identify the cells respon-
sible for increased TF expression and to examine the
mechanism by which the TF-thrombin pathway enhanced
myocardial I/R injury.

Materials and Methods

In Situ Coronary Ligation Model

We used a well-characterized rabbit model of regional
cardiac I/R injury.24 In this model, adult New Zealand
White rabbits weighing 3 to 4 kg were used in research
protocols approved by the Animal Care Committee of the
University of Washington, Seattle. All animals received
humane care according to the “Guide for the Care and
Use of Laboratory Animals” prepared by the Institute of
Laboratory Animal Resources and published by the Na-
tional Institutes of Health (NIH Publication No. 86-23,
revised 1985). Rabbits were anesthetized with an initial
intramuscular injection of a ketamine (35 mg/kg) and
xylazine (5 mg/kg). Rabbits were endotracheally intu-
bated (3 mm ID, Aire-Cuff Veterinary endotracheal tube;
Bivona, Gary, IN) and mechanically ventilated with 100%
oxygen at a rate of 18 to 20 breaths/minute with a tidal
volume of 48 ml using a small animal respirator (Harvard
Apparatus Co., Cambridge, MA). Continuing anesthesia
was provided by inhaled 4% halothane for 2 minutes
followed by a 1% maintenance dose during the proce-
dure. Intravenous Ringer’s lactate was administered at 5
ml/kg/hour and the temperature of the rabbit was main-
tained with a warming pad. A 4.0-Vicryl suture (Ethicon,
Inc., Somerville, NJ) was passed twice around a large
anterolateral branch of the left main coronary artery sup-
plying most of the left ventricle (LV) and the ends of the
suture were passed through a small length of polyethyl-
ene tubing to form a snare. After a 20- to 30-minute
stabilization period, regional myocardial ischemia was
produced by reversibly tightening the snare and occlud-
ing the artery for 45 minutes. The coronary snare was
then released to allow 120 minutes of reperfusion. For
sham surgery the rabbits were treated as above but
cardiac ischemia was not induced by tightening the lig-
atures around the coronary vessel. After 120 minutes of
reperfusion, all animals were sacrificed with an intrave-
nous bolus of concentrated pentobarbital and the myo-
cardial tissue was isolated and processed for either cal-
culation of infarct size or histological analysis.

To assess the effect of functional inhibition of TF on I/R
injury, 2 mg/kg of an inhibitory anti-rabbit TF monoclonal
antibody (11F) in normal saline (0.9%) was administered
intravenously to rabbits either 15 minutes before (n 5 6)
or 30 minutes after (n 5 5) the onset of ischemia. Control
rabbits (n 5 5) for each experiment received saline. To
determine the effect of inhibition of thrombin on myocar-
dial I/R injury, rabbits (n 5 5) were treated with recombi-
nant hirudin (lepirudin; Hoechst Marion Roussel, Kansas
City, MO). Hirudin specifically blocks thrombin activity
through competitive inhibition of its catalytic site.25 Hiru-
din treatment began with the intravenous administration
of a 1 mg/kg bolus 30 minutes before ischemia and, 1
hour later, continued with an intravenous infusion of 1
mg/kg/hour for 1 hour and an infusion of 0.5 mg/kg/hour
for 1 hour.25 This dosing protocol prolonged the activated
partial thromboplastin time to greater than twice baseline
throughout the period of ischemia and reperfusion. Con-
trol rabbits (n 5 4) received saline. To determine the
contribution of fibrin deposition to myocardial I/R injury,
rabbits (n 5 5) were treated with ancrod, a defibrinoge-
nating agent.26 Ancrod cleaves only the A-chains of fi-
brinogen producing soluble, uncrosslinked fibrin-fibrino-
gen degradation products that are cleared by the
reticuloendothelial system. Ancrod (Sigma Chemical Co.,
St. Louis, MO) was administered as previously report-
ed.26 Rabbits received ancrod intravenously beginning
with a bolus dose of 1.0 IU/kg, followed by a second
bolus dose (1.0 IU/kg) 1 hour later, and a third bolus dose
(2.0 IU/kg) 3 hours later. The I/R protocol was initiated 6
hours after the first ancrod dose. This dosing schedule
decreased circulating fibrinogen from 2.60 6 0.09 mg/ml
(n 5 14) to undetectable levels (,0.20 mg/ml) after the
first dose and throughout ischemia and reperfusion as
determined by the von Clauss method.27 This represents
a .92% decrease in fibrinogen levels. Briefly, the von
Clauss assay determines the clotting time of dilute
plasma with exogenous thrombin. The formation of insol-
uble fibrin polymers is the end point of the reaction, and
the concentration of fibrinogen in the test sample is ob-
tained by comparing the clotting time of the sample with
a standard curve. Control rabbits (n 5 4) received saline.
No serious bleeding complications were noted during
any of the above treatments.

Determination of Infarct Size

At the completion of the 120-minute reperfusion period,
the coronary artery was re-occluded and 6 ml of 20%
Evans blue dye (Sigma Chemical Co.) was injected into
the right atrium and allowed to circulate to identify all
perfused tissue (blue). The area of myocardium receiving
its blood supply from the ligated vessel remained pink,
thus demarcating the myocardium of the LV at-risk (AR)
for injury. After arrest with pentobarbital, the heart was
rapidly excised, weighed, and cut into 2-mm-thick cross-
sections in parallel with the atrioventricular groove. The
LV was isolated from the remainder of the heart and
weighed. The normal left ventricular myocardium (blue)
was separated from the LV myocardial area AR for injury
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(pink). The AR area was then placed in a 37°C solution of
1% triphenyltetrazolium chloride (Sigma Chemical Co.)
for 30 minutes. Triphenyltetrazolium chloride stains the
viable tissue brick red, leaving the necrotic zone pale
white. Red-stained (noninfarcted) tissue was separated
from white-stained (infarcted; necrotic) tissue under a
dissecting microscope and each area was weighed. The
percentage of LV AR for infarction was calculated by
dividing the weight of the LV AR area by the weight of the
total LV. The percentage infarct size within the area of LV
placed AR to injury was calculated by dividing the weight
of necrotic tissue by the weight of the LV AR area. AR
areas and infarct size for the anti-TF antibody-treated,
hirudin-treated, ancrod-treated, and control rabbits were
assessed by an investigator blinded to the treatment.

Anti-Rabbit TF Antibodies

The production of a sheep anti-rabbit TF polyclonal anti-
body and a mouse anti-rabbit TF monoclonal antibody
(11F) has been described.17 Briefly, BALB/c mice were
immunized with 10 mg of purified rabbit TF in Freund’s
complete adjuvant and their spleen cells were fused with
NS1 cells to produce hybridomas by standard tech-
niques. Supernatants from clones were screened for TF
reactivity with immunoaffinity-purified antigen coated on
microtiter plates. One clone designated 11F produced an
IgG1 antibody with potent functional inhibitory activity in a
one-stage coagulant assay and stained a 45-kd protein in
acetone-extracted rabbit brain on Western blots. Both the
anti-rabbit TF monoclonal (11F) (no. 4511) and polyclonal
(no. 4513) antibodies are commercially available (Amer-
ican Diagnostica Inc., Greenwich, CT). We determined
the inhibitory activity of 11F by performing a dose-titration
experiment against rabbit brain TF. 11F (0.3 mg/ml) in-
hibits 50% of rabbit TF activity in a one-stage clotting
assay (Figure 1). We chose to use an intravenous dose of
11F of 2 mg/kg because we and others have used this

dose with other antibodies for studies using the rabbit
myocardial I/R model.28,29 A 2 mg/kg dose of 11F would
give a plasma concentration of ;33 mg/ml, which is more
than 10-fold above the IC50 observed in our in vitro inhi-
bition studies.

Determination of Rabbit TF mRNA and
Functional Activity

LV tissue from sham-operated control rabbits (n 5 6) or
from normal and AR areas of LV from I/R-injured rabbits
(n 5 8) was snap-frozen and stored in liquid nitrogen. TF
mRNA levels were assessed by Northern blot as previ-
ously described using a rabbit TF cDNA probe.30 To
assess TF activity, LV tissue (50 mg) was homogenized in
15 mmol/L octyl-b-D-glucopyranoside and incubated at
37°C for 15 minutes. Samples were centrifuged at
12,000 3 g for 1 minute and TF activity in the supernatant
assayed in a one-stage clotting assay using human
pooled plasma.17 TF activity was calculated in arbitrary
units by reference to a standard curve established with
human brain TF, in which a clotting time of 50 seconds
corresponds to 1,000 mU of TF activity, and normalized
to the total protein concentration. Protein concentrations
were determined using a Bio-Rad DC protein assay (Bio-
Rad, Hercules, CA).

Determination of Levels of TF, IL-8, and MCP-1
Protein

TF antigen was measured by enzyme-linked immunosor-
bent assay as previously described.17 Briefly, 50 mg of
tissue was homogenized in 1 ml of 0.5 mol/L ethylenedia-
minetetraacetic acid, 50 mmol/L Tris (pH7.5), 150 mmol/L
NaCl, and 2% Triton X-100. Samples were incubated at
4°C for 4 hours and centrifuged at 12,000 3 g for 5
minutes. The supernatant was removed and stored at
220°C overnight. TF antigen concentrations for each
sample were calculated by reference to a standard curve
generated with rabbit brain thromboplastin powder and
normalized to the total protein concentration. Levels of
IL-8 and MCP-1 in the heart were measured using en-
zyme-linked immunosorbent assays that are specific for
rabbit IL-8 and MCP-1.31,32

In Situ Hybridization

Cell type-specific TF mRNA expression was determined
by in situ hybridization using an anti-sense TF riboprobe
with a sense control.33 Briefly, sections of heart tissue
were fixed in 4% paraformaldehyde in phosphate-buff-
ered saline (PBS) and paraffin-embedded. Slides were
hybridized with 600,000 cpm of 35S-labeled riboprobe for
18 hours at 55°C. Sections were counterstained with
hematoxylin and eosin (H&E).

Immunohistochemistry

Regions of ischemic cardiac tissue were identified with
acid-fuchsin,34 which stains ischemic myocardium red-

Figure 1. Inhibition of rabbit TF by 11F. Rabbit brain TF (3.3 mg/ml)
resuspended in PBS was incubated with different concentrations of 11F at
37°C for 15 minutes and assayed for TF activity in a one-stage clotting assay.
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dish-brown. However, acid-fuchsin staining is not a de-
finitive indicator of ischemic injury. Immunohistochemical
staining of TF was performed on frozen and fixed sec-
tions using either 11F or goat anti-human TF polyclonal
antibody (American Diagnostica, Inc.), respectively. 11F
administered in vivo to rabbits (n 5 2) was detected with
a biotinylated horse anti-mouse IgG (1:150; Vector Lab-
oratories, Burlingame, CA). Staining used the Vectastain
Elite ABC-HRP kit and the 3,39-diaminobenzidine chro-
mogen kit (Vector), which produces a brown reaction
product. Sections were counterstained with hematoxylin.
Dual staining of TF and endothelial cell-specific antigens
was performed on frozen sections. TF protein was de-
tected with either 11F (24 mg/ml) or sheep anti-rabbit TF
antibody (20 mg/ml) and a fluorescein isothiocyanate-
labeled donkey anti-mouse or donkey anti-sheep F(ab9)2
fragment (Jackson ImmunoResearch, West Grove, PA).
Endothelial cells were detected with either a mouse anti-
CD31 antibody (1:20) (DAKO, Carpinteria, CA) or a goat
anti-rabbit von Willebrand Factor (vWF) antibody
(1:1,000) (kindly provided by J. Ware, The Scripps Re-
search Institute) and a Texas Red-labeled donkey anti-
mouse or donkey anti-goat antibody (Jackson). Nonspe-
cific staining was assessed using normal serum, normal
immunoglobulin, and nonreactive monoclonal antibodies.
Staining was visualized using Vectashield Mounting Me-
dia for fluorescence (Vector) and images captured with a
scanning confocal microscope (MR 1000; Bio-Rad).

Fibrin Staining

Fixed sections of LV were chemically stained by the
Carstairs’ method, which stains fibrin bright red. Liver
and kidney sections from lipopolysaccharide-treated rab-
bits were used as positive controls.35 Dual immunolocal-
ization of fibrin and endothelial cells was performed on
frozen sections. Cross-linked fibrin was detected with a
mouse anti-human fibrin b-chain monoclonal antibody
(59D8) (20 mg/ml) that binds to human fibrin but not
fibrinogen.36 59D8 was kindly provided by M. Runge,
University of Texas Medical Branch, and binds to rabbit
fibrin but not to rabbit fibrinogen. 59D8 was detected with
a fluorescein isothiocyanate-labeled donkey anti-mouse
antibody (Jackson). Endothelial cells were detected with
a goat anti-rabbit vWF antibody (1:1,000) kindly provided
by J. Ware and a Texas Red-labeled donkey anti-goat
antibody (Jackson). Staining was visualized using a
scanning confocal microscope (MR 1,000).

Ultrastructural Analysis of Tissue

Myocardial tissue was collected for electron microscopy
from rabbits subjected to I/R injury (n 5 2) or sham
surgery (n 5 2). Hearts were perfused with PBS followed
by perfusion with 2% glutaraldehyde and 4% paraformal-
dehyde in PBS under a constant pressure of 100-mmHg
to prevent damage to the vascular endothelium. After
perfusion, tissue samples (1 mm3) were taken from nor-
mal LV of sham-operated rabbits and the grossly necrotic
area of LV, the LV AR area, and the normal area of LV of

I/R-treated rabbits. Tissue was fixed overnight in the per-
fusate, washed in 0.1 mol/L cacodylate buffer, fixed with
osmium, and embedded in resin. Thick sections were cut
and stained with toluidine blue for orientation and ultra-
thin sections were stained with uranyl acetate and lead
citrate for assessment by electron microscopy (Philips,
GM 100 Eindhoven, Netherlands). For the sham animals,
we examined one grid from one tissue sample. For the
I/R-injured animals, we examined eight grids from one
tissue sample of the LV AR area.

PMN Accumulation

Light microscopic examination was performed on zinc
formalin (Anatec Ltd., Battle Creek, MI) fixed 3-mm-thick
sections of heart stained with H&E to assess cellular
infiltrate and to identify areas of tissue necrosis. PMN
accumulation in the LV AR area of myocardium from
I/R-injured rabbits treated with saline, 11F, or hirudin was
quantified by an investigator blinded to the treatment.
The number of PMNs in 10 high-powered fields (3400)
selected from the PMN-dense regions of myocardium AR
to I/R injury was counted in 4 to 6 different randomly
selected tissue sections obtained from the hearts of dif-
ferent rabbits in each group (saline-treated, n 5 6; 11F-
treated, n 5 2; hirudin-treated, n 5 3).

Statistics

The data analysis was performed using Statview version
4.5 (SAS Institute, Cary, NC) for Apple Power Macintosh
(Apple Computer, Cupertino CA). All quantitative data
were presented as the mean 6 SE (SE) and the statistical
significance between each group was determined using
a Mann-Whitney U test. P values ,0.05 were considered
statistically significant.

Results

Induction of TF Expression after Myocardial I/R
Injury

We used a well-characterized rabbit model of acute myo-
cardial I/R injury for these studies.24 TF activity, TF anti-
gen, and TF mRNA in the LV AR areas of rabbits sub-
jected to myocardial I/R injury were compared with TF
expression in the LV of sham-operated animals. TF ac-
tivity and antigen levels in the LV of I/R-injured rabbits
were 2.6 6 0.5 (mean 6 SE, n 5 6) and 3.3 6 0.8
(mean 6 SE, n 5 6) fold higher, respectively, than levels
in LV of sham animals. TF mRNA levels were evaluated
by Northern blotting in the AR and non-AR areas of the LV
of three independent I/R-injured rabbits (Figure 2). TF
mRNA levels in the AR areas were 3.7 6 0.3 (mean 6 SE,
n 5 3) fold higher than the levels in the non-AR areas,
whereas sham animals exhibited similar levels of TF
mRNA in two separate samples of LV (Figure 2). Thus, TF
expression was increased in the AR region of the LV of
I/R-injured rabbits.
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Identification of the Cellular Source of Increased
TF Expression after Myocardial I/R Injury

To determine the cellular source of induced TF expres-
sion in myocardial I/R injury, we performed immunohisto-
chemistry and in situ hybridization experiments. Low lev-
els of TF mRNA and protein are constitutively expressed
by cardiomyocytes.10,37,38 Immunohistochemical analy-
sis of tissue sections of LV from I/R-injured rabbits dem-
onstrated a regional increase in TF antigen (Figure 3A)
that was identified as ischemic myocardium by acid-
fuchsin staining of a serial section (Figure 3B). TF antigen
was increased in the sarcolemma of ischemic cardiomy-
ocytes (Figure 3, C and E) compared with levels of TF
antigen in nonischemic cardiomyocytes in the same sec-
tion (Figure 3D).

We detected minimal TF staining on the vascular en-
dothelium in tissue sections of hearts from rabbits sub-
jected to I/R injury (Figure 3E). No staining was observed
using a control antibody (Figure 3F). Dual immunofluo-
rescence studies were performed to further evaluate if TF
was expressed by microvascular endothelial cells in the
ischemic regions of hearts from I/R-injured rabbits. Figure
2, G and H, shows that TF (green) was expressed by

cardiomyocytes but was not expressed at detectable
levels by CD31- and vWF-positive endothelial cells (red).
Thus, we conclude that endothelial cells express only
minimal levels of TF after myocardial I/R injury. Myocar-
dial I/R injury is associated with an inflammatory re-
sponse characterized by infiltration of leukocytes into the
myocardium.4,6 We observed TF antigen on some leuko-
cytes, including a small number of PMNs (not shown).

In situ hybridization studies demonstrated a high level
of TF mRNA expression in cells within the AR area (Figure
4, A and B). In contrast, we observed low levels of TF
mRNA expression in cardiomyocytes within normal LV of
I/R injured rabbits (Figure 4E) and sham-operated rabbits
(data not shown). The TF mRNA-positive cells in the AR
area possessed large fusiform nuclei and were aggre-
gated in trabecular networks of muscle fibers (Figure 4F).
Analysis of cross sections through muscle fibers sug-
gested that TF mRNA was expressed by the centrally
placed cardiomyocytes (Figure 4G). All these morpho-
logical features indicated that TF mRNA expression was
up-regulated in ischemic cardiomyocytes. Epicardial
cells (Figure 4B), endocardial cells (not shown), and
vascular endothelial cells of larger vessels (Figure 4C)
and capillaries (Figure 4G) did not express detectable
levels of TF mRNA. Hybridization with a sense TF ribo-
probe yielded no specific signal (Figure 4D).

Localization of Anti-TF Antibody Administered
in Vivo

To identify the possible sites of action of an inhibitory
anti-rabbit TF monoclonal antibody (11F), we localized in
vivo administered 11F antibody using a horse anti-mouse
IgG antibody. We determined the AR area of LV by stain-
ing sections with acid-fuchsin, which identified AR (red-
dish-brown) versus non-AR areas (yellow) of LV of I/R-
injured rabbits (Figure 5A). 11F antibody bound to the
sarcolemma of cardiomyocytes in AR areas but not to
cardiomyocytes in non-AR areas (Figure 5, B–E). Minimal
levels of 11F localized to vascular endothelial cells and to
the majority of leukocytes (Figure 5E). Dual immunofluo-
rescence studies did not reveal significant co-localization
between in vivo administered 11F and vWF-positive mi-
crovascular endothelial cells (data not shown). These
studies demonstrated that 11F predominately bound
to TF expressed by extravascular cardiomyocytes in the
AR area.

Analysis of Fibrin Deposition in Ischemic
Myocardium

Fibrin deposition in ischemic myocardium was assessed
by histochemical staining. Using this technique, intravas-
cular fibrin deposition and thrombi could be observed in
the macro- and microvasculature of livers from lipopo-
lysaccharide-treated rabbits (Figure 6A). In contrast, we
could not observe any intravascular fibrin deposition or
thrombi in the microvasculature of normal and AR areas
of LV from sham-operated and I/R animals, respectively

Figure 2. TF mRNA expression after myocardial I/R injury. TF mRNA levels
were determined by Northern blotting and normalized to levels of glyceral-
dehyde-3-phosphate dehydrogenase (G3PDH). A: Determination of TF
mRNA levels in two separate samples from non-AR areas (N) of LV of three
independent sham-operated rabbits. B: Comparison of TF mRNA levels in the
non-AR areas (N) of LV with levels in the AR areas of LV of three independent
I/R-injured rabbits. TF mRNA levels were 3.7 6 0.3 (mean 6 SE, n 5 3) fold
higher in the AR areas compared with the levels in the non-AR areas of the
three I/R-injured rabbits.

Role of TF in Myocardial I/R Injury 1853
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Figure 3. TF antigen is up-regulated in ischemic cardiomyocytes. A: Regional increase in TF staining of ischemic cardiomyocytes in fixed heart tissue from a rabbit
after I/R injury. Rabbit TF was detected using a goat anti-human TF polyclonal antibody. Original magnification, 3100. B: Serial section stained with acid-fuchsin
to identify ischemic cardiomyocytes (reddish brown) Original magnification, 3100. TF expression in the AR area of LV (C) (original magnification, 3400) was
compared with expression in normal LV (D) of the same I/R-injured rabbit. Minimal TF expression was observed in the vascular endothelium (E) (original
magnification, 31,000). Cardiomyocytes (arrow) and endothelium (arrowhead) are shown. F: Serial section stained with control antibody (original magnifi-
cation, 31,000). TF-positive cells were detected with 3,39-diaminobenzidine and stain brown. G: Analysis of TF and CD31 expression. The sheep anti-rabbit TF
polyclonal antibody was detected with a fluorescein isothiocyanate-labeled antibody and stains green. The mouse anti-CD31 monoclonal antibody was detected
with a Texas Red-labeled antibody and stains red. H: Analysis of TF and vWF expression. The anti-TF monoclonal antibody (11F) was stained green and the
anti-rabbit vWF antibody was stained red.
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(Figure 6, B and C). Next, we analyzed fibrin deposition
by immunohistochemical staining using a monoclonal an-
tibody that specifically detects cross-linked fibrin.36 De-
spite detecting abundant intravascular fibrin deposition
that co-localized with endothelial cell staining in a kidney
section from a lipopolysaccharide-treated rabbit, we did
not detect intravascular fibrin deposition in normal LV of
sham-operated animals or AR areas of LV from I/R rabbits
(Figure 6, D and E). However, we did observe a low level
of extravascular fibrin in AR areas of LV from I/R rabbits
(Figure 6E), which are the same regions that exhibit up-
regulated TF expression by cardiomyocytes.

Ultrastructural Analysis of the Heart after
Myocardial I/R Injury

We analyzed the microvasculature of hearts of I/R-injured
rabbits to determine whether there was disruption of the
endothelium after injury. Ultrastructural analysis of endo-
thelial cells of capillaries in areas of nonischemic myo-
cardium from I/R-injured rabbits were completely intact
(data not shown) and indistinguishable from the capillar-
ies in LV from sham-operated animals (Figure 7A). In
contrast, analysis of the AR area of LV of I/R-injured

Figure 4. TF mRNA expression in rabbit hearts after I/R injury. In situ hybridization experiments were performed on heart sections from I/R-injured rabbits. Tissue
sections were hybridized with anti-sense TF riboprobes (A–C, E–G) or sense control (D). A: Low-power view (original magnification, 3100) of a heart section
with a blood vessel (bv) from an I/R-injured rabbit (arrows indicate TF mRNA-positive cells). Higher magnifications are shown in B and C. B: TF mRNA-positive
cells were observed in the LV, whereas epicardium (ep) is negative (original magnification, 3400). C: No TF mRNA signal is observed in the vascular endothelium
(ec). bv, blood vessel. D: Serial section of D demonstrating no positive signal using a TF sense probe (original magnification, 3100). E: TF mRNA expression was
very low in normal myocardium from I/R-injured rabbits (original magnification, 3400). F: View of the longitudinal axis of cardiac muscle bundles shows that
the TF mRNA signal is localized to cardiomyocyte (arrows) (original magnification, 3400). G: Cross sections of TF mRNA-positive (arrow) cardiomyocytes
located within a cardiac muscle bundle (original magnification, 31,000).
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rabbits revealed endothelial cell damage that ranged
from vacuolization (not shown) to disruption of the endo-
thelial barrier (Figure 7B). In addition, ultrastructural anal-
ysis of AR tissue did not reveal significant levels of intra-
vascular fibrin deposition (not shown). These studies
indicated that our model of I/R injury induced disruption
of the endothelium in AR regions of myocardium, which
would allow plasma-clotting factors to contact TF ex-
pressed by extravascular cardiomyocytes.

Inhibition of TF Activity Reduces Infarct Size
after Myocardial I/R Injury

We have recently shown that inhibition of IL-8 with an
anti-IL-8 antibody (2 mg/kg) significantly reduces the
degree of necrosis in a rabbit model of myocardial I/R
injury.28 In this study, we found that an isotype control
antibody had no effect. Another study examining the role
of ICAM-1 in myocardial I/R injury showed that an anti-
ICAM-1 antibody (2 mg/kg) was cardioprotective.29 This
study showed no difference between the control antibody
group and a saline vehicle group. Therefore, we chose to
use saline-treated rabbits as a control for our current

studies. Saline-treated rabbits were also used as controls
for the hirudin and ancrod studies (see below).

We determined the functional role of TF in myocardial
I/R injury by administration of the inhibitory anti-rabbit TF
monoclonal antibody 11F to rabbits. We generated a
consistent area AR for ischemic damage (Figure 8). Ad-
ministration of 11F to rabbits (n 5 6) 15 minutes before
coronary ligation significantly reduced infarct size com-
pared with saline-treated rabbits (n 5 5; 16 6 1% versus
41 6 2%, P 5 0.004). This represented a 61% reduction
in infarct size (Figure 8A). Moreover, administration of
anti-TF antibody to rabbits (n 5 5) 30 minutes after the
onset of ischemia resulted in a 44% reduction in infarct
size compared with saline-treated rabbits (n 5 5; P 5
0.014) (Figure 8B). These data indicated that TF contrib-
uted to myocardial I/R injury in our model.

Inhibition of Thrombin Reduces Infarct Size after
Myocardial I/R Injury

We determined the contribution of thrombin to myocardial
I/R injury by administration of hirudin, a direct thrombin

Figure 5. Localization of the anti-TF antibody (11F) in the myocardium of rabbits treated intravenously with 11F before I/R injury. Immunohistochemical analysis
of mouse IgG was performed on zinc-formalin-fixed heart sections using a horse anti-mouse IgG polyclonal antibody. A: Acid-fuchsin staining was used to identify
areas of ischemic myocardium (original magnification, 3100). Staining of horse anti-mouse IgG demonstrates localization of 11F to the sarcolemma (arrow) and
intercalated disks (arrowhead) of cardiomyocytes. Original magnifications, 3250 (B) and 31,000 (C). Cardiomyocyte is indicated by the arrow whereas minimal
staining was detected on endothelium (arrowhead). D: Section from a saline control rabbit reveals no staining (original magnification, 31,000). Horse anti-mouse
IgG was detected with 3,39-diaminobenzidine and stains brown.
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inhibitor. Administration of hirudin to rabbits significantly
reduced infarct size compared with saline-treated rabbits
(18 6 1% versus 44 6 1%, P 5 0.014, n 5 5). This
represented a 59% reduction in infarct size (Figure 9A).
This result suggests that thrombin, in part, mediates myo-
cardial I/R injury.

Fibrinogen Depletion Does Not Affect Infarct
Size after Myocardial I/R Injury

We investigated the role of fibrin deposition in myocardial
I/R injury by administration of ancrod, a defibrinogenating

Figure 6. Analysis of fibrin deposition in myocardium from I/R-injured rabbits. Fibrin deposition was assessed by Carstairs’ staining (A–C), which stains fibrin
bright red, and dual immunohistochemistry using an anti-fibrin and an anti-rabbit vWF antibody (D–F). A: A liver section from a lipopolysaccharide-treated rabbit
was used as a positive control and shows a large fibrin-rich thrombus (arrow) as well as fibrin deposition in the microvasculature. Minimal fibrin staining was
observed in myocardium from sham (B) or I/R-injured (C) rabbits. Immunohistochemical analysis of fibrin deposition was performed by dual immunolocalization
of fibrin (green) and endothelial cells (vWF) (red). D: A kidney section from a lipopolysaccharide-treated rabbit was used as a positive control and shows
co-localization (yellow) of abundant fibrin deposition (green) and endothelial cells (red), indicating intravascular fibrin deposition. Minimal fibrin deposition was
observed in myocardium from sham rabbits (E) but higher levels of fibrin were observed extravascularly in I/R-injured rabbits (F). All panels were photographed
at an original magnification of 3400.
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enzyme (Figure 9B). The ancrod treatment resulted in
.92% decrease in fibrinogen levels from 2.60 6 0.09
mg/ml (n 5 14) to functionally undetectable levels. Im-
portantly, administration of ancrod to rabbits did not af-
fect the infarct size compared with saline-treated animals
(42 6 2% versus 41 6 4%, P 5 0.62, n 5 5). Although
these studies do not exclude a role of low levels of fibrin
deposition in I/R injury, these results together with our
analysis of fibrin deposition suggest that TF-dependent
thrombin generation may contribute to myocardial I/R
injury by mechanisms beyond simply initiating intravas-
cular fibrin deposition.

Hirudin Reduces Chemokine Expression after
Myocardial I/R Injury

We investigated the hypothesis that the TF-thrombin
pathway contributed to I/R injury by enhancing chemo-
kine expression and inflammation. We measured the lev-
els IL-8 and MCP-1 in non-AR and AR areas of LV of
I/R-injured rabbits with or without hirudin. The induction of
both IL-8 and MCP-1 was reduced by hirudin (Figure 10).
Although these results did not achieve statistical signifi-
cance, they suggest that functional inhibition of thrombin
has an impact on chemokine expression that may affect
the recruitment of leukocytes into the AR areas of myo-
cardium.

Functional Inhibition of TF or Thrombin Reduces
PMN Infiltration

We further investigated the mechanism by which TF con-
tributes to infarct size by quantitating the recruitment of
PMNs in anti-TF antibody-treated and saline-treated I/R-

Figure 7. Ultrastructural analysis of myocardium from I/R-injured rabbits. A: Normal capillary from the left ventricular myocardium of a sham rabbit (original
magnification, 38,900). B: Injured capillary in an AR area of myocardium of an I/R-injured rabbit (original magnification, 35,200). Arrow indicates disruption
of the endothelium.

Figure 8. Effect of anti-TF antibody treatment on infarct size. A: Rabbits were
treated intravenously with either saline (n 5 5) (hatched bars) or an
anti-rabbit TF monoclonal antibody (11F) (n 5 6) (black bars) 15 minutes
before ischemia. Similar AR areas of LV were observed in both groups (42 6
2% for 11F-treated rabbits and 39 6 5% for saline-treated rabbits). The mean
infarct sizes were 16 6 1% for the 11F-treated rabbits and 41 6 1% for the
saline-treated rabbits, indicating that 11F reduced infarct size by 61% (P 5
0.004). B: Rabbits were treated intravenously with either saline (n 5 5) or 11F
(n 5 5) 30 minutes after the onset of ischemia. Similar areas of LV were
placed AR to I/R injury (47 6 4% for 11F-treated and 44 6 1% for saline-
treated rabbits). The mean infarct sizes were 24 6 4% for the 11F-treated
rabbits and 43 6 1% for the saline-treated rabbits, indicating that 11F reduced
infarct size by 44% (P 5 0.014). Data are expressed as the mean 6 SE.
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injured rabbits. Histological assessment of tissue from
saline-treated rabbits revealed a large infiltrate of mar-
ginating leukocytes (predominantly PMNs) within capil-
laries and postcapillary venules in the AR area of the LV
(Figure 11A). Most of the PMNs were associated with the
endothelium and subendothelium in the parenchymal
vessels. Animals treated with 11F antibody 15 minutes
before the onset of ischemia showed a profound reduc-
tion in PMN margination and transendothelial migration
(Figure 11B). To more accurately assess the infiltration of
PMNs, the number of PMNs in the AR areas of LV in
saline- and 11F-treated I/R-injured rabbits was scored.
Functional inhibition of TF significantly reduced the infil-
tration of PMNs (Figure 11C). Importantly, there was no
difference in the number of circulating leukocytes be-
tween 11F-treated and control groups after I/R injury
(data not shown). We observed a similar reduction in
PMN infiltration in hirudin-treated rabbits compared with
a separate group of saline-treated rabbits (Figure 11C).
This data indicated that functional inhibition of TF or
thrombin reduced the recruitment of PMNs during I/R
injury.

Discussion

A recent study demonstrated that administration of a
different inhibitory anti-rabbit TF antibody (AP-1) partially
restored blood flow to ischemic myocardium during
reperfusion.23 It was proposed that TF was expressed by
vascular endothelial cells,23 which would suggest that
the AP-1 antibody may be acting by reducing TF-initiated
intravascular thrombosis. However, TF may contribute to
myocardial I/R injury by other mechanisms, such as by
increasing the extravasation of monocytes or by enhanc-
ing extravascular thrombin generation and inflamma-
tion.15–17,39 We demonstrated that administration of an
inhibitory anti-TF antibody either before or after ischemia
significantly reduced infarct size after I/R injury, indicat-
ing that TF contributes to myocardial I/R injury. We used
an acute model of I/R injury, however, further studies are
required to examine the role of TF in models of more
chronic reperfusion.

TF activity may be increased after myocardial I/R injury
by de novo protein synthesis as well as by de-encryption
of pre-existing TF. There are a variety of cell types that
may contribute to the pathological expression of TF dur-

Figure 9. The effect of hirudin and ancrod treatment on infarct size. A:
Rabbits were treated intravenously with either saline (n 5 4) (hatched bars)
or hirudin (n 5 5) (black bars) before and during myocardial I/R injury.
Similar areas of the LV were placed AR to I/R injury in both groups (43 6 5%
for hirudin-treated rabbits and 46 6 5% for saline-treated rabbits). The mean
infarct sizes were 18 6 1% for the hirudin-treated rabbits and 44 6 1% for the
saline-treated rabbits, indicating that treatment with hirudin reduced infarct
size by 59% (P 5 0.014). B: Rabbits were treated intravenously with either
saline (n 5 4) (hatched bars) or ancrod (n 5 5) (black bars) before I/R
injury. Similar areas of the LV were placed AR to I/R injury (50 6 3% for
ancrod-treated rabbits and 43 6 4% for saline-treated rabbits). The mean
infarct sizes were not significantly different (42 6 2% for ancrod-treated
rabbits and 41 6 4% for saline-treated rabbits). All data are expressed as
mean 6 SE. Figure 10. Functional inhibition of thrombin reduces chemokine expression.

Levels of IL-8 (A) and MCP-1 (B) were assessed by enzyme-linked immu-
nosorbent assay in non-AR (N) and AR areas of LV of I/R-injured rabbits with
(n 5 3) or without (n 5 3) hirudin. Data are shown as mean 6 SD.
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ing myocardial I/R-injury that include cardiomyocytes,
which constitutively express low levels of TF, and vascu-
lar cells, such as endothelial cells and circulating leuko-
cytes, which can be induced to express TF. Our study
was not designed to identify all possible sites of TF ex-
pression during myocardial I/R-injury but simply to doc-
ument the cell types that exhibit increased or induced
expression. We analyzed TF protein and mRNA expres-
sion in the hearts of I/R-injured rabbits by immunohisto-
chemistry and in situ hybridization, respectively. We ob-
served a small number of TF-positive leukocytes, which
included monocytes and PMNs (not shown). We were
unable to detect significant TF expression by endothelial
cells using in situ hybridization and immunohistochemis-
try, despite the proposal by Golino and colleagues23 that
myocardial I/R injury induces TF expression in the vas-
cular endothelium. Our study and that of Golino and
colleagues used different experimental models (45 min-
utes of ischemia and 2 hours of reperfusion versus 5
minutes of ischemia and 2 hours of reperfusion), which
may, in part, explain the different conclusions. Neverthe-
less, we propose that TF generated by intravascular cell
types, such as the TF-positive leukocytes observed in our
model, does not seem to play a major role in myocardial

I/R injury because we failed to observe significant intra-
vascular thrombosis or fibrin deposition.

We found that TF expression was up-regulated in car-
diomyocytes in the AR areas of LV and anti-TF antibody
administered in vivo bound to these cardiomyocytes. We
observed structural and functional disruption of the en-
dothelium, which is consistent with a previous report
showing increased permeability of the coronary micro-
vasculature after brief ischemia (15 minutes) and reper-
fusion.40 Damage to the endothelial barrier would permit
plasma-clotting factors to gain access to TF expressed
by extravascular ischemic and nonischemic cardiomyo-
cytes, suggesting that these cells may participate in local
thrombin generation and fibrin deposition. Indeed, we
observed extravascular but not intravascular fibrin dep-
osition consistent with TF-positive cardiomyocytes initiat-
ing the clotting cascade at this extravascular site.

We investigated the role of fibrin deposition in I/R injury
by defibrinogenating the rabbits with ancrod. Ancrod
treatment reduced fibrinogen to undetectable levels, but
did not affect the infarct size. Consistent with these re-
sults, we did not observe intravascular fibrin deposition or
microvascular thrombosis in heart tissue of rabbits sub-
jected to I/R injury by immunohistochemistry and ultra-
structural analysis, although we did observe a low level of
extravascular fibrin deposition. Although these results do
not exclude that a low level of intravascular fibrin depo-
sition occurs in this model and impairs blood flow, our
results suggest that TF contributed to myocardial I/R
injury by mechanisms other than initiating intravascular
fibrin deposition. Fibrin-independent mechanisms for the
no reflow phenomenon in I/R injury have been described,
such as capillary plugging by leukocytes and erythro-
cytes.7,8 Other investigators found frequent leukocyte
and erythrocyte capillary plugging and only occasional
fibrin-containing microthrombi in the microvasculature by
electron microscopy in a similar pig I/R model.41

We found that hirudin treatment reduced the infarct
size by 59%, which is similar to the effect observed using
anti-TF antibody treatment (61%). Thrombin stimulates
endothelial cells to express chemoattractants, such as
IL-821 and MCP-1,5 and adhesion molecules,21,22 such
as ICAM-1 and P-selectin. These molecules are required
for the recruitment and extravasation of PMNs and mono-
cytes, which contribute to myocardial I/R injury. Addi-
tional studies have suggested that thrombin contributes
to inflammation in septic shock42 and glomerulonephritis
through PAR-1 signaling.43 Vascular smooth muscle cells
and endothelial cells express PAR-1 and both cell types
exhibit inducible expression of MCP-1 in response to
thrombin.5

Examination of the mechanism by which the TF-throm-
bin pathway contributes to infarct size revealed that func-
tional inhibition of thrombin decreased chemokine ex-
pression and inhibition of TF or thrombin reduced the
infiltration of PMNs after myocardial I/R injury. PMN infil-
tration was assessed by counting the number of PMNs
infiltrating into AR tissue. PMNs are an important compo-
nent of myocardial cell death in I/R injury. Inhibition of
PMN accumulation by blocking CD18 and ICAM-1 or by
use of CD18- and ICAM-1-deficient mice has shown that

Figure 11. Functional inhibition of TF or thrombin reduces PMN infiltration.
H&E representative photomicrographs (original magnification, 3400) of the
viable area of myocardium in the AR area of LV from rabbits treated with
saline (A) or anti-TF antibody (B) 15 minutes before ischemia. Note the large
infiltration of PMNs packing the venule of the saline-treated animal whereas
the venule from the 11F-treated animal is almost devoid of PMNs. C: Quan-
tification of PMNs within rabbit heart sections. An investigator blinded to the
treatment counted the number of PMNs per high-powered field in the LV of
I/R-injured rabbits treated with either saline (n 5 30 sections) (six different
rabbits) or anti-TF antibody 11F (n 5 12 sections) 15 minutes before to the
onset of ischemia (two different rabbits). In addition, we analyzed I/R-
injured rabbits treated with hirudin (n 5 14 sections) (three different rab-
bits). Data were presented as the mean 6 SE.
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PMNs contribute to infarct size in models of myocardial
I/R injury.4,44,45 We propose that extravascular TF,
through the action of thrombin, has a proinflammatory
role in myocardial I/R injury by increasing chemokine
expression and enhancing the recruitment of leukocytes.

The beneficial effects of anti-thrombin therapy in rabbit
models of vascular injury and thrombosis have been
extensively studied.46–48 In addition, administration of
hirudin to patients with acute coronary syndromes de-
creased cardiovascular death, new myocardial infarc-
tion, refractory angina, surgical cardiac procedures,49

and re-occlusion rates after thrombolysis.50 Hirudin also
decreased troponin T levels, a marker for myocardial
infarction, in patients undergoing angioplasty for unsta-
ble angina.51 However, anti-thrombin therapy was asso-
ciated with both minor and major bleeding complica-
tions.49,50,52 Other studies have examined the effects of
anti-TF therapy in animal models of thrombosis. Admin-
istration of anti-TF antibody prevents re-occlusion in fem-
oral vessels,53 decreases the incidence of restenosis
after carotid thrombosis,54 and reduces the required
dose of tPA for effective thrombolysis in carotid thrombo-
sis models.55 We can now extend this list of beneficial
effects of anti-TF therapy to myocardial I/R injury. To date,
there have been no clinical trials using anti-TF therapy.

The reduction in infarct size (44%) observed even
when the anti-TF antibody was administered after the
onset of ischemia indicates that anti-TF therapy should
be of significant clinical benefit in the treatment of acute
coronary syndromes before thrombolysis. Importantly,
unlike anti-thrombin therapy, anti-TF therapy is not asso-
ciated with bleeding complications in rabbits, baboons,
or chimpanzees.15,17,56 Moreover, the beneficial effects
of this anticoagulant therapy may be, in part, because of
inhibition of thrombin generation and inflammation. We
propose that anti-TF therapy should be effective in de-
creasing myocardial I/R injury in patients and may have a
superior safety profile to anti-thrombin therapy with fewer
bleeding complications.
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