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Proteases and their inhibitors play key roles in phys-
iological and pathological processes. Cerebral amy-
loid plaques are a pathological hallmark of Alzhei-
mer’s disease (AD). They contain amyloid-b (Ab)
peptides in tight association with the serine protease
inhibitor a1-antichymotrypsin.1,2 However, it is un-
known whether the increased expression of a1-anti-
chymotrypsin found in AD brains counteracts or con-
tributes to the disease. We used regulatory sequences
of the glial fibrillary acidic protein gene3 to express
human a1-antichymotrypsin (hACT) in astrocytes of
transgenic mice. These mice were crossed with trans-
genic mice that produce human amyloid protein pre-
cursors (hAPP) and Ab in neurons.4,5 No amyloid
plaques were found in transgenic mice expressing
hACT alone, whereas hAPP transgenic mice and hAPP/
hACT doubly transgenic mice developed typical AD-like
amyloid plaques in the hippocampus and neocortex
around 6 to 8 months of age. Co-expression of hAPP and
hACT significantly increased the plaque burden at 7 to 8,
14, and 20 months. Both hAPP and hAPP/hACT mice
showed significant decreases in synaptophysin-immu-
noreactive presynaptic terminals in the dentate gyrus,
compared with nontransgenic littermates. Our results
demonstrate that hACT acts as an amyloidogenic co-
factor in vivo and suggest that the role of hACT in AD is
pathogenic. (Am J Pathol 2000, 157:2003–2010)

The major protein component of plaques in Alzheimer’s
disease (AD) brains is amyloid b (Ab), which is derived
proteolytically from the amyloid protein precursor.6–8 The
majority of Ab produced in the normal brain terminates at
amino acid 40 (Ab40).9 Mutations linked to autosomal

dominant forms of familial AD (FAD) and formation of
plaques in all forms of AD are associated with an abnor-
mal accumulation of Ab ending at amino acid 42 (Ab42),
which aggregates more readily than Ab40.10,11

High-level neuronal expression of FAD-mutant forms of
human amyloid precursor protein (hAPP)/Ab, directed by
the platelet-derived growth factor (PDGF) b chain pro-
moter, elicits age-related synaptic transmission deficits
and AD-like neuropathological alterations in transgenic
mice, including typical amyloid plaques.4,5,12–15 AD-like
pathology has also been observed in a variety of other
transgenic models in which neuronal expression of FAD-
mutant hAPP is directed by different promoters.16

Diverse proteins bind to amyloid plaques including apo-
lipoprotein E, extracellular matrix proteins, amyloid P com-
ponent, complement, and cytokines.17 Most of these pro-
teins also bind to other forms of amyloid (eg, in primary AL
amyloidosis, secondary AA amyloidosis, FAP amyloidosis,
or prion-associated spongiform encephalopathies). In con-
trast, human a1-antichymotrypsin (hACT) seems to be as-
sociated primarily with Ab amyloidosis,18 suggesting a
more specific role for hACT in AD pathogenesis. However,
this role remains to be determined.

ACT is a serine protease inhibitor (serpin) and an acute
phase protein.19 In AD, hACT mRNA levels are increased
in the cortex1 where hACT is produced primarily by as-
trocytes.20,21 In vitro, hACT increases,22,23 decreas-
es,24,25 or does not alter17,26 amyloid fibril formation.
Similarly controversial results have been reported for the
effects of hACT on Ab-induced neurotoxicity.27–30 Here
we demonstrate that astroglial expression of hACT in-
creases amyloid deposition in vivo and that this effect
does not augment Ab-induced synaptotoxicity.

Materials and Methods

Generation of Transgenic Mice

An ;1.7-kb fragment containing a full-length hACT
cDNA1 was isolated from pGEM4 by EcoRI digest, sub-
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cloned in pGEMEX-2 after NotI linker ligation, and ligated
via NotI with a glial fibrillary acidic protein (GFAP) expres-
sion construct (C-445) described previously.31 The re-
sulting GFAP-hACT transgene was freed of vector se-
quences by SfiI digestion, purified, and microinjected into
C57Bl/6xSJL F2 one-cell embryos. The PDGF-hAPP
transgene12,13 and the generation of PDGF-hAPP line J9
on the C57Bl/6xDBA/2 background4 have been de-
scribed.

Mice were crossed as outlined in the Results section
and genomic tail DNA was analyzed with a touchdown
polymerase chain reaction protocol essentially as de-
scribed.32 hACT primers: forward (59-CTCGAGCTC-
GAGAGTTAGTCCTGAAGGCCC-39), reverse (59-AGAT-
CTAGATCTCGGAGGTGCTGGAAGCTC-39). hAPP primers:
forward (59-GGTGAGTTTGTAAGTGATGCC-39), reverse
(59-TCTTCTTCTTCCACCTCAGC-39). Genotypes were
confirmed by slot-blot analysis with 32P-labeled cDNA
probes specific for hAPP or hACT coding sequences. All
transgenic mice were heterozygous with respect to indi-
vidual transgenes. Nontransgenic littermates served as
controls.

Preparation of Brain Tissues

For analysis, mice were anesthetized with chloral hydrate
and flush-perfused transcardially with 0.9% saline. Brains
were removed and divided sagittally. One hemibrain was
postfixed in phosphate-buffered 4% paraformaldehyde
(pH 7.4) at 4°C for 48 hours for vibratome sectioning at 40
mm; the other hemibrain was snap-frozen, either in its
entirety or after rapid dissection into subregions, and
stored at 270°C for RNA and protein analyses. Postmor-
tem brain tissues from humans without neurological dis-
ease were obtained from the tissue bank of the Alzhei-
mer’s Disease Research Center at the University of
California at San Diego.

RNase Protection Assays

RNA extraction and mRNA quantitation by solution hy-
bridization RNase protection assay were performed as
described,13 using 10 mg of total RNA per sample in
combination with the following 32P-labeled antisense ri-
boprobes (protected nucleotides are indicated with ref-
erence to GenBank accession numbers): hAPPSV40 con-
taining nucleotides 2468 to 2657 (X06989) of hAPP fused
by NotI linker with nucleotides 2532 to 2656 (M24914) of
SV40, hACT containing nucleotides 200 to 380 (K01500)
of hACT, and actin containing nucleotides 480 to 559
(X03672) of mouse b-actin sequence.

Primary Astrocyte Cultures

Cultures of primary astrocytes were established from
whole brains of neonatal mice as described.33 Cells were
grown to confluence, washed in serum- and methionine-
free Dulbecco’s modified Eagle’s medium, placed in t-80
flasks, and labeled with 4 ml of 35S-methionine (25 mCi/
ml) for 18 hours. Conditioned media were then collected

and spun at 100,000 3 g for 1 hour. Supernatants were
first precleared with preimmune serum followed by pro-
tein A Sepharose and spun at 3,000 rpm in an Eppendorf
centrifuge for 5 minutes. The supernatants were collected
and hACT was immunoprecipitated for 18 hours at 4°C
with polyclonal goat (Atlantic, Stillwater, MN) or rabbit
(MBL, Japan) anti-hACT antibodies (diluted 1:500). Com-
plexes were brought down with protein A Sepharose for 1
hour at 4°C. The pellets were rinsed in STEN buffer,
boiled in Laemmli sample buffer, and separated by so-
dium dodecyl sulfate-polyacrylamide gel electrophore-
sis. The gels were then fixed, enhanced with Enlightening
(New England Nuclear, Boston, MA), and autoradio-
graphed. Similar results were obtained with either of the
primary antibodies.

Quantitations of Ab

Snap-frozen hippocampus was homogenized in guani-
dine buffer, and human Ab (Ab1-x versus Ab1-42) was
quantitated by enzyme-linked immunosorbent assay as
described.15 Sagittal vibratome sections (40 mm) of post-
fixed hemibrains were incubated overnight at 4°C with
biotinylated mouse monoclonal antibody 3D6 (diluted to
5 mg/ml; Elan Pharmaceuticals, South San Francisco,
CA), which specifically recognizes Ab1-5.15,34 Binding of
primary antibody was detected with an Elite kit (Vector
Laboratories, Burlingame, CA) using diaminobenzidine
and H2O2 for development. Sections were counter-
stained with 1% hematoxylin and examined with a Vanox
light microscope (Olympus, Tokyo, Japan) using a 32.5
objective. The percent area of the hippocampus covered
by 3D6-immunoreactive deposits (plaque load) was de-
termined morphometrically with a Quantimet 570C
(Leica, Deerfield, IL) in four immunolabeled sections per
mouse. One section per mouse was immunostained and
analyzed in each of four independent experiments and
average values were calculated from the pooled data.
Additional sections were pretreated with formic acid
(99%) for 45 seconds and labeled with rabbit polyclonal
antibodies (diluted 1:1,000; a gift from Dr. F. Checler,
IPMC du CNRS, Valbonne, France) that specifically rec-
ognize the C-terminus of Ab40 or Ab42.35 Specific binding
of these antibodies was detected essentially as de-
scribed.34 For detection of mouse Ab, sections were
incubated with the rabbit polyclonal antibody RAT 1-28
(Elan Pharmaceuticals) and then with biotinylated goat
anti-rabbit IgG. Immunoperoxidase activity was revealed
with an Elite kit (Vector Laboratories) using diaminoben-
zidine and H2O2 for development.

Evaluation of Presynaptic Terminals

To ensure objective assessments and reliability of results,
brain sections from mice to be compared in any given
experiment were blind-coded and processed in parallel.
Codes were broken after the analysis was complete.
Vibratome sections were labeled with monoclonal anti-
bodies against synaptophysin (1 mg/ml; Boehringer-
Mannheim, Indianapolis, IN) or GAP-43 (1:100; Sigma)
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as described.36 Synaptophysin-immunofluorescence-la-
beled sections were imaged with a laser-scanning con-
focal microscope (MRC1024; Bio-Rad Laboratories, Her-
cules, CA) as described.12,14 Three sections were
analyzed per mouse and four confocal images (each
covering 7,282 mm2) of the molecular layer of the dentate
gyrus were obtained per section. One section per mouse
was immunostained and analyzed in each of three inde-
pendent experiments and average values were calcu-
lated from the pooled data. Digitized images were trans-
ferred to a Macintosh computer and analyzed with NIH
Image. For each experiment, we first determined the
linear range of the intensity of immunoreactive terminals
in nontransgenic control sections. This setting was then
used, as described,37 to collect all images analyzed
in the same experiment. The area of the outer molec-
ular layer occupied by synaptophysin-immunoreactive
(SYN-IR) presynaptic terminals was quantified and ex-
pressed as a percentage of the total image area.12,36 As
reviewed recently,5,37 this method has been used to as-
sess neurodegenerative alterations in diverse experimen-
tal models and in diseased human brains and has been
validated by comparisons with quantitative immunoblots,
quantitations of synaptic proteins by enzyme-linked im-
munosorbent assay, and the optical disector approach.
GAP-43-immunoperoxidase-labeled sections were ana-
lyzed microdensitometrically with the Quantimet 570C as
described36 to determine the level of GAP-43 immunore-
activity in the molecular layer of the dentate gyrus.

Statistical Analysis

Statistical analyses were performed with the StatView 5.0
program (SAS Institute Inc., Cary, NC). Differences
among normally distributed sets of data were evaluated
by one-way analysis of variance and Tukey-Kramer post
hoc test. Differences in plaque load were assessed by
the Mann-Whitney U test. Correlation studies were per-
formed by simple regression analysis. The null hypothe-
sis was rejected at the 0.05 level.

Results

Expression of hACT in Astrocytes of
Transgenic Mice

We used regulatory sequences of the murine GFAP gene
to target expression of hACT to astrocytes (Figure 1). Six
GFAP-hACT transgenic founders were identified and
their offspring analyzed for cerebral transgene expres-
sion by RNase protection assay. Mice from the highest
expresser line (528-13) had robust hACT mRNA levels in
the brain (Figure 1b), and primary astrocytes from these
mice released hACT into the extracellular milieu (Figure
1c). hACT mice displayed no overt behavioral pheno-
type, and inspection of their hematoxylin and eosin-
stained brain sections revealed a normal cytoarchitecture
(data not shown). Line 528-13 was selected for further
analysis in this study.

Astroglial Expression of hACT Increases
Amyloid Deposition in hAPP Transgenic Mice

Heterozygous GFAP-hACT transgenic mice (line 528-13)
were crossed with heterozygous PDGF-hAPP transgenic
mice (line J94,5) expressing an FAD-mutant hAPP mini-
gene (Figure 2a) in neurons. These crosses yielded four
groups of littermates (n 5 20 to 21 per genotype): hACT
mice, hAPP mice, hAPP/hACT mice, and nontransgenic
controls.

Figure 1. Expression of hACT in astrocytes of transgenic mice. a: Astroglial
expression of an hACT cDNA1 was directed by regulatory sequences of a
modified murine GFAP gene.3 SV40 polyadenylation signals at the 39 end of
the hACT cDNA prevent expression of downstream GFAP-coding sequences.
Elements are not drawn to scale. b: hACT mRNA levels in brains of humans
and transgenic mice. A representative autoradiograph is shown. Total RNA
extracted from mouse hemibrains or from the midfrontal gyrus of humans
without neurological disease was analyzed by RNase protection assay. The
leftmost lane shows signals of undigested radiolabeled riboprobes. The
other lanes contained the same riboprobes plus brain RNA (10 mg/lane) from
different mice or humans, digested with RNases. Protected mRNA segments
are indicated on the right. Non-tg 5 nontransgenic. Signals were quantitated
by phosphorimager analysis: hACT/actin mRNA ratios in hACT mice (0.18,
0.15, 0.17, 0.18) were less variable than those in postmortem human brain
tissues (0.18, 0.39, 0.48). c: Production of hACT by transgenic astrocytes.
Primary astrocytes were established from transgenic (1) and nontransgenic
(2) neonatal mice and metabolically labeled for 2 or 4 hours. hACT was
immunoprecipitated with anti-hACT antibodies from conditioned culture
medium, separated by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis, and detected by autoradiography. Results similar to those shown
were obtained with a different hACT antibody. The left lane contains
14C-labeled molecular weight standards.
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Hippocampal deposition of Ab was assessed in all four
groups of mice at 7 to 8, 14, and 20 months of age. No
amyloid deposits were detected in hACT mice or non-
transgenic controls using antibodies that recognize hu-
man or mouse Ab (data not shown). In contrast, hAPP
and hAPP/hACT mice developed AD-like amyloid
plaques around 7 months of age, and progressive accu-
mulation of plaques was observed at 14 and 20 months
(Figures 3 and 4).

The percent area of the hippocampus covered by
Ab-immunoreactive deposits (plaque load) was deter-
mined morphometrically as described in Materials and
Methods. At all ages analyzed, hAPP/hACT mice had a
higher plaque load than hAPP mice (Figure 4). The dis-
tribution of the plaques was similar in both groups (Figure
3 and data not shown). Diffuse amyloid deposits first
developed in a laminar distribution in the molecular layer
of the dentate gyrus and the hippocampal alveus, fol-
lowed by the formation of more mature compact plaques
(3 to 15 mm in diameter) in the stratum radiatum of the
hippocampus, the subiculum, and the neocortex. Areas
that are relatively spared in AD, such as the thalamus,
basal ganglia, and cerebellum, displayed only occa-
sional small amyloid deposits (#5 mm in diameter) in
these mice. Plaques in both hAPP and hAPP/hACT mice
showed stronger immunoreactivity for Ab42 than for Ab40

(data not shown), consistent with results obtained in hu-
mans.11 In contrast to hACT mice and nontransgenic
controls, hAPP and hAPP/hACT mice developed a reac-

Figure 2. Cerebral transgene expression in hAPP/hACT mice and singly
transgenic controls. a: Neuronal expression of an alternatively spliced hAPP
minigene was directed by the human PDGF b-chain promoter as described
previously.12,13 The hAPP minigene expressed in line J9 carries FAD-linked
mutations (670/671KM 3 NL and 717V 3 F, hAPP770 numbering) that increase
the production of Ab42.4,5,10 Elements are not drawn to scale. b: hACT
expression does not alter cerebral hAPP mRNA levels. A representative
autoradiograph is shown. Total RNA extracted from mouse hemibrains was
analyzed by RNase protection assay. Conventions are as in Figure 1b. The
chimeric hAPPSV40 probe protects human but not mouse amyloid precursor
protein; it also protects SV40 sequences in transgene-derived mRNAs. These
SV40 sequences provide polyadenylation signals and are of slightly different
length in the two transgenes allowing for differentiation of GFAP-hACT-
derived (hACT(SV40)) and PDGF-hAPP-derived (hAPP(SV40)) mRNA seg-
ments. Signals were quantitated by phosphorimager analysis: singly and
doubly transgenic mice (n 5 4 per genotype) did not differ significantly in
hAPP/actin (0.298 6 0.053 versus 0.307 6 0.096) or hACT(SV40)/actin
(0.153 6 0.021 versus 0.160 6 0.012) mRNA ratios (mean 6 SD).

Figure 3. Astroglial expression of hACT increases amyloid deposition in hAPP/hACT mice. Brain sections from hAPP mice (left) and hAPP/hACT mice (right)
were labeled with the anti-Ab antibody 3D6 at 7 or 14 months (m) of age. Ab-immunoreactive deposits in the hippocampus were visualized by immunoperoxidase
reaction and light microscopy.
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tive astrocytosis that was most prominent at 20 months of
age and of comparable magnitude (data not shown).

Similar Transgene Expression and Ab

Production in hAPP/hACT and hAPP Mice
before Plaque Formation

The increased plaque load in hAPP/hACT mice could
result from effects of hACT on the production, removal, or
aggregation of Ab. Expression of hAPP and hACT in
hAPP/hACT mice did not alter the expression levels of
either transgene compared with singly transgenic con-
trols (Figure 2b). To determine whether hACT affects the
production or clearance of soluble Ab, hippocampal
steady-state levels of human Ab1-x (approximates total

Ab) and Ab1-42 were measured by enzyme-linked immu-
nosorbent assay.15 To avoid confounding contributions
of Ab released from plaques during the homogenization
of tissues, these measurements were performed at 5
weeks of age, which is before plaques are detected in
hAPP and hAPP/hACT mice. No significant differences
were identified between hAPP and hAPP/hACT mice (n 5
6 per genotype) in Ab1-x (42.9 6 3.7 versus 45.4 6 3.0) or
Ab1-42 (6.7 6 0.4 versus 7.1 6 0.4) levels (means 6 SD in
nmol/L). Ab1-42/Ab1-x ratios in hAPP and hAPP/hACT
mice were also similar (0.157 6 0.008 versus 0.158 6
0.008). Thus, hACT does not increase the overall tissue
levels of Ab before plaque formation.

Synaptotoxicity Depends on hAPP/Ab but Not
on hACT or Plaque Load

One of the best neuropathological correlates of cognitive
decline in AD is the loss of SYN-IR presynaptic terminals
in specific brain regions.38–42 Increased expression of
Ab in PDGF-hAPP mice is associated with a significant
decrease in SYN-IR presynaptic terminals in the outer
molecular layer of the dentate gyrus.4,12

Nontransgenic controls and hACT mice without
hAPP/Ab expression had comparable levels of SYN-IR
presynaptic terminals (Figure 5a), suggesting that ex-
pression of hACT does not by itself affect the integrity of
these structures. In contrast, hAPP mice with or without
hACT expression had decreased levels of SYN-IR pre-
synaptic terminals, but the presence or absence of hACT
in these mice did not significantly affect the extent of
neurodegeneration (Figure 5a). Similar results were ob-
tained for growth-associated protein 43 (GAP-43) (Figure
5b), another marker of synaptic integrity.43 No correlation
was identified between the density of SYN-IR presynaptic
terminals and the hippocampal plaque load in hAPP or
hAPP/hACT mice (Figure 5c).

Figure 4. Quantitation of plaque load in hAPP and hAPP/hACT mice at
different ages. Brain sections of hAPP and hAPP/hACT mice were labeled
with the 3D6 antibody at 7 to 8 months (n 5 9 per genotype), 14 months
(n 5 7 per genotype), or 20 months (n 5 4 to 6 per genotype) of age. The
hippocampal area occupied by Ab deposits was greater in hAPP/hACT than
in hAPP mice at all ages examined. Note the lower scale of the y axis in the
youngest age group. Values represent group means 6 SEM. *, P , 0.05 versus
age-matched hAPP mice (Mann-Whitney U test).

Figure 5. Comparable levels of synaptic damage in hAPP and hAPP/hACT mice. The density of SYN-IR presynaptic terminals (a) and the level of GAP-43
immunoreactivity (b) in the molecular layer of the dentate gyrus were determined in nontransgenic controls, singly transgenic mice (hAPP or hACT) and
hAPP/hACT doubly transgenic mice (n 5 11 to 13 mice per genotype) at 14 to 20 months of age. Data represent group means 6 SD. *, P , 0.05 versus
nontransgenic controls (Tukey-Kramer test). c: The density of SYN-IR presynaptic terminals did not correlate with the plaque load in hAPP (P 5 0.074) or
hAPP/hACT (P 5 0.88) mice. At 7 to 8 months of age (n 5 9 mice per genotype), the density of SYN-IR presynaptic terminals was also similar in hAPP (24.7 6
1.4) and hAPP/hACT (24.2 6 1.9) mice and it did not correlate with plaque load (P 5 0.76).
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Discussion

We have demonstrated in an hAPP transgenic mouse
model that the serpin hACT increases the age-dependent
accumulation of cerebral amyloid plaques. This finding
may be relevant to AD where hACT is overexpressed in
the brain1 and present in most, if not all, amyloid
plaques.44 Previous studies that examined the effect of
hACT on Ab fibrillization in vitro yielded conflicting re-
sults.17,22–26 Our study demonstrates that astroglial over-
production of hACT is clearly amyloidogenic in vivo,
which suggests that it promotes rather than inhibits the
development of AD.

Before plaque formation, similar steady-state levels of
Ab1-x and Ab1-42 were found in the hippocampus of hAPP
and hAPP/hACT mice. This indicates that hACT does not
increase the production or decrease the degradation of
soluble Ab, at least not in young mice. It is possible that
hACT promotes the aggregation of Ab and its deposition
into the brain parenchyma or that it interferes with the
degradation and removal of Ab aggregates. These
mechanisms are not mutually exclusive and could involve
direct interactions between hACT and Ab,22,23,45 as well
as indirect effects of hACT on the levels or activities of
extracellular matrix proteins,46 pathological chaper-
ones,47 or enzymes that may be involved in the deposi-
tion or clearance of amyloid.48 Additional studies are
required to differentiate among these possibilities.

Besides hACT, there are other factors that could influ-
ence the deposition of Ab in AD without affecting Ab
production. Elimination of apolipoprotein E expression by
crossing hAPP transgenic mice on the apoe knockout
background prevents the formation of mature amyloid
plaques.49 Increased astroglial expression of the cyto-
kine transforming growth factor-b1 results in a redistribu-
tion of amyloid deposits from the brain parenchyma into
blood vessels.34,50 In contrast, other molecules that have
been implicated in the turnover of Ab by cell culture
studies have not had a significant impact on amyloid load
when examined in transgenic models. For example, ge-
netic ablation of the class A scavenger receptor did not
affect the amyloid burden in the same line of hAPP mice
that was analyzed in the current study.32

Although there is increasing acceptance of the notion
that Ab plays a pivotal role in AD pathogenesis, the
relationship between amyloid plaques and neurodegen-
erative alterations remains controversial.51–57 It is inter-
esting in this context that hAPP and hAPP/hACT mice had
similar decreases in SYN-IR presynaptic terminals in the
dentate gyrus and that the density of these structures did
not correlate with the hippocampal plaque load in either
group. These findings suggest that Ab-induced synapto-
toxicity is independent of plaque formation, a conclusion
supported also by neuropathological studies in hu-
mans,56,57 electrophysiological recordings from hip-
pocampal slices of hAPP mice,4 and correlations be-
tween SYN-IR presynaptic terminals and Ab levels
across multiple lines of hAPP mice.4,5 In contrast, other
AD-associated alterations are likely plaque-depen-
dent. For example, plaques in AD and hAPP mice are
tightly associated with dystrophic neurites and reactive

glial cells5,12,14 and it is possible that neuritic dystro-
phy58,59 and glial inflammatory responses60 contribute
to the development of AD dementia. In view of the amy-
loidogenic effect of hACT observed in the current study,
it is tempting to speculate that blocking the production or
activity of hACT could inhibit the accumulation of amyloid
plaques in the aging brain and, thereby, help prevent the
development of plaque-associated alterations.
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