
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
Data handling strategies for high throughput pyrosequencers
Gabriele A Trombetti*1,2, Raoul JP Bonnal1, Ermanno Rizzi1, Gianluca De
Bellis1 and Luciano Milanesi1

Address: 1Institute for Biomedical Technologies – National Research Council (ITB-CNR), via Fratelli Cervi 93, 20090 Segrate (MI), Italy and
2Consorzio Interuniversitario Lombardo per l'Elaborazione Automatica (CILEA), via Raffaello Sanzio 4, 20090 Segrate (MI), Italy

Email: Gabriele A Trombetti* - gabriele.trombetti@itb.cnr.it; Raoul JP Bonnal - raoul.bonnal@itb.cnr.it;
Ermanno Rizzi - ermanno.rizzi@itb.cnr.it; Gianluca De Bellis - gianluca.debellis@itb.cnr.it; Luciano Milanesi - luciano.milanesi@itb.cnr.it

* Corresponding author

Abstract
Background: New high throughput pyrosequencers such as the 454 Life Sciences GS 20 are capable of
massively parallelizing DNA sequencing providing an unprecedented rate of output data as well as
potentially reducing costs. However, these new pyrosequencers bear a different error profile and provide
shorter reads than those of a more traditional Sanger sequencer. These facts pose new challenges
regarding how the data are handled and analyzed, in addition, the steep increase in the sequencers
throughput calls for much computation power at a low cost.

Results: To address these challenges, we created an automated multi-step computation pipeline
integrated with a database storage system. This allowed us to store, handle, index and search (1) the
output data from the GS20 sequencer (2) analysis projects, possibly multiple on every dataset (3) final
results of analysis computations (4) intermediate results of computations (these allow hand-made
comparisons and hence further searches by the biologists). Repeatability of computations was also a
requirement. In order to access the needed computation power, we ported the pipeline to the European
Grid: a large community of clusters, load balanced as a whole. In order to better achieve this Grid port
we created Vnas: an innovative Grid job submission, virtual sandbox manager and job callback framework.

After some runs of the pipeline aimed at tuning the parameters and thresholds for optimal results, we
successfully analyzed 273 sequenced amplicons from a cancerous human sample and correctly found
punctual mutations confirmed by either Sanger resequencing or NCBI dbSNP. The sequencing was
performed with our 454 Life Sciences GS 20 pyrosequencer.

Conclusion: We handled the steep increase in throughput from the new pyrosequencer by building an
automated computation pipeline associated with database storage, and by leveraging the computing power
of the European Grid. The Grid platform offers a very cost effective choice for uneven workloads, typical
in many scientific research fields, provided its peculiarities can be accepted (these are discussed). The
mentioned infrastructure was used to analyze human amplicons for mutations. More analyses will be
performed in the future.

from Italian Society of Bioinformatics (BITS): Annual Meeting 2006
Bologna, Italy. 28–29 April, 2006

Published: 8 March 2007

BMC Bioinformatics 2007, 8(Suppl 1):S22 doi:10.1186/1471-2105-8-S1-S22

<supplement> <title> <p>Italian Society of Bioinformatics (BITS): Annual Meeting 2006</p> </title> <editor>Rita Casadio, Manuela Helmer-Citterich, Graziano Pesole</editor> <note>Research</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-8-S1-info.pdf</url> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/8/S1/S22

© 2007 Trombetti et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/S1/S22
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/8/S1/S22
Background
In 1986, around the time the Human Genome Project was
initiated, the cost of sequencing was around $10 per base.
By 2001, the cost had fallen to about 10 to 20 cents per
nucleotide [1]. Nowadays, Sanger sequencing can be
approached at a cost of around 0.5 cents per nucleotide
(that's a 2000-fold drop) but a recent technology break-
through, pyrosequencing, is likely to drop the costs even
further, while simultaneously increasing the throughput
by an order of magnitude or more. Pyrosequencing [2-5]
is a real-time, sequencing by synthesis method based on
the detection of released pyrophosphate during DNA syn-
thesis. Pyrosequencing's most impressive feature is the
throughput, being up to 10 megabases/hour. On the other
hand, the sequenced fragments have reduced lengths
compared to Sanger ones, being 94 bases on average in
our experience.

The recent dramatic increase in sequencing throughput
together with the reduction of costs calls for increased
computation power, as well as increased storage space, in
order to keep up. Also, it is to be considered that most bio-
informatics tasks such as genome assembly, inversion dis-
tance computation, genome rearrangement analysis and
molecular dynamics have got a quadratic or higher com-
plexity.

In addition, an analysis of the CPU speed trends reveals
that the CPU speed increases are considerably lower
nowdays than they used to be in the past. For example let's
consider AMD CPU release history:

- June 2000: Athlon Thunderbird 600 released [6] (a 600+
CPU by definition of AMD PR rating which is based on
the Athlon Thunderbird performances)

- February 2003: Athlon XP Barton 2500+ released [7] (a
2500+ CPU)

- May 2005: Athlon 64 3800+ released [8] (a 3800+ CPU)

Between June 2000 and February 2003 (32 months) there
was a speedup of 4.2× making an average speedup of 71%
per year, while between February 2003 and May 2005 (27
months) the speedup was a mere 1.5× making an average
speedup of 21% per year. Some hope for new perform-
ance improvements is brought by recently marketed
multi-core CPUs, however at this point in time it is still
not clear how quickly these can evolve (e.g. how quickly
the number of cores can increase). Note that we quoted
AMD's CPU history and not Intel's just because AMD
names its CPUs against a Performance Rating (PR), which
is a better indicator of effective CPU speed than clock
speed that Intel uses, and hence makes it easier to com-

pare CPU performances through time and across architec-
tural improvements.

Keeping up with bioinformatics data is hence becoming
increasingly difficult in the localized environment. A com-
puting cluster might seem the solution, however for small
companies and small research groups producing uneven
spikes of computationally intensive jobs, a privately
owned cluster might not be an effective solution as it
tends to be either very expensive or underpowered during
the actual spikes of work, while remaining underused for
the majority of the time.

In the aforementioned situation, the European Data Grid
(EDG [9]), a large community of computation clusters –
load balanced as a whole, is likely to offer a better alterna-
tive. After formally requesting access to the Grid to INFN
[10], certificates will be issued and the new grid user can
leverage the power of more than a thousand CPUs spread
all over Europe. The Grid power is not completely free:
after a significant submission of jobs, INFN might ask the
new user to share some computing resources, however,
the overall hardware cost would still be very low com-
pared to that of a dedicated cluster able to handle a signif-
icant workload.

Grid job submission itself is rather simple, however the
strict limitation in the size of the input sandbox (1 MB for
data and executables) and other subtleties described here-
after in this paper can discourage a regular use of the Grid.

Our first contribution to this paper is the development of
a computation pipeline, integrated with a database sys-
tem, for storing and analyzing human amplicons
sequences coming from a high throughput 454 Life Sci-
ences GS 20 [4] pyrosequencer.

The pipeline started as localized and was then ported to
the Grid. To ease the porting to the Grid we developed
Vnas, a Grid job submission, virtual sandbox manager
and job callback framework, which constitutes our second
contribution to this paper. Vnas is aimed at rendering the
Grid job submission significantly more powerful yet sim-
pler, and allows to overcome the Grid submission limita-
tions without affecting the Grid infrastructure negatively.

Results and discussion
Amplicons experiment
Initially, we extensively leveraged the "repeatability with
altered parameters" feature together with the "by hand
searchability" of the results database mentioned in the
Methods section. This allowed us to easily compare results
obtained with various parameter sets, fine-tune the
parameters and thresholds for our pipeline and better
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/8/S1/S22
understand the peculiar behaviour of our new 454 Life
Sciences GS 20 pyrosequencer (property of CNR ITB).

Afterwards, we successfully analyzed 273 sequenced
amplicons from chromosomes 1, 3, 5, 9, 11, 13, 17, 18,
19 of a cancerous human sample and correctly found
punctual mutations confirmed by either NCBI dbSNP or
Sanger resequencing. More analyses are expected for the
future.

The Grid porting for this pipeline is discussed in the Vnas
sections.

Vnas framework and pipeline Grid porting
We report below the average times for the first computa-
tion step (the most CPU intensive).

1- First computation step for a dataset using 20 slices: time gain
factor = 5
The computation step 1 input was divided into 20 slices,
each slice was submitted to the grid then results were
fetched back. The whole process was repeated multiple
times to calculate the following averages:

Submission time
16 seconds per slice (Grid job). This involves fetching of
sequence data, creation of sandbox implying some copy-
ing/linking of directory trees and files (custom), gzip com-
pressions and md5 hash computations (by Vnas), actual
submission of the job to the Grid (by Vnas).

Queue time
1 minute to 2+ hours, 5 minutes on average for one job,
12 minutes is the average for the maximum wait time on
a set of 20 jobs. For a discussion on the great variance of
the queue time in the EDG, see the related paragraph in
Appendix B.

Execution time
7 minutes per slice (but slices are executed in parallel).

Total time (average case)
20 × 16 sec + 12 min + 7 min ~= 24 minutes

The total time for the first computation step is 24 minutes
on average instead of 120 minutes seen in local execution.
Similarly happens for the other steps for which we omit
timing measurements. This is already a significant
improvement, and more interestingly, our local computa-
tion resources remain free during most of the time.

2- First computation step for 10 datasets using 10 × 4 slices: time
gain factor = 15
The grid is more effective when more data can be proc-
essed in parallel. This is the case when we have to recom-

pute a number of old datasets with altered pipeline
parameters. The following are average time measurements
for a recomputation of 10 datasets like the above one. In
this case we used fewer, bigger slices (4 slices per dataset –
35 minutes of execution time for one slice) so as not to
flood the Grid with too many jobs and also to reduce the
maximum queue wait time.

Submission time
22 seconds per slice (job)

Queue time
the average for the maximum wait time on a set of 40 jobs
is roughly 30 minutes

Execution time
35 minutes per slice (but slices are executed in parallel)

Total time (average case)
40 × 22 sec + 30 min + 35 min = 80 minutes

The total time here is 80 minutes, instead of 20 hours seen
in local execution. This is clearly a great improvement
compared to local execution. One could submit even
more computation data: the greater the computation you
can submit which can execute in parallel, the higher the
benefit you get from the Grid.

In Appendix B you can find some more details regarding
Grid queues times. In Appendix C you can find some
observations on the difficulties which still persist when
porting applications to the Grid.

Conclusion
We have shown how we realized a multistep computation
pipeline integrated with a database system to analyze
punctual mutations from human amplicons, taking into
consideration the peculiarities of the new pyrosequencer,
and how we ported such pipeline to the European Data
Grid to leverage its enormous computing power obtaining
a speedup factor up to 15. We have also shown how the
Grid can be economically very advantageous for the small
and medium research group producing uneven spikes of
workload compared to a dedicated cluster.

We have shown how the porting of a parallelized applica-
tion to the Grid can be significantly eased with our newly
developed Vnas framework, providing a virtual sandbox
of unlimited size with support for complex directory
structures, multiuser transparent file sharing over the Grid
with timed expiration, and a callback mechanism for a
higher automation of join points in computation pipe-
lines. Vnas is currently in beta stage but will soon be avail-
able for download. We expect the ease of use of Vnas to
Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/8/S1/S22
help increase the usage of the European Grid with profit
also to the bioinformatics community.

Methods
Methods for Amplicons project
This project consisted in the creation of a computation
system for the analysis of human amplicons sequenced by
a 454 Life Sciences GS 20 high throughput pyrosequencer
for finding punctual mutations, as well as a storage system
for both GS 20 sequence data and computation results.
More specifically, our requirements were the following:

- Support for heterozygosity in punctual mutations (this is
not supported by some other approaches or softwares
such as the software bundled with the 454 Life Sciences
GS 20 pyrosequencer)

- Coping with the peculiarities of the 454 GS 20 pyrose-
quencer, mainly:

- Shorter reads than with a Sanger sequencer: (94 bases
on average)

- Different error profile, in particular, problems base-
calling near homopolymers

- Large amount of data: throughput up to 10 MBases/
hour

- Demonstrability: ensure repeatability of every computa-
tion allowing demonstration of every result obtained

- Altered parameters: allow repeatability of every compu-
tation with altered parameters, constants and thresholds
in order to be able to compare the results

- Searchability: possibility to perform flexible hand-made
searches on every sequence data (sequences and their
quality), every old and recent final computation result
and every intermediate meaningful computation result

- Storage requirements: the storage system needed was
required to store at least the following entities:

- Multiple projects of analysis on the same data

- Biological samples and protocols

- Sequences read by the GS20 sequencer for each run

- Multiple co-existing databases of reference sequences

- Final and intermediate computation results

- Incremental backups: need to backup the storage system
incrementally

The analysis system was also required to be applicable to
a much larger kinase analysis project in the future.

Due to the large amount of expected data and the above
requirements such as the "Altered Parameters" which fore-
saw the need to repeat huge amounts of past computa-
tions within a reasonable time, even though our first
implementation was localized we immediately planned
the computation system for future execution on the Grid
environment. Hence we implemented a 3-step computa-
tion pipeline implying two join points (between steps I
and II and between steps II and III). At the beginning and
at each join point data are fetched from the storage data-
base and fed to the computation stage. At the end of each
computation stage the results are stored back into the
database. There is no direct communication between the
stages, this was done in order to ensure complete separa-
tion between the stages allowing a simpler migration to
the Grid. The pipeline is illustrated in fig 1.

The database was implemented in MySQL, featuring 11
tables. The results are retrievable via SQL queries to permit
advanced hand-made and currently unforeseeable
researches by the biologists. The repeatability with altered
parameters is allowed by the tables structure which allows
the association of multiple computation projects to the
same sequenced data. The consistency is ensured by the
transactional and referential integrity capabilities of
MySQL. The incremental backups are performed using
rdiff-backup.

Let's now quickly outline how we addressed the above
mentioned peculiarities of the 454 pyrosequencer:

• Different error profile: a heuristic algorithm imple-
mented in step 3 ensures that nearby homopolymers do
not trigger false punctual mutations. The algorithm is very
reliable, however, it is currently based on the assumption
that there are no indels in the genomic material hence it
does not currently support indels.

• Short reads: The higher speed and lower operation costs
of the GS 20 machine allowed us to use a high coverage,
hence discriminating sporadic errors due to random noise
from heterozygous mutations in most cases. The required
multiplicity is around 10 × for a 95% certainty. In the case
that similar regions are present on more than one refer-
ence sequence, a heuristic algorithm in step 2 discrimi-
nates which matches are to be kept and which ones are to
be discarded.
Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/8/S1/S22
This pipeline was later ported to the Grid. This is
described in the Vnas sections.

Methods for the Vnas framework
Notwithstanding the advantages of the Grid mentioned in
the Background section, some issues exist that can dis-
courage a regular use of the Grid.

Problems related to grid jobs submission are the follow-
ing:

• Limited sandbox: Users of the Grid have got a limited
space to store data and executables they need for their job.
Current limit is 1 MB for most users. All files not fitting
into 1 MB need to be uploaded on Storage Elements (SEs)
separately by hand, and need to be downloaded on the
worker node prior to execution. Files stored on SEs need
to be deleted by hand when no longer needed or they
would waste shared resources.

• Flat sandbox and Storage Elements: The Grid sandbox
and the SEs can only bear raw files. If a job needs a nested
directory structure this has to be created with a custom
code on the job. Tar archives are also to be packed and
unpacked manually.

• Needless reuploading of the same files: If many users
need the same files, every user will need to upload the files

on SEs unbeknownst to the others, wasting bandwidth
and storage space.

• Slices management: Commonly, in order to improve
performances on the Grid, conceptually monolithic jobs
are first divided into computation steps by creating a pipe-
line, and then each pipeline step is split in smaller "slices"
which can execute in parallel. Slices are then submitted to
the Grid separately. Unfortunately, the code to poll and
wait for all slices to complete execution, fetch results, and
launch the next computation stage is to be created as cus-
tom code for each application, which is considerably time
consuming for the developer.

In order to overcome the aforementioned problems, dur-
ing the grid porting of our Amplicons pipeline we devel-
oped Vnas: a framework for Grid job management
providing the following innovative features:

• Virtual Sandbox: sandbox emulation providing a sand-
box of unlimited(*) size also allowing nested subdirecto-
ries. This prevents (1) the need to manually upload big
files to storage elements (2) the need to pack and upload
archives for recreating directory structures needed for the
job to run and (3) the need to write code in the job for
downloading the files described at points -1- and -2- and
for unpacking the archives at point -2- prior to starting the
computation. (*) Please note that while there is no limi-

Amplicons computation pipelineFigure 1
Amplicons computation pipeline. Step I groups sequenced amplicons according to their most similar reference sequence
(or sequences: more than one reference accepted in the case of close similarity of references). Step II clusters groups of
sequences belonging to the same references while applying certain thresholds and heuristics. Step III detects punctual muta-
tions and avoids false positives due to homopolymers. A database stores sequence data and computation results (intermediate
and final), and fully separates the steps of the pipeline.
Page 5 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/8/S1/S22
tation imposed by Vnas on the size of the Virtual Sand-
box, the Virtual Sandbox is only an abstraction
substituting a manual upload of the files onto the Storage
Elements. The Virtual Sandbox does not create any new
storage space on the Grid and the user is still responsible
for the files uploaded by Vnas in this way. The user who
has uploaded a file to the Grid is always traceable by the
Grid administrators.

• Job completion callback: this allows a custom com-
mand to be executed by Vnas when a certain set of slices
completes execution (Vnas constantly monitors the sub-
mitted jobs). This can be used to trigger the following step
in a computation pipeline and releases the pipeline pro-
grammer from needing to write such code.

• Automatic deletion of Grid uploaded files that have
not been used recently. This prevents the waste of Grid
storage resources due to users forgetting to remove files
they no longer need.

• Grid bandwidth optimization: the Vnas-uploaded files
are left on the Grid Storage Elements for a certain time
frame before deletion: this prevents a needless reupload of
the same files in case these are needed by the same or even
by another Grid user within the time frame. This prevents
a waste of Grid bandwidth.

• Sharing of files uploaded by different Grid users: files
uploaded by Vnas for Virtual Sandboxes are never
uploaded by Vnas more than once: if a second job submis-
sion, even by a different Grid user, needs a file that has
already been uploaded file its presence is detected on the
Grid and the file is not uploaded again. This saves users'
time and Grid storage space. The files uploaded to the
Grid by Vnas are identified by their md5 hash. This allows
Vnas to identify files with certainty based on their content
and regardless of the name the users locally assigns to the
files (which could be different for the same file for differ-
ent Grid users). The md5 hash also prevents false positive
matches that can arise due to random name equality
among files or due to a file existing in different versions
with the same name.

In Appendix A you can find details about the functioning
of Vnas.

After the development of Vnas, we leveraged Vnas to port
our Amplicons analysis pipeline onto the Grid in a signif-
icantly shorter time than would otherwise be needed. The
virtual sandbox feature was particularly useful for us, in
fact the Amplicons pipeline consists of various executa-
bles which alone would result in a 7 MB upload in addi-
tion to Biopython libraries requiring a deeply nested
structure, and a significant amount of sequence data and

computation results for each slice. The job completion
callback was also needed, and if we hadn't implemented
it separately in Vnas, we would have had to implement it
anyway at every step of the pipeline. A discussion on some
of the results obtained is located in the Results section.

List of abbreviations and uncommon terms used
EDG - European Data Grid

Grid - Network of computing clusters and storage ele-
ments, load balanced as a whole. For the purpose of this
paper the EDG is implied

CE - Computing Element: a cluster belonging to the Grid

SE - Storage Element: a storage resource of the Grid, usu-
ally located near a CE

UI - User Interface: computer acting as a grid client,
mainly used for submitting jobs

Vnas - Vnas's Not A Submit: the new Grid job submission,
virtual sandbox manager and job callback framework
being presented in this paper

Slice - for the purpose of this paper: when a large job is
subdivided and submitted as N separate Grid jobs, these
are called slices. Most often the subdivision is made by
splitting its input in N equal parts.

Authors' contributions
GAT worked on the bioinformatics part of the amplicons
project and implemented the grid Vnas framework. RJPB
worked on the bioinformatics part of the amplicons
project and also interfaced with the sequencing/chemical
team. ER worked at the sequencing/chemical part of the
amplicons project providing sequence data. GDB coordi-
nated the sequencing/chemical part and gave guidelines
for the bioinformatics part of the Amplicons project. LM
coordinated the bioinformatics part of the amplicons
project and the development of the Vnas grid framework.

Appendix A – Vnas functioning
Vnas architecture (fig 2) is decentralized, with the excep-
tion of a central database containing hashes of files sub-
mitted for Vnas virtual sandbox functionality. The central
database should (but is not required to) be shared among
a high number of Grid users to better take advantage of
the sharing of files uploaded by different users. The Vnas
architecture ensures that the per-user load on the central
database is very low hence the system can still scale line-
arly up to a large number of users (in the thousands).

Vnas job submission is instead performed from standard
Grid User Interface (UI) nodes. A local database located
Page 6 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/8/S1/S22
on the same host stores Vnas information about job sub-
missions and users' callback requests.

Vnas has the following three main operating modes:

- Job submit (direct user invocation)

- Job run (triggered by the grid infrastructure)

- Set-callback request (direct user invocation)

Outline of job submit
• The user creates a sample job_home directory contain-
ing all the files needed for the job to run, i.e. both execut-
ables and data, then s/he invokes Vnas.

• Vnas scans the job_home directory, packs files and sub-
directories of job_home separating them in sub-archives
and single files according to a customizable algorithm.

• Vnas then computes the md5 hashes of all such files and
archived contents, and uploads them onto the grid with a

Vnas distributed architechtureFigure 2
Vnas distributed architechture. The figure shows, from right to left: A) A Vnas loop on the central database, detecting
expired virtual sandbox files and removing them from the Grid. B) A Vnas loop on the local UI database and the Grid, polling
for the status of the most recently submitted jobs. C) A job submission on UI2 by GridUser3, and more in detail: C1) User
creates a job_home. C2) User invokes Vnas. C3) Vnas scans job_home (Submit_1), uploads the files to the grid (Submit_2) and
creates the corresponding entries or updates the ''last usage'' timestamps for the uploaded files, on the Central Database
(Submit_3).
Page 7 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/8/S1/S22
filename generated from their hash (some might exist
already: the upload is skipped). Then Vnas contacts the
central database for updating the "last access" timestamp
for the uploaded files. A small set of files up to a certain
(user definable) amount of KB are packed into a physical
(traditional) sandbox.

• Vnas then submits the job to the grid, and records the
job information such as the grid job identifier on the local
database.

Outline of job run
• A "jobprepare" script (belonging to the Vnas distribu-
tion, and automatically inserted into the job submission
by Vnas) is run first. The jobprepare scans some bundled
data to find the configuration of the job_home to be rec-
reated.

• Jobprepare downloads all the needed archives and sin-
gle-files to recreate the content of the job_home directory
tree. The downloading is performed in a write-through
fashion: if the file's nearest replica is still geographically
distant, it gets replicated from there onto the Storage Ele-
ment closest to the worker node, then gets downloaded
on the worker node. The latter happens on a local net-
work, and is basically immediate. This kind of replication
ensures that subsequent downloads of the same files are
faster and faster, and that the more a file is used, the
higher the number of replicas. Space does not risk to get
wasted for long, as when a file remains unused for a
number of days, all replicas get deleted by a Vnas instance
polling the central database.

• Vnas invokes the user specified executable and waits for
its termination

• Vnas packs the user-requested result files and uploads
them onto a storage element, using a filename automati-
cally generated at the time of job submission.

Outline of set-callback request
• The user invokes Vnas specifying a set of job identifiers
that s/he wishes to wait for, and the command to be
invoked by Vnas when the condition arises. Vnas records
such information into the local database.

Vnas polling loops
In addition to the three above described main working
modes, two additional slow paced Vnas polling loops are
needed in order to provide the virtual sandbox file expira-
tion and the callback functionalities:

• A very slow paced Vnas loop on the central database
node, which monitors the "last access" timestamps of files
uploaded by UI Vnas instances, for virtual sandbox func-

tionality. Vnas clears the Grid from all replicas of files
which were last used too long ago. The exact number of
days for expiration can be configured but values between
between 7 and 15 days are typical. Longer times save Grid
bandwidth at the expense of storage space and vice versa.

• A medium paced Vnas loop on each UI interface, which
polls the local database and the Grid information system
to fetch the state of the last jobs submitted by the users of
the node. When all the jobs required for a certain callback
request complete their execution, the user command is
invoked with the credentials of the user who requested it
(leveraging sudo -b). This is typically used to trigger a fur-
ther step in a computation pipeline.

Appendix B – EDG queue times
In general, the longer the job can be executed without join
points (involving the collection of results of all the previ-
ous slices and resubmission of the new step), the more
advantageous the Grid submission, since the queue time
has to be waited for a smaller number of times.

Another observation is that, intuitively, the average queue
time (intended as the average of the worst time on N
slices) and the execution time should be balanced in an
optimal job submission: the higher the number of slices,
the lower the computation time but the higher the chance
that one of them ends up in an unfortunate queue hence
raising the global wait time. Raising the number of slices
too much will end up raising the total perceived execution
time for your job as a whole instead of lowering it.

The reason for the great variance in the queue time is
partly in the random load experienced by the EDG and
partly due to the "push" working mode of the EDG. Push
mode means that a job is assigned to a CE (Computing
Element) at the time of job submission. Even though a
heuristic algorithm estimates the response time of the var-
ious CE before assigning the job, the heuristic is based
solely on the queue length at each CE calculated in terms
of number of jobs. Since there is no way for a queued job
to declare its estimated running time, there is risk for an
incoming job to be assigned to a queue containing few
very long jobs, which would make its queue time unfairly
long.

The EDG staff is working to implement a "pull" algorithm
in which jobs join a centralized queue waiting to be
pulled by the first free CE. This would effectively level
unfairly long waiting times. The due time for the pull
algorithm is not known to us. In the meanwhile, a newly
implemented Vnas feature allows the automatic issuing of
the job cancel and requeueing when the waiting time
exceeds a user specified threshold. By the time the reissu-
ing is made, the previous CE will have lengthened its
Page 8 of 9
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/8/S1/S22
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

queue, hence the job gets requeued on a different CE. In
the future Vnas might resubmit the job without issuing a
job cancel to the previous job, then closely monitor the
two jobs and cancel one of the two as soon as the other
enters execution.

Appendix C – Persisting obstacles in porting
applications to the Grid
One of the obstacles found when porting an application
to the Grid which still persists and that could deter a more
widespread usage of the Grid is the burdensome splitting
of input data to create multiple slices of a conceptually
single job (even though for the implementation of the
"wait all results" join the Vnas callback can be leveraged),
and the consequential parsing of the results from multiple
slices at the end, for recreating a single result set. Unfortu-
nately, it is not easy to conceive a tool which can help with
this in the general case, since the way to perform splitting
of data and merging back of results depends heavily on
the type of data and the specific problem. Of course, a
similar problem would also arise in a privately owned
cluster.

Acknowledgements
The pipeline for the Amplicons project and the Vnas framework for the
Grid are realized in the frame of the Italian MIUR-FIRB LITBIO [11] and the
European BioinfoGRID [12] projects.

The 454 Life Sciences GS 20 pyrosequencer is property of CNR-ITB.

Gabriele A. Trombetti is a Ph.D student from DEIS department – Univer-
sity of Bologna, Italy.

This article has been published as part of BMC Bioinformatics Volume 8, Sup-
plement 1, 2007: Italian Society of Bioinformatics (BITS): Annual Meeting
2006. The full contents of the supplement are available online at http://
www.biomedcentral.com/1471-2105/8?issue=S1.

References
1. National Science Foundation: Cost of genomic sequencing.

[http://www.nsf.gov/news/speeches/colwell/rc03_dallas/sld016.htm].
2. Ronaghi M, Uhlen M, Nyrén P: A sequencing method based on

real-time pyrophosphate. Science 1998, 281:363-365.
3. Ronaghi M: Pyrosequencing sheds light on DNA sequencing.

Genome Res 2001, 11:3-11.
4. 454 Life Sciences: GS 20. [http://www.454.com/].
5. Biotage: Principle of Pyrosequencing. [http://www.biotage

bio.com/DynPage.aspx?id=7454].
6. Wikipedia: List of AMD Athlon Microprocessors. [http://

en.wikipedia.org/wiki/List_of_AMD_Athlon_microprocessors].
7. Wikipedia: List of AMD Athlon XP Microprocessors. [http://

en.wikipedia.org/wiki/List_of_AMD_Athlon_XP_microprocessors].
8. Wikipedia: List of AMD Athlon 64 Microprocessors. [http://

en.wikipedia.org/wiki/List_of_AMD_Athlon_64_microprocessors].
9. EDG – European Data Grid [http://eu-datagrid.web.cern.ch/eu-

datagrid/]
10. INFN – Istituto Nazionale di Fisica Nucleare [http://

www.infn.it/]
11. LITBIO – Laboratory for Interdisciplinary Technologies in

Bioinformatics [http://www.litbio.org]
12. BioinfoGRID – Bioinformatics Grid Applications for Life Sci-

ence [http://www.itb.cnr.it/bioinfogrid]
Page 9 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8?issue=S1
http://www.biomedcentral.com/1471-2105/8?issue=S1
http://www.nsf.gov/news/speeches/colwell/rc03_dallas/sld016.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156611
http://www.454.com/
http://www.biotagebio.com/DynPage.aspx?id=7454
http://www.biotagebio.com/DynPage.aspx?id=7454
http://en.wikipedia.org/wiki/List_of_AMD_Athlon_microprocessors
http://en.wikipedia.org/wiki/List_of_AMD_Athlon_microprocessors
http://en.wikipedia.org/wiki/List_of_AMD_Athlon_XP_microprocessors
http://en.wikipedia.org/wiki/List_of_AMD_Athlon_XP_microprocessors
http://en.wikipedia.org/wiki/List_of_AMD_Athlon_64_microprocessors
http://en.wikipedia.org/wiki/List_of_AMD_Athlon_64_microprocessors
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.infn.it/
http://www.infn.it/
http://www.litbio.org
http://www.itb.cnr.it/bioinfogrid
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

