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The hypotension in septicemia is believed to be me-
diated by the combined action of many mediators
including cytokines, prostaglandins, and comple-
ment components. To evaluate the contribution of
the contact/kinin-forming system to hypotension, the
authors used an established experimental baboon
model of bacteremia in which two concentrations of
Escherichia Coli (E. coli) were used to produce lethal
and nonlethal hypotension. The lethal group (n = 5)
developed irreversible hypotension that significantly
correlated with the decline in levels ofhigh molecu-
lar weight kininogen (HK) and an increase in
a2macroglobulin-kallikrein complexes (a2M-kal).
The nonlethal group (n = 9) experienced reversible
hypotension, a less striking decline in HI, and only
slight elevation in cv2M-kal. No significant changes
werefound in levels offactor XII, prekallikrein, and
factorXI in either group. A significant change in the
contact system; which reflects the fatal outcome, is
the rise in a2M-kal This study suggests that irrevers-
ible hypotension correlates with prolonged activa-
tion of the contact system. (Am J Pathol 1992,
140:897-906)

major initiating factor. Although tumor necrosis factor
(TNF) released from monocytes is a necessary mediator
in the primate host response to E. coli, it is not sufficient to
account for all of the defensive and/or detrimental host
responses observed.1'2 Interleukins, particularly interleu-
kin-1,3 prostaglandins,4 and complement proteins5'6'7
participate in the host response to endotoxin as well.
A mortality rate of 57% occurs in patients having hy-

potension accompanying gram-negative bacteremia.8
Although disseminated intravascular coagulation is often
observed during bacteremic shock,9 it is the decreased
blood pressure that best correlates with increased mor-
tality. The irreversible hypotension that characterizes
these fatal cases results in tissue hypoxia and multiple-
organ failure.10 The hypotension is attributed to low sys-
temic vascular resistance and the cardiac output is usu-
ally noted to be increased as a compensatory response
in most cases.11 Since bradykinin is one of the most po-
tent endogenous vasodilators,12 it may play a major role
in the shock encountered in gram-negative bacteremia.

Bradykinin is released from plasma high molecular
weight kininogen (HK) by plasma kallikrein.13 In turn,
plasma kallikrein is generated by the interaction of three
proteins in the plasma contact activation system; factor
XII, prekallikrein, and the procofactor, high molecular
weight kininogen. Each of these proteins is converted to
the active enzyme or cofactor by limited proteolysis, with
the autoactivation of factor XII initiating the reactions lead-
ing to the liberation of bradykinin. The amount of kallikrein
and factor Xlla generated is tightly regulated by the pres-
ence of the plasma protease inhibitors. Although the
serine proteinase inhibitor (SERPIN), Cl-inhibitor

Gram-negative septicemia continues to be a significant
clinical problem despite the use of antibiotics. The inter-
action of microbial agents with host systems results in a
wide array of pathophysiologic syndromes, from well-
localized foci of infection to disseminated bacteremia
with shock. Although bacteremic shock is incompletely
understood on a molecular and biochemical basis, bac-
terial endotoxin, which is released from the cell wall of
gram-negative organisms, has been implicated as the
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(Cl INH), is the major inhibitor for both these proteases at
370C,14,15 alpha2-macroglobulin (a2M) is also a potent
inhibitor of kallikrein15 and indeed becomes the major
inhibitor when Cl-inhibitor is low as in hereditary angioe-
dema.16 A reaction between factor XI, high molecular
weight kininogen and activated factor XII generates fac-
tor Xla which, in turn converts factor IX to IXa and acti-
vates the intrinsic coagulation cascade.

Plasma kallikrein not only can trigger the inflammatory
response by release of bradykinin but also mediates
other inflammatory responses. It has been shown to stim-
ulate neutrophils to release lysosomal granule constitu-
ents,17 such as elastase. Kallikrein may convert prouroki-
nase to urokinase to activate the fibrinolytic system.18 Ac-
tivated factor XII, acting on the first component of
complement, Ci, activates the classical pathway of the
complement system.19 Gram-negative organisms con-
tain endotoxin that may activate factor XII directly20'21 or,
alternatively cellular bacterial proteases released may
also activate the contact system during the course of the
infection.22 The contact system is an attractive candidate
as one of the contributors to the hypotension which often
accompanies gram-negative bacteremia. Studies of the
human sepsis syndrome have provided considerable ev-
idence for involvement of the contact system in the patho-
physiology of hypotension shock associated with bacter-
emia.16,23-34

In this report we study the contact system in a well-
characterized primate model in which irreversible hy-
potension associated with experimental bacteremia re-
sults in death. We assessed levels of all of the contact
system proteins and the formation of active plasma kal-
likrein by measuring a2macroglobulin-kallikrein (a2M-kal)
complexes. Finally, we modified the concentration of in-
jected bacteria to produce a model of bacteremia that
was nonlethal. We compared and contrasted the nonle-
thal model with moderate reversible hypotension to the
lethal model that exhibited profound, prolonged, irrevers-
ible hypotension to elucidate physiologic and biochemi-
cal differences between simple septicemia and septic
shock.

Methods

Production of Septicemia in Baboons

The baboon handling and procedures were performed
using the methodology described in previous publica-
tions.3i37

E. coli (Type B) were isolated from a stool specimen at
Children's Memorial Hospital, Oklahoma City and were
stored in the lyophilized state at 40C. The bacteria were

reconstituted before use and characterized as described
by Hinshaw et al.38
A mixed breed of Papio c. cynocephalus/Papio c.

anubis baboons were purchased from a breeding colony
maintained at the University of Oklahoma Health Sci-
ences Center Animal Facility at the Oklahoma City Zoo.
The animals weighed 6-i17 kg and were tuberculosis-
free. The blood-leukocyte concentrations were 5 to 7
x 103 cells/mm3, and hematocrits exceeded 36%. They
were observed for a minimum of 10 days to assure ad-
equate equilibration before experimentation. Baboons
that recovered from shock were observed daily and
medically treated as appropriate. Surviving animals were
euthanized after a minimum of 7 days with sodium pen-
tobarbital.

The baboons were fasted overnight before the study
and immobilized the morning of the experiment with ke-
tamine (14 mg/kg IM). Sodium pentobarbital was then
administered in the cephalic vein through a percutane-
ous catheter to maintain a light level of anesthesia (2 mg/
kg every 20 to 40 min). They were orally intubated and
positioned on their right side on a heating pad. A femoral
vein was exposed aseptically and cannulated in one hind
limb for sampling blood. The percutaneous catheter was
used to infuse the E. coli organisms and other agents. In
the lethal group (n = 5) E. coli at a concentration of 40 x
109 organisms per kg were infused over a 2-hour period.
In the nonlethal group (n = 9), E. coli at a concentration
which was tenfold less, 4.0 x 1 09 organisms per kg, were
infused over a 2-hour period. All animals were observed
for 10 hours from the start of the experiment. Gentamicin
was given at 9 mg/kg intravenously at 120 minutes for 75
minutes and then at 4.5 mg/kg at 360 and 540 minutes for
30 minutes. Gentamicin (4.5 mg/kg) was then given in-
tramuscularly at the end of the experiment and twice daily
for 3 days to survivors.

Physiologic Monitoring

Mean systemic arterial pressure (MSAP) and heart rate
were monitored with a transducer (Statham P2306, Pu-
erto Rico) pressure gauge. Values obtained were re-
corded using a strip recorder (Hewlett Packard 7796A).
Rectal temperature was measured with a Telethermom-
eter (Yellow Springs Instrument Co., Yellow Springs, OH).
Respiration rates were recorded.

Blood Sampling and Processing

Blood samples for analysis were obtained from a cannu-
lated femoral vein. Samples were taken at t = 0 (before
E. coli infusion, to obtain baseline (100%) values, and at
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indicated time points (see data). Not more than 10% of
the baboon's estimated total blood volume (70 ml/kg)
was withdrawn over the 10-12 hour monitoring period.
The blood sampled at each drawing included 1 ml anti-
coagulated with EDTA for determination of hematocrit,
white blood cell count (WBC), and differential counts; and
2 ml anticoagulated with 3.8% sodium citrate for mea-
surement of factor XII, factor Xl, prekallikrein (PK), high
molecular weight kininogen (HK), a2macroglobulin-
kallikrein complex (ac2M-Kal) and other plasma proteins.
Citrated samples were centrifuged to separate cellular
material and the resulting plasma was aliquoted and fro-
zen at - 70°C until the time of analysis.

Assays

WBC was performed according to a standardized
method. Factor XII and HK concentrations were deter-
mined by coagulant assays described in the respective
previous publications.3940 PK and factor Xl were mea-

sured using their respective amidolytic assays.41 42 An
assayed pooled normal human plasma (PNP, George
King Biomedicals, Inc., Overland Park, KS) was used as

the primary standard for factor XII, factor Xl, PK, and HK
assays. For each assayed time point, factor XII, factor Xl,
PK, and HK concentration of each baboon were normal-
ized (see below). a2M-kal complex was measured by an

ELISA method described in a recent publication.16 A
standard curve for the determination of the percentage of
maximum activation in the a2M-kal complex assay was

performed for each baboon using plasma obtained from
the t = o point. This was performed by activating the
t = o plasma at 00C in the presence of 20 ,ug/ml dextran
sulfate, as described for the human standard curve in
Kaufman et al.16 A typical concentration-dependent re-

sponse curve is illustrated in Figure 1. The percentage of
maximum dextran sulfate activation (=100), a relative
value, is used since the absolute concentration (,uM) of
baboon a2M, prekallikrein or a2M-kal complex as mea-

sured by ELISA is not known. Maximal activation is not
equated with complete activation of prekallikrein to kal-
likrein since the presence of inhibitors limit the generation
of kallikrein using this method.3 Thus, concentrations of
o2M-kal greater than 100 are possible with inhibitor de-
tection. Standard curves for the assay were generated by
plotting the absorption values of the standards against
the log 1/dilution of the DS-activated plasma. The plot
was fitted to a third-order polynomial equation by an iter-
ated procedure using Sigma Plot (Jandel Scientific, CA).
The polynomial equation was then used to interpolate the
value of the diluted unknown sample, and the value was
corrected for dilution.
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Figure 1. Response curve of dextran sulfate activated baboon
plasma. Plasma of the t-o timepoint was activated with 20 pg/ml
dextran sulfate at O°C for 10 minutes. ELISA response of serial
dilution ofDS activatedplasma (0), or non-activatedplasma (0).

Statistical Analysis

A nonparametric statistical analysis of the data was per-
formed44 on a microcomputer using GB-Stat software
(Version 2.0, Dynamic Microsystems, Inc, Silver Spring,
MD). A normalized mean ± SEM of values of the assays
for each group (lethal and nonlethal) for each timepoint
was determined by comparing to a mean value of the raw
baseline values at 0 minutes using all 14 animals from
both groups. The normalized values were expressed as
a percent of the normal pooled mean ± SEM and plotted.
Within each group (Table 1), each assay was statistically
analyzed using Wilcoxon's rank-sum test. A difference
was considered significant, using a two-tailed P, at P <
0.05 (*) and highly significant at P < 0.01 (**). Between
groups (Figures 2-4), each assay was analyzed using
Wilcoxon's rank-sum/Mann-Whitney U test. A difference
was considered significant, using a two-tailed P, at P <
0.025 (*) and highly significant at P < 0.01 (**). Correla-
tions were calculated using Spearman's rank correlation
and tested using Spearman's test for correlation (two-tail
P values).

Results

Two groups of baboons were examined for markers of
contact system activation, a lethal group consisting of five
baboons, and a nonlethal group consisting of nine ba-
boons. The lethal model of bacteremic shock in the ba-
boon has been described in detail in previous investiga-
tions.3i7 Infusion of lethal concentrations of E.cofi (40 x
109 organisms/kg) over a 2-hour period resulted in a four-
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Table 1. Wilcoxon's Rank Conparisons: Baboon Lethal andNonlethal

Enzyme/Time (min) 30 60 120 180 240 360
Lethal (n = 4-5)

Heart rate -* * *
Respiration - - - -
MSAP - -
WBC - -

XII - - - _ _
Xl - - - _ _
PK - - - - - -
HK - - - -

ca2M-Kal -* * * *
Nonlethal (n = 7-9)

Heart rate * * **
Respiration
MSAP
WBC
XII - - - _ _ _
Xl - - - _
PK - - - -
HK - -
a2M-Kal - -

- Not significant.
P < 0.05.

** P < 0.01.
Group data, compared with initial conditions (0 min). Two-tailed P.

stage response over a 18-32 hour period, terminating in
death of all animals. The time of death for the five ba-
boons receiving lethal concentrations of E. coli were 6,
10, 5, 15, and 34 hours, respectively. Gross and histo-
pathologic studies indicated that the lungs had alveolar
capillary congestion, edema, intravascular fibrin thrombi,
and aggregation of neutrophils similar to changes occur-
ring in adult respiratory distress syndrome. The livers,
adrenals, and spleens all demonstrated fibrin thrombi,
hemorrhage, WBC accumulation, and necrosis consis-
tent with tissue hypoxia and DIC. The kidneys exhibited
central necrosis and vascular congestion with limited
hemorrhage and fibrin thrombi. In contrast, the surviving
nine baboons receiving nonlethal concentrations of E.
co/i were euthanized and examined pathologically at 7
days, and showed all organs to be histologically normal.

The hematocrit values (mean ± SD) of the lethal (42.4
+ 1.1) and nonlethal (41.4 ± 1.2) groups did not change
significantly over the 6-hour time period, indicating that
the animals were not dehydrated which could result in a
spurious change in the assayed protein levels due to
hemoconcentration.

Lethal Group

After a lethal infusion of E. coli, the heart rate increased
significantly from baseline at 60 minutes and the rate re-
mained high at 360 minutes (Figure 2, Table 1). The res-
piration rate increased within the first 60 minutes and re-

mained high with a significant difference at 60-240 min-
utes from the baseline levels. MSAP (Figure 3, Table 1)
showed the expected decline after 60 minutes (half-way
into the E. coli infusion) and became significantly different
from baseline values at 120 minutes. After 120 minutes,
when the infusion of E. coli was terminated, the MSAP
continued to decline until death. WBC declined within 30
minutes and remained low beyond 120 minutes (Figure
2, Table 1).

No significant changes from baseline were observed
for the values of factor XII, factor Xl and prekallikrein in the
lethal group (Table 1). Although not statistically signifi-
cant, factor XIl and prekallikrein concentrations declined
by 10-20% of baseline after 120 minutes (Figure 4). Fac-
tor Xl levels increased after 120 minutes (Figure 4) but
this trend was not significantly different from baseline val-
ues (Figure 4, Table 1).

In contrast to the stable levels of contact factor zy-
mogens, there was a decline in the levels of HK within 30
minutes (40% drop in the mean value of baseline, Figure
3) which reached significance at 240 and 360 minutes
(Table 1). The decline in HK values was temporally re-
lated to a decline in MSAP, suggesting a possible relation
between bradykinin release and blood pressure regula-
tion. A decline in HK correlated with a decline in MSAP
with a Spearman R value of 0.929, giving a P value (two-
tail) of 0.0025. As a reflection of kallikrein activation, a2M-
kal complex formation showed a dramatic, significant in-
crease in concentration beginning at 60 minutes. The in-
crease in a2M-kal complexes correlated inversely with a
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Figure 2. Heart rate, respiration, and white blood cell count
(C) of lethal (S) and nonlethal group (0). Solid bar is the time
period of E. coli infusion. The symbols and bars are the mean
SEM.

decline in MSAP with a Spearman R value of - 0.929 and
a two-tailed P value of 0.0025.

Nonlethal Group

Similar to what is observed in the lethal group, the heart
rate in the nonlethal group increased significantly by 30
minutes and remained significantly different from base-
line values throughout the study period of 360 minutes
(Table 1, Figure 2), indicating a sympathomimetic re-

sponse in the nonlethal animals to E. coli infusion. The
respiration rate mean value increased between 30 and
60 minutes, then returned to a normal rate at 120 minutes,
when E. coli infusion was terminated. However, this trend
was not significantly different from baseline (Table 1). No
change in temperature was noted over the entire exper-

imental period (not shown). There was a 20% decline in
MSAP between 30 and 60 minutes with a return to base-
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Figure 3. Mean systemic arterial pressure (MSAP), and levels of
high molecular weight kininogen (HK) and a2M-Kal complexes of
lethal (0) and nonlethal() group. The differences between lethal
and nonlethal groups, determined by Mann-Whitney U test are

significant *P < 0.025, and highly significant **P < 0.01.

line after 120 minutes (Figure 3). The number of WBC
declined significantly within 30 minutes, similar to the de-
cline observed for the lethal group, and reached a sig-
nificant nadir at 120 minutes before returning to normal
after 360 minutes (Figure 2).

No observable or significant differences were found in
the factor XIl levels at any of the time points (Figure 4,
Table 1). Factor Xl and prekallikrein concentrations re-

mained stable throughout the testing period (Figure 4).
Since the variance in factor Xl and prekallikrein values
was small, a significant difference from baseline was

found at 240 minutes for both, and at 360 minutes for
prekallikrein.

The HK levels showed a slower rate of decline from
baseline levels (Figure 3), reaching a nadir at 240 min-
utes (Table 1) with a 20% decline and returning to base-
line levels beyond 360 minutes (not shown). A small but
significant increase in a2M-kal concentration was ob-
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Figure 4. Factor XII, factor XI and prekallikrein levels of lethal
(@) and nonlethal (0) groups.

served only at 180 minutes (Figure 3, Table 1). No signif-
icant correlations were found between MSAP values and
HK levels or ot2M-kal levels.

Lethal Versus Nonlethal Groups

Since there was a similar increase in heart rate and res-

piration and a decline in WBC, no significant differences
were found in these variables between the two groups

(Figure 2). MSAP was significantly different between the
two models during the period of 240 to 360 minutes (Fig-
ure 3). This difference reflects the fact that the individuals
in the nonlethal group were recovering from a modest
decline in MSAP, while in the lethal model the MSAP re-

mained profoundly depressed.
Factor XII values showed no difference between the

groups except at 30 minutes (Figure 4). This statistical
difference is most likely attributed to random chance
since the variance value of the nonlethals was small at
this timepoint. No differences were found in the compar-
isons of prekallikrein and factor Xl (Figure 4). No signifi-
cance was found between levels of HK as this protein

declined in a parallel fashion in both models. The differ-
ences between lethal and nonlethal in the values of ac2M-
kal complexes were highly significant beginning at 60
minutes (Figure 3) due to a dramatic increase in complex
formation in the lethal group.

Discussion

We examined the contact system proteins to ascertain
whether contact activation correlated with the occur-
rence of hypotension. The profile that might be expected
with contact system activation can include any or all of
the following: a decrease in the levels of factor XII, PK, or
HK with an increase in a2M-kal complexes. When acti-
vation of the contact system occurs, only a small percent-
age of the total concentration of zymogens need be ac-
tivated (1-5%) to cleave their substrates in a catalytic
manner.19'45 The activation of the zymogens, factor XII
and prekallikrein, is limited by the presence of their re-
spective plasma protease inhibitors. We would not ex-
pect a dramatic drop in the levels of these proteins unless
there was a severe, continuous activation of the contact
system, since biosynthesis at a normal or increased
rate tends to replete the inhibitors.

The changes in the coagulant activity of activated HK
are more difficult to predict. HK is known to circulate com-
plexed to prekallikrein, factor Xl, and in the free form. HK
is also a substrate for kallikrein. As kallikrein cleaves HK,
bradykinin is released from the procofactor. This cleaved,
kinin-free kininogen (HKa) has unchanged activity by a
coagulant assay but binds more readily to negatively
charged surfaces in vitro.46 The HKa light chain is then
cleaved by other proteases, such as factor Xla,45 plas-
min47 or elastase48 to inactivate this cofactor function.
Loss of HK activity requires the initial cleavage by kal-
likrein which then facilitates the proteolytic inactivation of
the HKa.45 Therefore, we would expect some decline in
HK coagulant activity if the contact system is active.

Blood levels of oa2M-kal complexes, under normal
conditions, are undetectable.16 With the generation of
kallikrein, due to contact activation, increasing concen-
trations of a2M-kal complexes should be found. a2M-kal
complex formation is only one reflection of kallikrein gen-
eration, since the other major inhibitor of kallikrein is C1-
inhibitor which also consumes the active kallikrein. One
advantage of measuring oa2M-kal complexes in contrast
to C1-inhibitor-kallikrein complexes is that the former
may take longer to clear from circulation.49 A tentative
explanation for the slower clearance rate might be that at
high concentration of a2M-kal complexes, an impaired
clearance capacity of the mononuclear phagocyte sys-
tem may occur resulting in an increased accumulation of
a2M-enzyme complexes in the plasma.' We therefore
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might observe an accumulation of a2M-kal complexes
over the 6-hour period of the experiment since a2M is
regulating a number of active enzymes participating in
other systems, such as thrombin, plasmin, and elastase.
In addition, if Cl-inhibitor is consumed, then ot2M be-
comes a significant regulator of the contact system, by
inhibition of kallikrein. This observation also supports find-
ings that correlations of inactive Cl-inhibitor with lower
levels of factor XII or kallikrein could not be detected in
sepsis patients or HAE patients, probably due to low
amounts of enzyme activated and rapid clearance of the
complexes.553

As anticipated, only modest changes could be mea-

sured in either the nonlethal or lethal group for factor XII,
prekallikrein, or factor Xl values. These findings confirm
that measuring the levels of the contact zymogens may
not be a sensitive indicator of contact activation in the
baboon model. The most striking change noted for con-

tact factors was in HK, which demonstrated significant
decreases at 240 and 360 minutes (Figure 3), which
could indicate kinin release in both lethal and nonlethal
groups. In the lethal group, significant changes in HK
levels were evident within the first 120 minutes. The loss
of HK activity correlated with MSAP decline (R = 0.93).
Thus, the contact system was activated with the subse-
quent release of bradykinin which likely contributes to the
further decline of the MSAP. This conclusion is supported
by the early (60 min) increase of a2M-kal complexes (Fig-
ure 3, Table 1) indicating kallikrein formation, which again
demonstrated a significant inverse correlation of a2M-kal
complexes with MSAP (R = 0.93).

In the nonlethal group, a significant decrease in HK
begins later than 120 minutes and was less profound
than that of the lethal group. Significant levels of a2M-kal
complexes were not found in the nonlethal group. Most
likely this finding is due to the greater contribution by
Cl-inhibitor in regulating the contact system in the non-

lethal group where a more limited activation of the con-

tact system may occur without a marked decline of Ci-
inhibitor levels.52 No correlation was found between
MSAP and either HK decline or oa2M-kal complex forma-
tion in the nonlethal group.

Hypotension frequently occurs as a complication in
patients with bacteremia. The pathophysiology of hy-
potension associated with bacteremia is not yet under-
stood, but increased vascular permeability and arteriolar
vasodilation are an important mechanism. Vasodilation
may be initiated by the release of bacterial cell wall com-
ponents: endotoxin, from gram-negative organisms, and
peptidoglycan, from gram-positive pathogens. These
complex molecules activate the contact and comple-
ment systems with release, respectively, of the nonapep-
tide bradykinin and the anaphylatoxins, C3a and C5a.
Endotoxin also activates monocytes to produce cyto-

kines that include IL-1 and TNF, which also contribute to
increased vasodilation and capillary permeability. Whole
bacteria or endotoxin when infused was found by some
investigators to activate factor XII or prekallikrein di-
rectly.21'22 Alternatively, the presence of bacteria in the
blood can stimulate neutrophils and/or monocytes caus-
ing release of granular proteolytic enzymes or active ox-
ygen radicals, which in turn may perturb endothelial cells
and expose components of the subendothelium. These
changes can create a reactive environment (i.e., provide
an activating surface and/or a protected area from ser-
pins) which favors activating the contact system begin-
ning with factor XII.

The SERPIN, Cl-inhibitor is the primary regulatory in-
hibitor of activated factor XII, kallikrein (the other kallikrein
inhibitor is a2-macroglobulin) and the complement pro-
tease, Cl.1415,5456 The activation of factor XII and the
contact system can thus be potentiated by the reduction
in levels of Cl-inhibitor due to complex formation with
proteases or due to the proteolytic cleavage of the SER-
PIN.52 The lowering of Cl-inhibitor levels may facilitate
contact activation allowing for bradykinin-mediated hy-
potension, as observed for the cases of patients with he-
reditary angioedema.57 In previous studies, detailed in-
terpretation of the levels of contact system proteins par-
ticipating in bacteremic shock has not been possible
owing either to constraints of experimental design or the
fact that a limited number of components of the kallikrein-
kinin system were measured. The value of the baboon
models used in this study is the ability to compare several
samples to the initial value, allowing an assessment of the
temporal sequence of the changes.

This information together with information obtained in
earlier baboon studies35-37 suggests the following hy-
pothesis. On exposure of monocytes to increasing quan-
tities of endotoxin, TNF, and IL-1 are released. These
cytokines act on the vascular endothelium and smooth
muscle, causing vasodilation and the decline in MSAP
observed during the 60-120 minute interval. During the
first 60 minutes, these cytokines also act on neutrophils
causing margination and granular release, which results
in endothelial cell damage exposing putative contact-
activating surfaces, such as elastin, collagen, and base-
ment membrane. During this first 60 minutes, limited but
sustained contact and complement activation is occur-
ring, with bradykinin release contributing to vasodilation.
The contribution of bradykinin to the initial decline in
MSAP is masked by the more dramatic effects of cyto-
kines on endothelial cells to stimulate formation of the
vasodilators PGI2 and nitrous oxide. The contact and
complement system during the first 60-minute interval is
highly regulated by the presence of Cl-inhibitor. Forma-
tion of a2M-kal complexes during this interval is not sig-
nificant, since Cl-inhibitor predominates. However, Ci-
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inhibitor is consumed by regulating proteases52 or by
bacterial protease cleavage,22 resulting in lower concen-
trations of functional Cl-inhibitor, subsequently allowing
an increase in the participation of a2M in regulating the
activity of kallikrein after 60 minutes. At 120 minutes, or
the end of bacterial infusion, endotoxin levels decline
along with the levels of TNF and IL-1, no longer modulat-
ing endothelial cell function. At this time, Cl-inhibitor lev-
els would be low and the damaged endothelium exposes
activating surfaces, which sustains contact activation and
bradykinin release. Continued release of bradykinin
probably sustains and enhances the decline in MSAP
after 120 minutes, allowing for irreversible end organ
damage and eventual death. This mechanism is sup-
ported by the nonlethal model where the contact system
is less active, i.e., the decline in HK is less intense and
a2M-kal complexes are not usually detectable. MSAP
declines during the 60-120 minute time period, as a re-
sult of cytokine or other influencing factors. However, due
to a lack of sustained contact activation and bradykinin
release, the MSAP was able to return to baseline after
120 minutes.

Additional support for the contribution of the contact
system to the secondary MSAP in this lethal baboon
model comes from recent studies in which a monoclonal
antibody against factor XII was used to block activation of
the contact system.58 Inhibiting the contact system re-
sulted in no effect on the initial MSAP decline nor the
coagulopathy observed in this model. The secondary
MSAP decline was reversed, with values returning to-
ward normal during the 6 hours of this study.

Further support for this mechanism is suggested in a
rat hypotensive model using the bradykinin antagonist,
NPC567.59 60 In this model, lipopolysaccharide (LPS) in-
fusion over 10 minutes causes an initial decline in blood
pressure reaching a nadir at 1 hour. A second decline in
blood pressure is observed after 2.5 hours and continues
until death. Infusion of the bradykinin antagonist inhibited
the initial blood pressure decline by 60%, and completely
blocked the secondary hypotensive effect and extended
the lifetime of the animals with a 50% decrease in the
mortality of the treated animals.

Therapy directed against specific mediators such as
bradykinin or inhibitors of the contact system enzymes,
which can abort a continuing decline in MSAP during
bacteremia and allow continued tissue perfusion may aid
in preventing extensive organ damage; however, the un-
corrected DIC may also serve as a contributing factor to
mortality. Inhibition of mediator formation or their effects in
combination with an agent to control DIC, may allow the
administered antibiotics time to contain the bacterial pro-
liferation, thus decreasing the high mortality rate for this
disease.
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