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Most genes are expressedfrom two aUleles, one
maternal and the other paternaL The term
'genomic imprinting" refers to a geneticphenom-
enon which produces some interesting excep-
tions to this rule. Genes which are subject to im-
printing are molecularly marked before
fertilization such that they are transcriptionaly
silenced at one of the parental alleles in the off-
spring. A growing body of evidence implicates
genomic imprinting in thepathogenesis ofcertain
human genetic diseases, inherited tumor syn-
dromes, and sporadic tumors. This review dis-
cusses examples of imprinting, theories as to
why the phenomenon exists, possible molecular
mechanisms of imprinting, and our current un-
derstanding of the role of imprinting in human
pathology. (AmJPathol 1994, 144:431-443)

Genomic Imprinting in Mice and Humans

Among the first and most general indications of the
existence of genomic imprinting in mammals were
observations of aberrant development of embryos
after experimental induction of parthenogenesis in
mice. 1-3 True parthenotes, induced by ethanol expo-
sure of oocytes or gynogenones constructed by re-
placement of male pronuclei with female pronuclei,
were found to grow to early somite stages before in-
volution. Up to this stage, these conceptuses were
relatively normal in size and appearance, but they
showed unusually small extraembryonic membranes.
An inverse situation was seen in androgenones in-
duced by transplantation of male pronuclei into ova in
which the female pronucleus had been removed.

These developed to the late preimplantation stage
but often failed to implant; the small percentage which
were able to implant gave rise to predominantly ex-
traembryonic placental tissues, with severely stunted
embryonic tissues. From these experiments it was
concluded that maternal and paternal genomes are
both essential for the development of mice past early
embryonic stages and that their contributions to
growth of the early conceptus are not equivalent. In
particular, it was proposed that certain genes which
are essential for growth of trophoblastic tissue are ex-
pressed preferentially or exclusively from the pater-
nally transmitted genome, while the maternally trans-
mitted genome can provide all of the essential gene
activities needed for early development of the tissues
of the embryo proper but lacks essential activities for
growth of the trophoblast. This idea was borne out by
cytogenetic studies of human hydatidiform moles and
benign ovarian teratomas or dermoid cysts. Moles,
which are composed mostly of trophoblastic tissue,
were found to contain a reduplicated paternal
complement of chromosomes,4 while dermoids,
which differentiate into a broad spectrum of somatic
tissues but which never show placental elements, in-
variably contained a reduplicated complement of ma-
ternal chromosomes derived from an unfertilized
oocyte.5 Consistent with this, teratomas and terato-
carcinomas can be produced in mouse ovaries by
inducing ova to undergo parthenogenesis in situ.6 In
addition to supporting the existence of non-
overlapping sets of paternally and maternally im-
printed genes, these findings gave the first hint of a
possible role for genomic imprinting in tumorigenesis.

More specific evidence for the non-equivalence of
maternal and paternal genomes came from breeding

Accepted for publication November 19, 1993.

Address reprint requests to Dr. Benjamin Tycko, Department of
Pathology, Columbia University, 630 West 168th St., New York, NY
10032.

431



432 Tycko
AJP March 1994, Vol. 144, No. 3

experiments using lines of mice which carried various
chromosomal translocations. In appropriate crosses
it was possible to produce uniparental disomies for
particular chromosomes or chromosomal regions.
7-10 For example, one type of cross generated fetuses
containing two copies of a large portion of the ma-
ternal chromosome 7 but no copies of the corre-
sponding portion of the paternal chromosome 7.
These fetuses were developmentally retarded,
showed small placentas, and died in utero at mid-
gestation. The converse cross, resulting in two pa-
ternal and no maternal chromosome 7 homologues,
produced conceptuses which died at a much earlier
stage. By this approach, several different chromo-
somes and subchromosomal regions were scored for
their ability to produce an abnormal phenotype when
they were inherited as uniparental disomies. Since
only a subset of chromosomal regions showed evi-
dence of harboring imprinted genes by this type of
assay, these studies allowed the construction of a
low-resolution "imprinting map" of the mouse ge-
nome.11 In parallel with this research in mice, evi-
dence was being accrued by clinical geneticists in-
dicating that certain human genetic syndromes are
transmitted in a pattern consistent with parental im-
printing and/or are associated with uniparental diso-
mies or parent-of-origin-specific aberrations of cer-
tain chromosomal regions. Chromosomal mapping of
these imprinted disease loci has suggested that for at
least some syntenic chromosomal regions there
might be good agreement between the mouse and
human "imprinting maps."1011

Historically, however, it was a series of reports in the
late 1980s showing that in certain lines of transgenic
mice the transgene is subject to allele-specific DNA
methylation, and in some cases allele-restricted
mRNA expression, which brought the imprinting phe-
nomenon into focus for the general community of mo-
lecular biologists.12-15 In fact, imprinting observed at
transgenic loci may be somewhat artificial because of
the potential for unpredictable effects of the chromo-
somal site of insertion on subsequent gene expres-
sion and/or because the microinjected transgene
DNA may be extensively modified by the zygotic DNA
methyltransferase before or after its insertion into the
chromosome. Nevertheless, the expectation that cer-
tain endogenous genes, residing in their normal chro-
mosomal locations, would eventually be found to be
imprinted was fulfilled a few years later when breed-
ing experiments utilizing either artificially constructed
or naturally occurring strains of mice in which the two
types of parental alleles could be conveniently dis-
tinguished showed that the insulin-like growth factor
2 (Igf2) gene was expressed as mRNA only from the

paternal allele and that the genes encoding the Igf2
receptor (Igf2R) and a differentiation-related fetal
RNA (H19) were expressed only from the maternal
alleles.16-18 Two of these genes, Igf2 and H19, were
subsequently shown to be monoallelically expressed
in humans, with evolutionary conservation of the pa-
rental "direction" of the imprinting in both cases.19-24

Evolutionary Rationale for Imprinting
The evolutionary conservation of imprinting between
mice and humans suggests that the phenomenon
may provide some selective advantage. Several
theoretical advantages of imprinting for the success
of the species have been proposed, all of which are
at this point completely speculative. By rendering
parthenotes nonviable, it has been suggested that
imprinting might function to ensure that the species
continued to propagate by sexual reproduction.25
However, certain non-mammalian species which
can produce viable parthenotes and which may
lack genomic imprinting still seem to prefer to
propagate sexually. A different theory, which views
imprinting as a form of fetal-maternal or paternal-
maternal competition, has been suggested based
on the observations in parthenotes and uniparental
disomies.2627 According to this scheme, paternally
imprinted genes have a negative effect on growth of
the placenta and fetus, while the converse is true
for maternally imprinted genes. It is argued that the
male parent will achieve more success in perpetuat-
ing its genome within the population if it can pro-
mote large placentas and large offspring, while the
female parent will achieve more evolutionary suc-
cess by limiting the size of the placenta and off-
spring so that the nutritional burden of each preg-
nancy is reduced and successive pregnancies can
be sustained.
A third possible rationale for the existence of im-

printing, which has not been raised previously, is
that the phenomenon might serve to maintain dip-
loidy in dividing cells. Because of potential deleteri-
ous effects of chromosomal losses, primarily the
predicted tendency of monosomies to predispose
cells to oncogenic transformation by loss of tumor
suppressor genes, it might be advantageous for the
species to have a built-in safeguard against such
losses. If a particular chromosome were to contain
two distinct growth-essential genes which were op-
positely imprinted, then cell clones which had suf-
fered a loss of either homologue of this chromo-
some (in mitotic errors such as chromosomal
nondisjunction) would be prevented from expand-
ing. In this way, the species might be protected
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from the occurrence of certain malignant tumors or
other adverse consequences of chromosomal
monosomies.

It is also possible that imprinting per se might not
provide an advantage to the species and instead
might simply be a byproduct o, other evolutionary
pressures. A theory which invokes defense against
viral pathogens as a selective pressure28 stems
from observations that invading viruses can be in-
activated by the host cell via methylation of CpG di-
nucleotides in the viral genome.29 Since CpG meth-
ylation is a strong candidate for the molecular
modification underlying imprinting (see below), this
theory suggests that the imprinting phenomenon
might simply be a byproduct of the evolutionary
pressure to maintain this pathway of host defense.
In other words, imprinted genes might be innocent
bystanders which are recognized by the methyl-
ation machinery of one type of gamete as virus-like
because of some feature of their nucleotide se-
quence. Reasoning along these same lines, the
CpG methylase may well be essential in general
gene regulation, where it appears to consolidate the
transcriptionally repressed state of some tissue-
specific genes in non-expressing cell types and
where it seems to play a similar role in the process
of X chromosome inactivation.3031 In the most trivial
model, conserved sequence features of certain
genes which merely reflect the functional require-
ments of their promoter or coding regions might
cause these genes to be acted upon by the methyl-
transferase in one or the other type of germline in a
pattern which would coincidentally result in their be-
coming imprinted.

For those interested in the raison detre of im-
printing, the most important unanswered question
concerns the size and characteristics of the im-
printed fraction of the genome. In terms of an upper
limit, the fact that most genetic diseases show Men-
delian inheritance implies that most genes will turn
out not to be imprinted. In terms of a lower limit, the
experiments with uniparental disomies in mice have
suggested the existence of at least six distinct im-
printed regions on the 19 autosomes.9-11 Progress
in defining the size of the set of genes which are
subject to imprinting, and the shared characteris-
tics, if any, of the genes in this set, awaits the devel-
opment of efficient screening methods for identify-
ing and cloning imprinted genes.

Mechanism of Imprinting
Any biochemical modification of the DNA and/or
chromatin which can account for imprinting must

satisfy four requirements. First, the modification
must be made before fertilization. Second, it must
be able to confer transcriptional silencing. Third, it
must be stably transmitted through mitosis in so-
matic cells. Fourth, it must be reversible on pas-
sage through the opposite parental germline. Some
fairly exotic possibilities are consistent with these
requirements. For example, imprinted genes could
conceivably contain DNA sequences which un-
dergo a reversible physical rearrangement, such as
a precise inversion, during oogenesis and sper-
matogenesis. A second possibility is that imprinted
genes could interact with hypothetical oocyte or
spermatocyte-specific DNA binding proteins which
could establish tenacious complexes capable of
persistence and replication in zygotic cell divisions
but also susceptible to displacement during the
next cycle of gametogenesis. While these models
may have precedents in lower organisms, they have
yet to receive any experimental support in mamma-
lian systems. In contrast, a third model, which pro-
poses site-specific DNA methylation as the imprint-
ing mechanism, is supported both by a priori
considerations and by a growing body of experi-
mental evidence.

Methylation of DNA in mammalian cells occurs
exclusively at cytosine residues in the context of
CpG dinucleotides. CpG methylation of genes, par-
ticularly in their promoter regions, can render them
transcriptionally silent, and CpG methylation is faith-
fully transmitted through cell divisions by the action
of the maintenance DNA methyltransferase (re-
viewed in refs. 32-34). While the modification is sta-
bly propagated in the presence of an active methyl-
transferase, it can be reversed when DNA
replicates under conditions in which the methyl-
transferase is inhibited or sequestered, as may be
the case in very early development.35 In fact, the
erasure of methylation of many DNA sequences in
the immediate post-zygotic period and during the
formation of the germ cells is well documented.
33.36-41 In terms of the mature gametes, for several
different types of sequences, the DNA in sperm is
known to be CpG-methylated in a different pattern
from the DNA in ova.3336-38,40,41 While much of this
difference appears to be erased in somatic cells in
early development, allelic methylation differences
might well persist at certain demethylation-resistant
sites in the genome.

The simplest methylation model for imprinting
posits that, because of a critical positioning and/or
density of CpGs found uniquely at imprinted genes
(or gene clusters, see below), gametic methylation
differences are preserved at demethylation-resistant
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sites in or near these genes in early somatic devel-
opment and that these critical sites nucleate the
spread of methylation and chromatin condensation
during later development, resulting in allele-
restricted gene expression. The local spreading of
chromatin inactivation which is hypothesized in this
model is suggested by the well-established spread-
ing tendency of X chromosome inactivation30 and
by observations of progressive expansion of preim-
posed CpG methylation within proviral DNAs with
passaging of cells in culture.42 Attempts to define
the critical DNA regions postulated to control im-
printing in this and other models using transgenic
mice are in progress.43'44

In the context of this model it is reasonable to ask
whether large groups of linked genes might be-
come coordinately imprinted. While this notion of re-
gional imprinting is attractive in principle, the small
amount of evidence available can be viewed as ar-
guing either for or against this possibility. For ex-
ample, the Igf2 and H19 genes are closely linked
(within 90-200 kb) in both mice and humans, yet
they are imprinted in opposite directions45 (see also
ref. 44 for an enhancer-competition model for oppo-
site imprinting of these two loci). In addition, the ri-
bonucleotide reductase Ml subunit gene (RRM1),
located in the same chromosomal band as human
IGF2 and H19, has been shown not to be im-
printed46 and several genes near Igf2R on mouse
chromosome 17 are biallelically expressed.17 On
the other hand, recent studies suggest that a differ-
ent pair of linked genes in the mid-portion of mouse
chromosome 7, Snrpn and Znf127, may show co-
ordinate methylation imprinting, with predicted
expression of only the paternal alleles in both
cases.47.48 It may be that imprinting can spread re-
gionally along the chromosome but that many inter-
spersed genes somehow escape transcriptional in-
activation. A situation of this sort would be
analogous to that observed on the human inactive X
chromosome, where an increasing number of genes
are being identified which either partially or com-
pletely escape inactivation.30'31

Consistent with the methylation hypothesis, for
every imprinted transgene and for the few endog-
enous imprinted loci which have been examined,
clear patterns of allele-specific DNA methylation
have been found. In the case of the H19 gene,
allele-specific DNA methylation has been docu-
mented in fetal and adult tissues both mice and hu-
mans, with hypermethylation of the imprinted allele
through the entire extent of the gene in both spe-
cies. 2244'49'50 In humans, the H19 gene in sperm is
extensively methylated, while in gynogenetic ovar-

ian teratomas the gene is largely unmethylated.22
Relative hypermethylation of the H19 gene in sperm
of mice is also detectable.49'50 Moreover, partial
methylation of the H19 promoter inhibits its ability to
activate transcription of a reporter gene in transfec-
tion experiments22 and demethylation of imprinted
H19 alleles by exposure of cells to the DNA methyl-
transferase inhibitor 5-azacytidine (AzaC) can reac-
tivate transcription from these alleles (T. Moulton
and B. Tycko, unpublished observations). Allele-
specific methylation is also present at several CpGs
in the Igf249 and Igf2R51 genes of mice but, in con-
trast to H19, the active Igf2 allele was found to be
hypermethylated at the sites examined. However,
the inactive Igf2 allele may be hypermethylated at
regulatory sites which were not examined since, as
with H19, imprinting of Igf2 could be erased by
AzaC.52 Also consistent with an important role for
methylation in imprinting, it was recently reported
that imprinting of H19, Igf2, and Igf2R is disrupted
in mouse embryos with a targeted deletion of the
DNA methyltransferase gene.53 However, since the
observed effects on imprinting in these mice might
be indirect, even this impressive experiment does
not prove a primary role for methylation in imprint-
ing. Indeed, because of the potential for indirect ef-
fects and because of difficulties in definitively sepa-
rating cause from effect in relating CpG methylation
to the transcriptional activity of specific genes, a
definitive proof of the methylation model for imprint-
ing may be difficult to obtain.

Before leaving the topic of mechanism, of poten-
tial importance for understanding the effects of im-
printing in disease states are several observations
which suggest that maintenance of imprinting in so-
matic tissues is not always completely efficient.
First, imprinting can be tissue-specific: the maternal
allele of the murine Igf2 gene is silent in all tissues
except choroid plexus and meninges, where the im-
print is apparently not present and the maternal
copy is expressed.16 Similarly, paternal imprinting
of human H19 may be at least partially relaxed in
trophoblast of hydatidiform moles20'54 and in normal
placenta as well.19 There is also evidence for at
least partial relaxation of imprinting of human IGF2
and, more rarely, H19, in malignant tumor cells, per-
haps secondary to alterations of DNA methylation in
these cells.21'55 Second, the efficiency of imprinting
depends on genetic background: in transgenic
mice the presence or absence of methylation im-
printing of the transgene can be strain-dependent,
suggesting the existence of imprinting modifier
genes.5>58 Also, imprinting of the Tme trait in mice
may be under the control of a strain-specific modi-
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fier locus,59 although altered imprinting of a specific
gene was not proven in this case. Genetic back-
ground may also effect the efficiency of imprinting
in humans, as suggested by the finding of somatic
reversal of imprinting of the human H19 gene in
lung and cerebellum of one out of six individuals ex-
amined.22 Whether imprinting modifier genes in-
clude the genes encoding DNA methyltransferase
or a putative DNA demethylase enzyme60 and/or
genes which might indirectly regulate either methyl-
transferase or demethylase activity is an obvious
but as yet unanswered question.

Imprinting in Human Genetic Disease
As indicated in a previous comprehensive review, at
least 10 distinct human genetic diseases and syn-
dromes have been suspected to involve genomic
imprinting.61 In some cases, the evidence for im-
printing is that the trait is observed at equal fre-
quencies in males and females but is transmitted
exclusively or preferentially from one type of parent.
A variation on this pattern are diseases in which
both types of parents can transmit the phenotype,
but a particularly severe form of the disease results
from transmission by one type of parent. In several
disorders which show this type of pattern, the per-
centage of individuals who show the predicted pa-
rental effects is lower than would be expected for a
perfectly efficient process: this may reflect random
fluctuations in the efficiency of imprinting and/or ge-
netic background effects.61 A second type of evi-
dence for imprinting is that a disease phenotype
can be found recurrently associated with uniparen-
tal disomies for a particular chromosome or chro-
mosomal region, as revealed by comparison of
DNAs from patients and their parents at polymor-
phic marker loci.
Among the clearest and best studied examples

of imprinted genetic diseases are Prader-Willi syn-
drome (PWS) and Angelman syndrome (AS). Both
syndromes include mental retardation (mild to mod-
erate in PWS and severe in AS), but the associated
stigmata are entirely distinct and even to some de-
gree opposite: individuals with PWS are slow mov-
ing and become overweight due to severe hyper-
phagia; individuals with AS are thin and hyperactive
and have a characteristic "happy puppet" appear-
ance, with inappropriate laughter. In the late 1980s
several laboratories made the observation that both
syndromes often result from chromosomal deletions
in bands 15q1 1-13 and that the deletions in the two
syndromes were cytogenetically and, at that time,

molecularly indistinguishable.62"4 A possible role
for genomic imprinting in producing the distinct
phenotypes was raised when it was found that the
deleted DNA in the two syndromes was of opposite
parental origin: in each case of PWS the deletion
had occurred on the paternal chromosome 15,
while for each case of AS it had occurred on the
maternal homologue.6346 Additional evidence for
opposite imprinting in the two syndromes was the
finding that cases of PWS with maternal disomy for
the entire chromosome 15 are fairly frequent67 and
that rare cases of AS can be caused by paternal di-
somy of this same chromosome.68 Moreover, one
family has been described in which inheritance of a
15ql1-13 deletion apparently produced a case of
AS after transmission from a mother and two cases
of PWS after transmission from a father.69 One hy-
pothesis which emerged is that a single PWS/AS
gene, imprinted paternally in some cell types and
maternally in others, might account for both syn-
dromes. In an alternative scheme, which appears to
be supported by recent high-resolution mapping of
the minimal deleted regions, PWS and AS are
caused by two very closely linked but distinct
genes (or gene clusters) which are oppositely im-
printed.70 Resolution of the issue awaits the cloning
and characterization of candidate genes in the PWS
and AS minimal deleted regions. Two such genes in
the PWS minimal deleted region, SNRPN, encoding
a polypeptide component (SmN) of a ribonucleo-
protein thought to be involved in brain-specific
mRNA splicing reactions, and ZNF127, encoding a
putative nucleic acid binding protein, have recently
been identified. 10,47'48,71
A second fascinating and clinically important

group of human diseases which have been consid-
ered to show imprinting effects are the so-called
"triplet-repeat diseases." These inherited disorders,
including fragile X mental retardation (FRAX), myo-
tonic dystrophy (DM), and Huntington's disease
(HD), among others, result from the presence of re-
petitive trinucleotide DNA sequences in the disease
genes (reviewed in ref. 72). In FRAX and probably
also in DM, it appears that when the repeated se-
quences become longer than a critical length, they
become unstable and can undergo massive length
expansions during cellular DNA replication, thereby
functionally inactivating their associated genes and
causing the disease phenotype. The initial moder-
ate expansion, which exists in asymptomatic dis-
ease carriers and which renders the locus unstable,
has been called the "premutation," while the mas-
sive expansion in affected individuals is referred to
as the "full mutation."73 While the repeats in HD are
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not subject to such massive expansions, premuta-
tion alleles may also exist.74

Imprinting in each of these triplet repeat diseases
has been suggested by clinical observations: the
disease phenotypes show earlier onset (DM, HD) or
greater severity (FRAX) in the offspring after pas-
sage through the germline of one type of parent-
mothers in FRAX and DM and fathers in HD.75-7 In
the case of DM, only affected mothers can transmit
a distinctive severe congenital form of the disease.
However, since congenitally affected infants who
survive the neonatal period tend to recover from
their severe symptoms, it may be that some physi-
ological influence of the uterine environment, rather
than true genomic imprinting, is responsible for the
selective maternal "transmission." In the case of
FRAX, the evidence for imprinting is stronger. The
basic observation implicating imprinting is that
some males can be phenotypically normal carriers
of the premutation and that successive passages of
the premutated gene through females convey an in-
creasing likelihood of appearance of an affected
son with the full mutation.

Even with a knowledge of the unusual molecular
behavior of triplet repeats, an explanation for the
parental imprinting has not been immediately ap-
parent. In HD a general but imperfect correlation
between greater repeat lengths and earlier onset
disease has been found (reviewed in ref. 78) and
the accelerated onset after paternal transmission
may reflect a greater tendency for repeat expansion
in spermatogenesis versus oogenesis. Strictly
speaking, this would then be a genetic effect dis-
tinct from true imprinting. However, this trivial expla-
nation does not apply in FRAX, where the expan-
sions to the full mutation have been shown to be
post-zygotic events.7980 Since the FRAX triplet re-
peat contains CpG and is highly methylated only in
the expanded alleles, maternal-specific hypermeth-
ylation of the premutation, perhaps as a conse-
quence of X-inactivation, could play a role in mark-
ing it for subsequent expansion.75 81 84 Whether or
not this explanation proves to be correct, since
some type of maternal imprinting appears to be inti-
mately related to the propensity of the FRAX triplet
repeat to expand, an understanding of the molecu-
lar features of the imprint may also shed light on the
mechanism of triplet repeat instability.

Imprinting in Tumorigenesis
As is the case for the classical human genetic dis-
eases, the evidence for imprinting in human tumori-
genesis takes several forms. In at least one familial

tumor syndrome, the inherited paraganglioma syn-
drome, the phenotype, usually bilateral carotid body
tumors, is only manifested after transmission of the
disease gene from fathers.85 Since the high fre-
quency of affected individuals in the pedigrees is
otherwise consistent with autosomal dominant
transmission, it has been predicted that the chromo-
some 11 q23-qter gene accounting for this syn-
drome will turn out to be a maternally imprinted/
paternally expressed dominant oncogene.86
The retinoblastoma (RB) gene is well known as

the prototype tumor suppressor gene predicted in
the classical "two-hit" model for recessive oncogen-
esis.8788 Perhaps surprisingly in view of the demon-
strated necessity for biallelic inactivation of RB in
the development of retinoblastomas, there are also
hints that the RB locus might be subject to genomic
imprinting. Evidence for imprinting of RB has come
not from studies of retinoblastomas but instead from
observations in a different type of RB-related tumor,
sporadic osteosarcoma. In these tumors there is a
strong bias in the parental origin of RB allele losses.
In one study, 90% of cases showed loss of the ma-
ternal RB allele, presumably with mutation at the re-
tained paternal allele.89 Since the tumors examined
were of relatively late onset and were not preceded
by retinoblastomas, they probably contained so-
matic rather than germline RB mutations. From this
it was concluded that, rather than resulting from a
parental bias in the germline mutation rate, the ob-
served bias in RB allele losses probably reflects
bona fide genomic imprinting. While evidence for
differences in DNA methylation at maternal versus
paternal RB alleles in leukocytes and fibroblasts
has been reported,90 whether there are allelic differ-
ences in the level of RB mRNA expression in osteo-
sarcoma precursor cells or other cell types is not
yet known. If an allelic bias exists, it may be re-
stricted to those rare individuals who subsequently
develop osteosarcoma and indeed may predispose
them to this tumor by allowing the first genetic "hit"
of the RB gene, when it occurs on the more highly
expressed allele, to partially release the cell from
normal growth regulation. Observations that about 5
to 10% percent of unilateral retinoblastomas show
hypermethylation of the RB promoter and first exon
and that the hypermethylation can be allele-
restricted give some support to these specula-
tions.91 92

More recently, evidence has been produced sug-
gesting parental imprinting of both a dominant on-
cogene and a putative tumor suppressor gene in-
volved in human neuroblastoma. Amplification of a
large segment of DNA containing the N-myc proto-
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oncogene is a frequent finding in neuroblastomas,
where the presence of amplification confers a poor
prognosis.9394 When the parental origin of the am-
plified DNA was examined using polymorphic DNA
markers, 12 of 13 cases showed amplification of the
paternal N-myc allele.95 Whether this parental bias
reflects an allelic bias in N-myc mRNA expression
in neuroblasts remains to be determined. Neuro-
blastomas also frequently show loss of DNA in chro-
mosomal band 1p36, implicating a putative tumor
suppressor gene in this region. In one study96 the
lost 1 p36 DNA was found to be selectively of mater-
nal origin (13 of 15 cases), but this bias was not
found in a second study.95
A role for genomic imprinting in tumorigenesis is

perhaps most firmly established by findings in the
Beckwith-Wiedemann syndrome (BWS) and in a
group of embryonal tumors which are associated
with this syndrome. BWS is diagnosed by the pres-
ence of variable somatic manifestations, including
exomphalos, macroglossia, visceromegaly (includ-
ing organomegaly affecting kidney, liver, and adre-
nal), hemihypertrophy, and gigantism, all of which
reflect overgrowth of developing tissues, and a high
percentage of affected individuals will develop
Wilms' tumor (WT), adrenocortical carcinoma
(ADCC), hepatoblastoma (HB), or embryonal rhab-
domyosarcoma (ER)97 (reviewed in ref. 98). The evi-
dence for imprinting in BWS takes several forms. In
some families, the trait is associated with constitu-
tional chromosomal inversions or translocations at
1 1 p15.4 or 1 1 p15.5, but the phenotype is only ex-
pressed after passage of the structurally abnormal
chromosome through the maternal germline.98'99
The syndrome can also be transmitted within fami-
lies with no cytogenetic abnormalities but with ge-
netic linkage to chromosome 11pi5; here also, the
phenotypic is only seen after passage of the dis-
ease gene through the maternal germline. 100'103
Perhaps more frequently, the syndrome can occur
de novo in association with paternal duplication or
isodisomy for 11p15.5.104-107 In fact, mice which
are constructed as genetic mosaics for paternal di-
somy of the homologous chromosomal region are a
potential animal model for BWS and show in-
creased body size.108 Last but not least, numerous
studies indicate that each of the four types of em-
bryonal tumors which are associated with BWS
show frequent loss of heterozygosity (LOH) for DNA
markers at 11p15.5 (reviewed in refs. 98 and 109)
and, importantly, in series of WTs and ERs (consist-
ing primarily of sporadic rather than BWS-
associated cases), there is a very strong (95-100%)
bias toward loss of maternal 1 1 p15.5 alleles. 1 10'113

Can these observations be reconciled in a com-
prehensive theory of the role of genomic imprinting
in the etiology of BWS and embryonal tumors? Most
of the observations are consistent with the hypoth-
esis that BWS is caused by abnormal expression of
one particular imprinted gene, IGF2. As mentioned
previously, this gene maps to 11p15.5 and is nor-
mally expressed only from the paternal allele. Ac-
cording to the "IGF2 hypothesis," paternal disomies
or duplications of chromosome 11p15.5 would be
expected to lead to a twofold increase in lgf-2 pro-
tein production and a corresponding increased
growth of lgf2-responsive tissues, accounting for
the characteristic organomegaly of BWS. The chro-
mosomal rearrangements, deletions, or putative
point mutations in the 11p15.4-15.5 region which
account for the remaining cases of BWS, all of
which show selective maternal transmission, are
postulated to somehow cause a failure of imprinting
of the maternal IGF2 allele, thereby leading to the
same endpoint of increased lgf-2 protein produc-
tion.9899,114 This aspect of the hypothesis was re-
cently confirmed by the finding of biallelic IGF2 ex-
pression in fibroblasts and tongue tissue of BWS
patients who lacked paternal 11p15 disomies.114
Since structural lesions of DNA sequences within
the IGF2 gene were not found in any of the cases,
the disruption of imprinting may be a long-range
chromosomal effect.

If one accepts IGF2 as the BWS gene, then the
remaining question is whether overexpression of
lgf-2 protein could account not only for tissue over-
growth but for tumor formation as well. The finding
of recurrent LOH in a particular chromosomal region
in tumors is usually taken as evidence for the exist-
ence of a tumor suppressor gene in that location.
By this simple interpretation, the finding of selective
loss of maternal 11p15.5 alleles in WT and ER im-
plies the existence of a paternally imprinted em-
bryonal tumor suppressor gene at 11p15.5. Based
on its required direction of imprinting and expected
biological function (growth-inhibiting rather than
growth-promoting), this gene must be distinct from
IGF2.

However, before considering evidence for the ex-
istence of such a gene, it is important to note that
most WTs and ERs which have lost maternal alleles
at 1 1 p15.5 are also found to contain duplicated pa-
ternal alleles. Presumably this results in two active
copies of IGF2 per cell. It has been proposed
that this paternal duplication, rather than the mater-
nal loss, may be the etiologically important
event.114-116 However, while a twofold increase in
active IGF2 allele copy number may well be respon-
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sible for the tissue overgrowth seen in somatic tis-
sues in BWS, whether it produces functionally im-
portant differences in Igf-2 protein production in the
BWS-associated tumors is less clear. In two large
studies nearly all WTs, presumably regardless of the
presence or absence of 11p15.5 LOH, were found
to express high levels of IGF2 mRNA, comparable
with the levels in fetal kidney.117 118 Given the ability
of transcription factors to modulate promoter activi-
ties over a range of several orders of magnitude,
this high level expression probably reflects the
presence in the tumor cells of the appropriate array
of transcription factors for maximal activation of the
IGF2 promoter, rather than a gene dosage effect.
Interestingly, despite the high levels of IGF2 mRNA,
the amount of immunoreactive lgf-2 protein in WTs
appears to be quite low.119,120

The identity of the putative 1 1 p15.5 embryonal tu-
mor suppressor gene, sometimes referred to as
"WT2" (to distinguish it from the previously identified
WT1 tumor suppressor gene at 11p13), is a major
unresolved issue. What criteria can be applied to
evaluate candidate WT2 genes? Based on the ob-
served selective loss of maternal 11 p15.5 alleles in
embryonal tumors, we have previously suggested
that a criterion for candidate genes is that they
should be expressed only from the maternal allele
in normal fetal tissues. 19'22 A tumor suppressor
gene which was expressed monoallelically in nor-
mal tissues would be expected to represent an
"Achilles' heel" for cellular transformation, since
complete functional inactivation of this gene could
occur by "one-hit" kinetics. Rapid kinetics of inacti-
vation could account for the fact that some WTs,
ERs, HBs, and ADCCs are seen in newborns and,
particularly in the case of WT, often present as bilat-
eral or multifocal lesions. However, this may be an
oversimplification. Different schemes can be envi-
sioned in which paternal imprinting of the WT2 lo-
cus might occur only in those rare individuals who
subsequently develop tumors58 121 or in which the
WT2 tumor suppressor is not imprinted and the ob-
served selective loss of maternal alleles is due en-
tirely to a selective pressure to retain the active pa-
ternal IGF2 allele. 115.116
One 1 1p15.5 gene which is paternally imprinted

is already available for evaluation as a candidate
WT2 gene. The human H19 gene is expressed ex-
clusively from the maternal allele.19'21'22 Consistent
with a growth-regulatory role, expression of this
gene is very low in undifferentiated cells, increases
markedly in a wide array of fetal tissues at stages in
which cells are differentiating, and then declines in
most adult tissues.122-126 In fact, H19 was isolated

independently by several different laboratories as a
differentiation-induced clone in differential cDNA
screening experiments using various cell culture
systems. 123,126.127 Also, as might be expected for a
gene involved in cellular differentiation and growth
suppression, transcription of H19 is very high in nor-
mal fetal kidney, adrenal, and liver but is very low or
undetectable in a majority of WTs and in at least
some cases of ADCC and HB (T. Moulton et al, sub-
mitted for publication).
H19 is transcribed to yield a spliced and poly-

adenylated RNA which accumulates in the cyto-
plasm but which contains only very short transla-
tional reading frames.128 Moreover, while there is
overall conservation of intron/exon structure and
nucleotide sequence between H19 genes of hu-
man, mouse, and rat, the short reading frames are
not conserved. Based on these findings, together
with the failure to detect H19-derived peptides us-
ing antipeptide antibodies, it has been proposed
that H19 might function directly at the level of its
RNA product, perhaps as the RNA component of a
ribonucleoprotein.128

To date there are two lines of evidence which
suggest that H19 RNA has growth-regulatory activ-
ity. First, H19 transgenic mice which expressed the
transgene at high levels and in ectopic sites died in
utero at a late fetal stage; only when the transgene
was internally deleted could viable offspring be ob-
tained.129 Second, when an expression vector con-
taining the human H19 gene was introduced into
G401 cells, a line derived from a WT or a malignant
rhabdoid tumor of the kidney,130'131 the cells ex-
pressed high levels of H19 RNA and became non-
clonogenic in soft agar and non-tumorigenic in
nude mice.132 In addition, transfection of this same
expression construct into an ER cell line yielded a
high percentage of growth-retarded clones.132 De-
finitive evidence that H19, or other candidate tumor
suppressor genes, are in fact WT2 will have to in-
clude the identification in tumors of DNA lesions
such as mutations, small deletions, or perhaps even
localized LOH within or very close to the candidate
gene.

Future Research
To understand the biological rationale and conse-
quences of imprinting, it will first be necessary to
define the identities and functions of what must be a
fairly large number of as yet uncharacterized im-
printed genes. While some of these, such as the
PWS and AS genes, will no doubt be identified in
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the near future, innovative strategies will be re-
quired to carry out a more general search. In terms
of the mechanism of imprinting, new insights may
come from the study of the control of CpG methyl-
ation and demethylation in early development and
from the cloning and characterization of imprinting
modifier genes. Finally, a more complete under-
standing of the role of imprinting in neoplasia can
be expected to emerge rapidly from the current in-
tense scrutiny of the molecular pathology of human
embryonal tumors.
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