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Networks are widely used in the biological, physical, and social
sciences as a concise mathematical representation of the topology
of systems of interacting components. Understanding the structure
of these networks is one of the outstanding challenges in the study
of complex systems. Here we describe a general technique for
detecting structural features in large-scale network data that
works by dividing the nodes of a network into classes such that the
members of each class have similar patterns of connection to other
nodes. Using the machinery of probabilistic mixture models and
the expectation–maximization algorithm, we show that it is pos-
sible to detect, without prior knowledge of what we are looking
for, a very broad range of types of structure in networks. We give
a number of examples demonstrating how the method can be used
to shed light on the properties of real-world networks, including
social and information networks.

clustering � graph � likelihood

In the last few years, networks have found use in many fields as a
powerful tool for representing the structure of complex systems

(1–4). Metabolic, protein interaction, and genetic regulatory net-
works are now heavily studied in biology and medicine, the Internet
and the world wide web in computer and information sciences, food
webs and other species interaction networks in ecology, and net-
works of personal or social contacts in epidemiology, sociology, and
the management sciences.

The study of networks goes back much further than the current
surge of interest in it, but recent work differs fundamentally from
earlier studies in the sheer scale of the networks being analyzed. The
networks studied 50 years ago by pioneers in the information and
social sciences had, typically, a few dozen vertices and were small
enough that they could easily be drawn on a piece of paper and
perused for interesting features. In the 21st century, on the other
hand, networks of thousands or millions of vertices are not unusual
and network data on this scale cannot easily be represented in a way
that allows quantitative analysis to be conducted by eye. Instead, we
have been obliged to turn to topological measures, computer
algorithms, and statistics to understand the structure of today’s
networks. Much of the current research on networks is, in effect,
aimed at answering the question ‘‘How can we tell what a network
looks like, when we can’t actually look at it?’’

The typical approach to this problem involves defining measures
or statistics to quantify network features of interest: centrality
indices (5, 6), degree distributions (7–9), clustering coefficients (10),
community structure measurements (11, 12), correlation functions
(13, 14), and motif counts (15) are all invaluable tools for shedding
light on the topology of networks. Our reliance on measures like
these, however, has a downside: they require us to know what we
are looking for in advance before we can decide what to measure.
People measure correlation functions, for instance, because (pre-
sumably) they think there may be interesting correlations in a
network; they measure degree distributions because they believe
the degree distribution may show interesting features. This ap-
proach has certainly worked well: many illuminating discoveries
have been made this way. However, it raises an uncomfortable
question: could there be interesting and relevant structural features
of networks that we have failed to find simply because we haven’t
thought to measure the right thing?

To some extent, this is an issue with the whole of scientific
endeavor. In any field, thinking of the right question can demand
as much insight as thinking of the answer. However, there are also
things we can do to help ourselves. In this paper, we describe a
technique that allows us to detect structure in network data while
making only rather general assumptions about what that structure
is. Methods of this type are referred to by statisticians as ‘‘explor-
atory’’ data analysis techniques, and we will make use of a number
of ideas from the statistical literature in the developments that
follow.

We focus on the problem of classifying the vertices of a network
into groups such that the members of each group are similar in some
sense. This already narrows the types of structure we consider
substantially, but leaves a large and useful selection of types still in
play. Some of these types have been studied in the past, but the
range of possibilities considered here is far larger than that of
previous work. For instance, many researchers have examined
‘‘community structure’’ in networks, also called ‘‘homophily’’ or
‘‘assortative mixing,’’ in which vertices divide into groups such that
the members of each group are mostly connected to other members
of the same group (11, 12). ‘‘Disassortative mixing,’’ in which
vertices have most of their connections outside their group, has also
been discussed to a lesser extent (16–18). Effective techniques have
been developed that can detect structure of both of these types. But,
what should we do if we do not know in advance which type to
expect or if our network has some other type of structure entirely
whose existence we are not even aware of? One can imagine an
arbitrary number of other types of division among the vertices of a
network, most of which have probably never been considered
explicitly in the past. One possibility, for instance, is a network in
which, although there is no conventional assortative mixing, there
are certain ‘‘keystone’’ vertices and group membership is defined by
which particular keystone or set of keystones a vertex is connected
to. Another possibility is a network in which there is both assortative
and disassortative mixing between members of the same groups, the
groups themselves being defined by the fact that their vertices have
the same pattern of preferences and aversions, rather than by any
overall assortative or disassortative behavior at the group level. And
there are certainly many other possibilities. Such complex structures
cannot be detected by the standard methods available to us at
present and moreover it seems unlikely in many cases that appro-
priate specialized detection methods will be developed because of
the chicken-and-egg nature of the problem: we would have to know
the form of the structure in question to develop such a method, but
without a detection method, we cannot discover that form in the
first place.

Here we propose an approach to the structural analysis of
network data that aims to circumvent these issues. It does so by
employing a broad and flexible definition of vertex classes, param-
etrized by an extensive number of variables and hence encompass-
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ing an essentially infinite variety of structural types in the limit of
large network size. Certainly our definition includes the standard
assortative and disassortative structures discussed above and, as we
will see, the method we propose will detect those structures when
they are present. However, it is also able to detect a wide variety of
other structural types and, crucially, does so without requiring us to
specify in advance which particular structure we are looking for: the
method simultaneously finds the appropriate assignment of vertices
to groups and the parameters defining the meaning of those groups,
so that upon completion the calculation tells us not only the best way
of grouping the vertices but also the definitions of the groups
themselves. Our method, which is based on the numerical technique
known as the expectation–maximization algorithm, is also fast and
simple to implement. We demonstrate the algorithm with applica-
tions to a selection of real-world networks and computer-generated
test networks.

The Method
The method we describe is based on a mixture model, a standard
construct in statistics, although one that has not yet found wide use
in studies of networks. The method works well for both directed and
undirected networks, but is somewhat simpler in the directed case,
so let us start there.

Suppose we have a network of n vertices connected by directed
edges, such as a web graph or a food web. The network can be
represented mathematically by an adjacency matrix A with ele-
ments Aij � 1 if there is an edge from i to j and 0 otherwise.

Suppose also that the vertices fall into some number c of classes
or groups and let us denote by gi the group to which vertex i belongs.
We will assume that these group memberships are unknown to us
and that we cannot measure them directly. In the language of
statistical inference they are ‘‘hidden’’ or ‘‘missing’’ data. Our goal
is to infer them from the observed network structure. (The number
of groups c can also be inferred from the data, but for the moment
we will treat it as given.) To infer the group memberships we adopt
a standard approach for such problems: we propose a flexible
(mixture) model for the groups and their properties, then vary the
parameters of the model into order to find the best fit to the
observed network.

The model we use is a stochastic one that parametrizes the
probability of each possible configuration of group assignments and
edges as follows. We define �ri to be the probability that a (directed)
link from a particular vertex in group r connects to vertex i. In the
world wide web, for instance, �ri would represent the probability
that a hyperlink from a web page in group r links to web page i. In
effect �ri represents the ‘‘preferences’’ of vertices in group r about
which other vertices they link to. In our approach it is these
preferences that define the groups: a ‘‘group’’ is a set of vertices that
all have similar patterns of connection to others.† [The idea is
similar in philosophy to the block models proposed by White and
others for the analysis of social networks (19), although the real-
ization and the mathematical techniques used are different.] Note
that there is no assumption that the vertices i to which the members
of a group link themselves belong to any particular group or groups;
they can be in the same group or in different groups or randomly
distributed over the entire network. Thus, the structures we envis-
age can be quite different from traditional assortatively mixed
networks, although they include the latter as a special case.

We also define �r be the (currently unknown) fraction of vertices
in group or class r, or equivalently the probability that a randomly
chosen vertex falls in r. The parameters �r, �ri satisfy the normal-
ization conditions

�
r�1

c

�r � 1, �
i�1

n

�ri � 1. [1]

The quantities in our theory thus fall into three classes: measured
data {Aij}, missing data {gi}, and model parameters {�r, �ri}. To
simplify the notation we will henceforth denote by A the entire set
{Aij} and similarly for {gi}, {�r}, and {�ri}.

The standard framework for fitting models like this one to a given
data set is likelihood maximization, in which one maximizes with
respect to the model parameters the probability that the data were
generated by the given model. Maximum likelihood methods have
occasionally been used in network calculations in the past (20–22),
as well as in many other problems in the study of complex systems
more generally. In the present case, our fitting problem requires us
to maximize the likelihood Pr(A, g��, �) with respect to � and �,
which can be done by writing

Pr�A , g �� , �� � Pr�A �g , � , ��Pr�g �� , �� , [2]

where

Pr�A �g , � , �� � �
ij

�gi, j
Aij , Pr�g �� , �� � �

i

�gi
, [3]

so that the likelihood is

Pr�A , g �� , �� � �
i
� �gi �

j

�gi, j
Aij � . [4]

In fact, one commonly works not with the likelihood itself but
with its logarithm:

� � lnPr�A , g �� ,�� � �
i
� ln�gi

� �
j

Aijln�gi, j� . [5]

The maximum of the two functions is in the same place, because
the logarithm is a monotonically increasing function.

Unfortunately, g is unknown in our case, which means the value
of the log-likelihood is also unknown. We can, however, usually
make a good guess at the value of g given the network structure A
and the model parameters �, �. More specifically, we can, as shown
below, calculate the probability distribution Pr(g�A, �, �) and
from it calculate an expected value �� for the log-likelihood by
averaging over g, thus:

�� � �
g1�1

c

� � � �
gn�1

c

Pr�g �A , � , �� �
i
� ln�gi

� �
j

Aijln �gi, j�
� �

ir

Pr(gi � r �A , � , �) �ln�r � �
j

Aijln �rj�
� �

ir

q ir �ln�r � �
j

Aijln�rj� , [6]

where to simplify the notation we have defined qir � Pr(gi � r�A,
�, �), which is the probability that vertex i is a member of group
r. (In fact, it is precisely these probabilities that will be the
principal output of our calculation.)

This expected log-likelihood represents our best estimate of the
value of � and the position of its maximum represents our
best estimate of the most likely values of the model parameters.
Finding the maximum still presents a problem, however, because
the calculation of q requires the values of � and � and the calculation
of � and � requires q. The solution is to adopt an iterative,

†We could alternatively base our calculation on the patterns of ingoing rather than
outgoing links and for some networks this may be a useful approach. The mathematical
developments are entirely analogous to those presented here.
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self-consistent approach that evaluates both simultaneously. This
type of approach, known as an expectation–maximization or EM
algorithm, is common in the literature on missing data problems. In
its modern form, it is usually attributed to Dempster et al. (23), who
built on theoretical foundations laid previously by a number of
other authors (24).

Following the conventional development of the method, we
calculate the expected probabilities q of the group memberships
given �, � and the observed data thus:

qir � Pr�gi � r �A ,� ,�� �
Pr�A , gi � r �� , ��

Pr�A �� , ��
. [7]

The factors on the right are given by summing over the possible
values of g in Eq. 4 thus:
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and
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k
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where �ij is the Kronecker � symbol. Substituting into Eq. 7, we
then find

qir �
�r �j�rj

Aij

�
s

�s �j�sj
Aij

. [10]

Note that qir correctly satisfies the normalization condition �r
qir � 1.

Once we have the values of the qir, we can use them to evaluate
the expected log-likelihood (Eq. 6) and hence to find the values of
�,� that maximize it. One advantage of the current approach now
becomes clear: because the qir are known, fixed quantities, the
maximization can be carried out purely analytically, obviating the
need for numerical techniques such as Markov chain Monte Carlo.
Introducing Lagrange multipliers to enforce the normalization
conditions (Eq. 1) and differentiating, we find that the maximum of
the likelihood occurs when

�r �
1
n �

i

qir, �rj �
�i Aijqir�i kiqir

, [11]

where �j Aij is the out-degree of vertex i and we have explicitly
evaluated the Lagrange multipliers using the normalization
conditions.

Eqs. 10 and 11 define our expectation–maximization algorithm.
Implementation of the algorithm consists merely of iterating these
equations to convergence and the output is the probability qir for
each vertex to belong to each group, plus the probabilities �ri of links
from vertices in each group to every other vertex, the latter
effectively giving the definitions of the groups. The calculation
converges rapidly in practice: typical run times for the networks
studied here were fractions of a second. [Some theoretical results
are known for the convergence of EM algorithms, see Dempster et
al. (23) and Wu (25).]

The obvious choice of starting values for the iteration is the
symmetric choice �i � 1/c, �ri � 1/n, but unfortunately these values
are a trivial (unstable) fixed point of Eqs. 10 and 11 and hence a
poor choice. In our calculations we have instead used starting values
that are perturbed randomly a small distance from this fixed point.
A random starting condition also gives us an opportunity to assess
the robustness of our results. Except in special cases (such as the
trivial fixed point above), expectation–maximization algorithms are
known to converge to local maxima of the likelihood (24) but not
always to global maxima, and hence it is possible to get different
solutions from different starting points. The method works well in
cases where it frequently converges to the global maximum or
where it converges to local maxima that are close to the global
maximum, giving good if not perfect solutions on most runs. In
practice, we find for some networks that the method almost always
converges to the same solution or a very similar one, whereas for
others it is necessary to perform several runs with different initial
conditions to find a good maximum of the likelihood. In the
calculations presented in this paper, we have in each case taken the
division of the network giving the highest likelihood over the runs
performed.

The developments so far apply to the case of a directed network.
Most of the networks studied in the recent literature, however, are
undirected. The model used above is inappropriate for the undi-
rected case because its edges represent an inherently asymmetric,
directed relationship between vertices in which one vertex chooses
unilaterally to link to another, the receiving vertex having no say in
the matter. The edges in an undirected network, by contrast, usually
represent symmetric relationships. In a social network of friend-
ships, for instance, the edges would typically be drawn undirected
because two people can become friends only if both choose to be
friendly toward the other. To extend our method to undirected
networks, we need to incorporate this symmetry into our model,
which we do as follows. Once again, we define �ri to be the

Fig. 1. Application of the method described here to the ‘‘karate club’’
network of ref. 26. The two shaded regions indicate the division of the
network in the real world, whereas the shades of the individual vertices
indicate the decomposition chosen by the algorithm. The sizes of the vertices
indicate the probabilities �1i for edges from vertices in group 1 (the left group)
to be connected to each other vertex, with the probabilities ranging from 0 for
the smallest vertices to 0.19 for the largest.

9566 � www.pnas.org�cgi�doi�10.1073�pnas.0610537104 Newman and Leicht



probability that a vertex in group r ‘‘chooses’’ to link to vertex i, but
we now specify that a link will be formed only if two vertices both
choose each other. Thus, the probability that an edge falls between
vertices i and j, given that i is in group s and j is in group r, is �ri�sj,
which is now symmetric. This probability satisfies the normalization
condition �ij �ri�sj � 1 for all r,s and setting r � s, we find

�
ij

�ri�rj � ��
i

�ri�2

� 1, [12]

and hence �i �ri � 1 as before.
Now the probability Pr(A�g, �, �) in Eq. 4 is given by

Pr�A �g , � , �� � �
i�j

��gi, j�gj, i	
Aij � �

ij

�gi, j
Aij , [13]

exactly as in the directed case, where we have made use of the
fact that Aji � Aij for an undirected network. (We have also
assumed there are no self-edges in the network, edges that
connect a vertex to itself, so that Aii � 0 for all i.)

The remainder of the derivation now follows as before and results
in the same equations, 10 and 11, for the final algorithm.

Example Applications
For our first examples of the operation of our method, we apply
it to two small networks, one known to have conventional
assortative community structure, the other known to have
disassortative structure. The first is the much-discussed ‘‘karate
club’’ network of friendships between 34 members of a karate
club at a U.S. university, assembled by Zachary (26) by direct
observation of the club’s members. This network is of particular
interest because the club split in two during the course of
Zachary’s observations as a result of an internal dispute, and
Zachary recorded the membership of the two factions after the
split.

Fig. 1 shows the best division of this network into two groups
found using the expectation–maximization method with c set equal
to 2. The shades of the vertices in the figure represent the values of
the variables qi1 for each vertex on the scale shown (or equivalently
the values of qi2, because qi1
qi2 � 1 for all i). As we can see, the
algorithm assigns most of the vertices strongly to one group or
the other; in fact, all but 13 vertices are assigned 100% to one of the
groups (black and white vertices in the figure). Thus, the algorithm
finds a strong split into two clusters in this case, and indeed if one
simply divides the vertices according to the cluster to which each is

most strongly assigned, the result corresponds perfectly to the
division observed in real life (denoted by the shaded regions in the
figure).

However, the algorithm reveals much more about the network
than this. First, where appropriate it can return probabilities for
assignment to the two groups that are not 0 or 1 but lie somewhere
between these limits, and for some of the vertices in this network
it does so. Inspection of the figure reveals in particular a small
number of vertices with intermediate shades of gray along the
border between the groups. There has been some discussion in the
recent literature of methods for divining ‘‘fuzzy’’ or overlapping
groups in networks; rather than dividing a network sharply into
groups, it is sometimes desirable to assign vertices to more than
one group and a number of possible ways of doing this have been
proposed (17, 27–29). The present algorithm offers an alternative
method that is particularly attractive because of the clear definition
of the overlap: the values of the qir give the precise probability that
a vertex belongs to a specified group, given the observed network
structure.

The algorithm also returns the distributions or preferences �ri for
connections from vertices in group r to each other vertex i. In Fig.
1, we indicate by the sizes of vertices the probabilities �1i of edges
from vertices in group 1, which is the left group in Fig. 1, to connect
to each other vertex. As we can see, two vertices central to the group
have high connection probabilities, whereas some of the more
peripheral vertices have smaller probabilities. Thus, the values of �ri
behave as a kind of centrality measure, indicating how important a
particular vertex is to a particular group. This could form the basis
for a practical measure of within-group influence or attraction in
social or other networks. Note that, in this case, this measure is not
high for vertices that are central to the other group, group 2; the
measure is sensitive to the particular preferences of the vertices in
just a single group.

We can take the method further. In Fig. 2, we show the results
of its application to an adjacency network of English words taken
from ref. 17. In this network, the vertices represent 112 commonly
occurring adjectives and nouns in a particular body of text (the novel
David Copperfield by Charles Dickens), with edges connecting any
pair of words that appear adjacent to each other at any point in the
text. Because adjectives typically occur next to nouns in English,
most edges connect an adjective to a noun and the network is thus
approximately bipartite or disassortative. This can be seen clearly in
Fig. 2, where the two shaded groups represent the adjectives and
nouns and most edges are observed to run between groups.

Analyzing this network using our algorithm we find the classifi-
cation shown by the shades of the vertices. Once again, most vertices

Fig. 2. The adjacency network of English words described in the text. The two shaded groups contain adjectives and nouns respectively and the shades of the
individual vertices represent the classification found by the algorithm.
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are assigned 100% to one class or the other, although there are a
few ambiguous cases, visible as the intermediate shades. As Fig. 2
makes clear, the algorithm’s classification corresponds closely to the
adjective/noun division of the words, almost all of the black vertices
falling in one group and the white ones in the other. In fact, 89%
of the vertices are correctly classified by our algorithm in this case.

The crucial point to notice, however, is that the algorithm is not
merely able to detect the bipartite structure in this network, but it
is able to do so without being told that it is to look for bipartite
structure. The exact same algorithm, unmodified, finds both the
assortative structure of Fig. 1 and the disassortative structure of Fig.
2. This is an important strength of the present method: it is able to
detect a range of different structural types without knowing in

advance what type to expect. Other methods are able to detect
particular kinds of structure, and in many cases do a good job, but
they tend to be narrowly tailored to that job. Typically a new method
or algorithm has to be devised for each new structural type.

The networks in Figs. 1 and 2 are both undirected, but our
method is applicable to directed networks as well. In Fig. 3, we show
an example of a directed network, a social network of high school
students taken from the U.S. National Longitudinal Study of
Adolescent Health (the ‘‘AddHealth’’ study). Students were asked
to identify their friends within the school and a response in which
student A identifies B as a friend is represented as a directed edge
from A to B. In contrast to the common view, discussed earlier, of
friendship as a symmetric relationship running in both directions

a b

Fig. 4. The four-group network described in the text, in which connections between vertices are entirely random, except for connections to the eight keystone
vertices in the center. Each of the four groups (dashed boxes) is thus distinguished solely by the unique pattern of its connections to the keystone vertices. Vertex
shapes represent the groups to which vertices are assigned by our analyses using the traditional community detection (a) and maximum likelihood (b) methods
of this paper.

Fig. 3. A directed social network of U.S. high school students and the division into two groups found by the directed version of our method. Vertex shapes
show the (self-identified) ethnicity of the students, as indicated.
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between the individuals it connects, a remarkable number of the
friendships identified in this study, more than half, are found to run
in only one direction, so that a directed representation of the
network is indispensable for capturing the structure of the data.

Applying the directed version of our method to this network with
c � 2 produces the division shown in Fig. 3. This example is striking
because, like many of the networks in the AddHealth data set, the
groupings are found to correlate strongly with student ethnicity as
shown by the shapes of the vertices (30). In this case, one of the two
groups contains most of the school’s black students and the other
most of the white students, with the few members of other ethnic
groups distributed more evenly.

The examples we have seen so far all center on networks with
strong assortative or disassortative mixing, but it is important to
emphasize that our method is applicable to other types of structure
as well. For our final example, we focus on a network of a
completely different kind, a computer-generated network of a form
mentioned in the introduction. In this network there are a small
number of ‘‘keystone’’ vertices and group membership affects only
the propensity to link to these vertices; all other connections are
purely random. In detail, the network is as follows.

The network is again a directed one, with a total of 108 vertices.
One hundred of those vertices are divided into four groups of 25
each, and directed edges are placed uniformly at random between
them such that the mean degree (both in and out) is 10. The
remaining eight vertices are denoted keystone vertices and the other
vertices link to them depending on their group membership.
Specifically, the vertices in groups A, B, C, and D link to keystone
vertices {1,2,3,4}, {3,4,5,6}, {5,6,7,8}, and {7,8,1,2}, respectively.
Thus, no keystone vertex is uniquely identified with any group, but
each group has a unique signature set of keystones, and it is only this
pattern of keystone links that distinguishes the group. The network
is not assortative (or disassortative) by the traditional definition: the
randomly placed edges fall within or between groups purely ac-
cording to chance, and the links to the keystones, although not
random, are equally likely to fall within or between groups.

Fig. 4a shows what happens when we analyze this network using
a standard community detection technique. The dashed boxes in
the figure outline the four groups of vertices and the shapes show
the group assignments found by the analysis. Although the analysis
does find four groups in this case, the groups do not correspond to
the known division of the network: each box contains substantial
numbers of vertices of at least two types and in some cases more.
The maximum likelihood analysis, by contrast, has no difficulty in
discerning the structure of the network. Fig. 4b shows the output of
our algorithm with c � 4 and, as we can see, the algorithm has,

without prior knowledge of the type of structure in the network,
discovered the structure and correctly assigned almost all of the
vertices to their groups. The eight keystone vertices, which are
shown in the center of Fig. 4b, are not assigned to any group by the
algorithm, but are instead divided (almost) equally between all four
(meaning that qir is close to 0.25 for all r). Thus, the algorithm has,
in effect, accurately deduced the five classes of vertices present in
the network. Moreover, an examination of the final values of the
model parameters �ri will tell us exactly what type of structure the
algorithm has discovered. In principle, considerably more complex
structures than this can be detected as well.

Conclusions
In this paper, we have described a method for exploratory
analysis of network data in which vertices are classified into
groups based on the observed patterns of connections between
them. The method is more general than previous clustering
methods, making use of maximum likelihood techniques to
classify vertices and simultaneously determine the definitive
properties of each class. The result is a simple algorithm that is
capable of detecting a broad range of structural signatures in
networks, including conventional community structure, bipartite
or disassortative structure, fuzzy, or overlapping classifications,
and many mixed or hybrid structural forms that have not been
considered explicitly in the past. We have demonstrated the
method with applications to a variety of examples, including
real-world and computer-generated networks. The method’s
strength is its f lexibility, which will allow researchers to probe
observed networks for general types of structure without having
to specify in advance what type they expect to find.

Complete computer programs implementing the methods described in this
paper can be found in the supporting information, along with documenta-
tion and network data files. We thank Marian Boguna, Aaron Clauset,
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and Kathleen Mullan Harris, and funded by National Institute of Child
Health and Human Development Grant P01-HD31921, with cooperative
funding from 17 other agencies. Special acknowledgment is due Ronald R.
Rindfuss and Barbara Entwisle for assistance in the original design. Persons
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