Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 May;123(2):231–240.

Intermediate filament proteins in choroid plexus and ependyma and their tumors.

M Miettinen, R Clark, I Virtanen
PMCID: PMC1888327  PMID: 2422943

Abstract

The intermediate filament protein types of normal choroid plexus and ependymal tissue and their putative tumors were investigated. In normal human choroid plexus tissue, but not in ependyma, keratin could be demonstrated immunohistochemically. By immunoblotting, keratins 8, 18, and 19 were found, but glial fibrillary acidic protein (GFAP) was absent. In mouse and rat, choroid plexus epithelium and ependymal lining cells were keratin-positive. In addition, many ependymal cells were vimentin-positive. Keratin was immunohistochemically found in three of four choroid plexus papillomas, two of two choroid plexus carcinomas, and the lining cells of three neuroepithelial cysts. GFAP-positive cells were present in some choroid plexus tumors. In contrast, none of the eight ependymomas contained keratin, but all were strongly positive for GFAP. The results show that choroid plexus lining cells and choroid plexus tumors have true epithelial characteristics in their cytoskeleton, in contrast to ependymomas, which do not show keratin positivity but show glial filaments, as would be seen in astrocytic tumors.

Full text

PDF
233

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRIGHTMAN M. W., PALAY S. L. THE FINE STRUCTURE OF EPENDYMA IN THE BRAIN OF THE RAT. J Cell Biol. 1963 Nov;19:415–439. doi: 10.1083/jcb.19.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett G. S., Fellini S. A., Croop J. M., Otto J. J., Bryan J., Holtzer H. Differences among 100-A filamentilament subunits from different cell types. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4364–4368. doi: 10.1073/pnas.75.9.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bignami A., Raju T., Dahl D. Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev Biol. 1982 Jun;91(2):286–295. doi: 10.1016/0012-1606(82)90035-5. [DOI] [PubMed] [Google Scholar]
  4. Brozman M. Immunohistochemical analysis of formaldehyde- and trypsin- or pepsin-treated material. Acta Histochem. 1978;63(2):251–260. doi: 10.1016/S0065-1281(78)80032-4. [DOI] [PubMed] [Google Scholar]
  5. Carter L. P., Beggs J., Waggener J. D. Ultrastructure of three choroid plexus papillomas. Cancer. 1972 Oct;30(4):1130–1136. doi: 10.1002/1097-0142(197210)30:4<1130::aid-cncr2820300434>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  6. Clark R. K., Damjanov I. Intermediate filaments of human trophoblast and choriocarcinoma cell lines. Virchows Arch A Pathol Anat Histopathol. 1985;407(2):203–208. doi: 10.1007/BF00737077. [DOI] [PubMed] [Google Scholar]
  7. Coakham H. B., Garson J. A., Allan P. M., Harper E. I., Brownell B., Kemshead J. T., Lane E. B. Immunohistological diagnosis of central nervous system tumours using a monoclonal antibody panel. J Clin Pathol. 1985 Feb;38(2):165–173. doi: 10.1136/jcp.38.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dohrmann G. J., Bucy P. C. Human choroid plexus: a light and electron microscopic study. J Neurosurg. 1970 Nov;33(5):506–516. doi: 10.3171/jns.1970.33.5.0506. [DOI] [PubMed] [Google Scholar]
  9. Duffy P. E., Graf L., Huang Y. Y., Rapport M. M. Glial fibrillary acidic protein in ependymomas and other brain tumors. Distribution, diagnostic criteria, and relation to formation of processes. J Neurol Sci. 1979 Feb;40(2-3):133–146. doi: 10.1016/0022-510x(79)90199-0. [DOI] [PubMed] [Google Scholar]
  10. Duffy P. E., Graf L., Rapport M. M. Identification of glial fibrillary acidic protein by the immunoperoxidase method in human brain tumors. J Neuropathol Exp Neurol. 1977 Jul;36(4):645–652. doi: 10.1097/00005072-197707000-00001. [DOI] [PubMed] [Google Scholar]
  11. Eng L. F., Rubinstein L. J. Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem. 1978 Jul;26(7):513–522. doi: 10.1177/26.7.357640. [DOI] [PubMed] [Google Scholar]
  12. Franke W. W., Schmid E., Schiller D. L., Winter S., Jarasch E. D., Moll R., Denk H., Jackson B. W., Illmensee K. Differentiation-related patterns of expression of proteins of intermediate-size filaments in tissues and cultured cells. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):431–453. doi: 10.1101/sqb.1982.046.01.041. [DOI] [PubMed] [Google Scholar]
  13. Franke W. W., Schmid E., Wellsteed J., Grund C., Gigi O., Geiger B. Change of cytokeratin filament organization during the cell cycle: selective masking of an immunologic determinant in interphase PtK2 cells. J Cell Biol. 1983 Oct;97(4):1255–1260. doi: 10.1083/jcb.97.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Friede R. L., Pollak A. The cytogenetic basis for classifying ependymomas. J Neuropathol Exp Neurol. 1978 Mar-Apr;37(2):103–118. doi: 10.1097/00005072-197803000-00001. [DOI] [PubMed] [Google Scholar]
  15. Gabbiani G., Kapanci Y., Barazzone P., Franke W. W. Immunochemical identification of intermediate-sized filaments in human neoplastic cells. A diagnostic aid for the surgical pathologist. Am J Pathol. 1981 Sep;104(3):206–216. [PMC free article] [PubMed] [Google Scholar]
  16. Holthöfer H., Miettinen A., Paasivuo R., Lehto V. P., Linder E., Alfthan O., Virtanen I. Cellular origin and differentiation of renal carcinomas. A fluorescence microscopic study with kidney-specific antibodies, antiintermediate filament antibodies, and lectins. Lab Invest. 1983 Sep;49(3):317–326. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. [DOI] [PubMed] [Google Scholar]
  19. Lehtonen E., Lehto V. P., Paasivuo R., Virtanen I. Parietal and visceral endoderm differ in their expression of intermediate filaments. EMBO J. 1983;2(7):1023–1028. doi: 10.1002/j.1460-2075.1983.tb01540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lehtonen E., Virtanen I., Saxén L. Reorganization of intermediate filament cytoskeleton in induced metanephric mesenchyme cells is independent of tubule morphogenesis. Dev Biol. 1985 Apr;108(2):481–490. doi: 10.1016/0012-1606(85)90051-x. [DOI] [PubMed] [Google Scholar]
  21. Miettinen M., Franssila K., Lehto V. P., Paasivuo R., Virtanen I. Expression of intermediate filament proteins in thyroid gland and thyroid tumors. Lab Invest. 1984 Mar;50(3):262–270. [PubMed] [Google Scholar]
  22. Miettinen M., Lehto V. P., Virtanen I. Antibodies to intermediate filament proteins in the diagnosis and classification of human tumors. Ultrastruct Pathol. 1984;7(2-3):83–107. doi: 10.3109/01913128409141467. [DOI] [PubMed] [Google Scholar]
  23. Miettinen M., Virtanen I., Talerman A. Intermediate filament proteins in human testis and testicular germ-cell tumors. Am J Pathol. 1985 Sep;120(3):402–410. [PMC free article] [PubMed] [Google Scholar]
  24. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  25. Osborn M., Weber K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest. 1983 Apr;48(4):372–394. [PubMed] [Google Scholar]
  26. Paetau A., Elovaara I., Paasivuo R., Virtanen I., Palo J., Haltia M. Glial filaments are a major brain fraction in infantile neuronal ceroid-lipofuscinosis. Acta Neuropathol. 1985;65(3-4):190–194. doi: 10.1007/BF00686997. [DOI] [PubMed] [Google Scholar]
  27. Roessmann U., Velasco M. E., Sindely S. D., Gambetti P. Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res. 1980 Oct 27;200(1):13–21. doi: 10.1016/0006-8993(80)91090-2. [DOI] [PubMed] [Google Scholar]
  28. Rubinstein L. J., Brucher J. M. Focal ependymal differentiation in choroid plexus papillomas. An immunoperoxidase study. Acta Neuropathol. 1981;53(1):29–33. doi: 10.1007/BF00697181. [DOI] [PubMed] [Google Scholar]
  29. Schnitzer J., Franke W. W., Schachner M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol. 1981 Aug;90(2):435–447. doi: 10.1083/jcb.90.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schwechheimer K., Kartenbeck J., Moll R., Franke W. W. Vimentin filament-desmosome cytoskeleton of diverse types of human meningiomas. A distinctive diagnostic feature. Lab Invest. 1984 Nov;51(5):584–591. [PubMed] [Google Scholar]
  31. Shaw G., Osborn M., Weber K. An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol. 1981 Dec;26(1):68–82. [PubMed] [Google Scholar]
  32. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Trojanowski J. Q., Lee V. M., Schlaepfer W. W. An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments. Hum Pathol. 1984 Mar;15(3):248–257. doi: 10.1016/s0046-8177(84)80188-4. [DOI] [PubMed] [Google Scholar]
  34. Velasco M. E., Dahl D., Roessmann U., Gambetti P. Immunohistochemical localization of glial fibrillary acidic protein in human glial neoplasms. Cancer. 1980 Feb;45(3):484–494. doi: 10.1002/1097-0142(19800201)45:3<484::aid-cncr2820450312>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  35. Virtanen I., Lehto V. P., Lehtonen E., Vartio T., Stenman S., Kurki P., Wager O., Small J. V., Dahl D., Badley R. A. Expression of intermediate filaments in cultured cells. J Cell Sci. 1981 Aug;50:45–63. doi: 10.1242/jcs.50.1.45. [DOI] [PubMed] [Google Scholar]
  36. Woodcock-Mitchell J., Eichner R., Nelson W. G., Sun T. T. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol. 1982 Nov;95(2 Pt 1):580–588. doi: 10.1083/jcb.95.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES