
82 The Iowa Orthopaedic Journal

ABSTRACT
A joint’s normal mechanical history contributes

to the maintenance of articular cartilage and un-
derlying bone. Loading facilitates the flow of nu-
trients into cartilage and waste products away, and
additionally provides the mechanical signals es-
sential for normal cell and tissue maintenance.
Deleteriously low or high contact stresses have
been presumed to result in joint deterioration, and
particular aspects of the mechanical environment
may facilitate repair of damaged cartilage. For
decades, investigators have explored static joint
contact stresses (under some more or less arbi-
trary condition) as a surrogate of the relevant me-
chanical history. Contact stresses have been esti-
mated in vitro in many joints and in a number of
species, although only rarely in vivo. Despite a
number of widely varying techniques (and spatial
resolutions) to measure these contact stresses,
reported ranges of static peak normal stresses are
relatively similar from joint to joint across spe-
cies, and in the range of 0.5 to 5.0 MPa. This
suggests vertebrate diarthrodial joints have evolved
to achieve similar mechanical design criteria.
Available evidence also suggests some disorders
of cartilage deterioration are associated with some-
what higher peak pressures ranging from 1-20
MPa, but overlapping the range of normal pres-
sures. Some evidence and considerable logic sug-
gests static contact stresses per se do not predict
cartilage responses, but rather temporal aspects
of the contact stress history. Static contact stresses
may therefore not be a reasonable surrogate for
biomechanical studies. Rather, temporal and spa-
tial aspects of the loading history undoubtedly
induce beneficial and deleterious biological re-

sponses. Finally, since all articular cartilage
experiences similar stresses, the concept of a
“weight-bearing” versus a “non-weight-bearing”
joint seems flawed, and should be abandoned.

INTRODUCTION
Clinicians have long suspected pressure affects car-

tilage. Heuter recognized the effects of pressure on
growth cartilage of the developing joint.59 However, the
effects on mature cartilage were not well recognized
until well into the twentieth century, when the role of
loading on osteoarthrosis was clearly established. Ironi-
cally, the role of loading on the normal maintenance of
cartilage was recognized after its potentially deleteri-
ous effects.

Lovett, in 1891 mentioned a mechanical role in
osteoarthrosis primarily to suggest it was not impor-
tant.96 Pemberton and Osgood allude to the role of me-
chanics in osteoarthrosis to emphasize the importance
of “carriage of the body,” but do not explicitly mention
overloading of cartilage as the critical factor.118 Two
other authors45,75 writing about the same time suggested
repeated mild trauma was causative, although neither
explored or documented this concept. Substantive con-
sideration of a mechanical role in joint degeneration
primarily occurred after the mid twentieth century. We
now recognize increased loading, and ostensibly con-
tact stresses, on articular surfaces substantially affect
the durability of joints and their responses to treat-
ment.16,24,46

The notion that physiological loading and motion of
joints are essential for normal maintenance (i.e., me-
tabolism) paradoxically appear to arise from observa-
tions that osteoarthritis begins in areas of the joint
which were least loaded53 and that immobilization leads
to alterations in cartilage metabolism103,142 and histol-
ogy37 of articular cartilage. Harrison et al. remarked,
“Our somewhat surprising findings forced us to con-
sider that if excess of joint pressure is deleterious to
hyaline cartilage the lack of pressure is an even more
compelling cause of its degeneration.”53 Thus, not only
overloading, but also underloading appeared related to
deleterious changes. However, in vivo contact stresses
are typically related to motion, and the importance of
motion in normal maintenance of cartilage22,41,132 and in
cartilage repair22,55,80,131,143 is now a well accepted notion.
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Because biological changes are initiated at the local
tissue level (i.e., small gross, or even microscopic level),
any relevant mechanical parameter relating to tissue
adaptation likely needs to be independent of area or
volume of tissue or at least averaged over a very small
region. That is, spatial resolution of the measures be-
comes a critical (although obviously question-depen-
dent) issue. For intuitive reasons, and without any ex-
plicit consideration of this latter point, most investigators
quite naturally turned to joint contact stresses as a single
mechanical surrogate reflecting biological behavior.i In
earlier studies spatially averaged contact stress was a
parameter that could be readily calculated if the load
and surface area were known. Methods to estimate con-
tact stresses and their spatial distributions (with vary-
ing degrees of spatial resolution) arose only in the lat-
ter part of the twentieth century.

In this report, then, I will explore what is known
about contact stresses in human and animal joints. First
I will briefly describe the methods to estimate contact
stresses, then I will review the quantitative estimates
made by those methods, and finally I will explore the
limitations of contact stress as a parameter to explain
or predict clinical disease. While I do not intend a com-
prehensive review, it is intended to be representative.

METHODS TO ESTIMATE CONTACT STRESSES
There are a limited number of ways to estimate con-

tact stresses: computational approaches, individual
transducers, pressure sensitive films, and pressure sen-
sitive mats. Each approach has its advantages and limi-
tations.

Computational Approaches
In simple form38,68 computational approaches were

perhaps not surprisingly the earliest since they required
no technology, and relatively simple models and calcu-
lations.38,100,115,116 These sorts of models typically used a
single load the authors implicitly assumed represented
biologically important aspects of the mechanical history
(e.g., presumed peak load during single leg stance).
These approaches resulted in spatially averaged
stresses, not biologically critical local peaks, and while
illustrating principles did not materially advance our
understanding of the biologic issues. A number of

groups have reported more sophisticated computational
approaches,34,48,66,67,70,90,91 each of which necessarily in-
cludes simplifications and assumptions (some explicit,
others implicit). Simplifications include geometry (of-
ten two-dimensional),18,124 spherical hip joints, friction-
less surfaces, and limited loading conditions, elastic
properties. Such assumptions are not inherent, however,
since with enormously enhanced computational power,
models may be three-dimensional,15,48,66,71,134 or include
more sophisticated treatments of material properties,90

or multiple loading conditions.16,60,67,70,105 Perhaps the
major question of these models is that of model
confirmation.ii Ordinarily, this means comparing model
results against some independent measure such as
those from experimental techniques (see below). (It is
critical to recognize we do not know whether the ex-
periments provide “true” results: those that would be
occurring naturally in the course of human or animal
function. Therefore, we cannot “verify” or ascertain the
truth of the model except under conditions limited to
those of the experiment. In effect, perhaps the stron-
gest corroboration arises from determining that many
studies obtain similar results, despite the widely vary-
ing methods used to obtain them, and despite the many
computational or experimental conditions.iii)

Individual Transducers
Ingelmark and Blomgren68 recognized functional

loading had an “influence . . . on the morphological and
pathological state of the articular cartilages” and that a
spatially averaged pressure in a joint was not likely
meaningful, in contrast to a local peak. They also indi-
cated earlier attempts to estimate pressures required
“a certain amount of calculation work” and the meth-
ods were “very time-consuming.” Therefore, they de-
vised (and elegantly described) a small (9 mm diam-

i Oreskes112 explores the issue of how individual parameters may
inadequately capture phenomena of interest owing to both
theoretical and empirical uncertainties. Although contact stress
seems a reasonable parameter reflecting behavior of cartilage since
it teleologically seems designed to distribute load, closer
examination reveals a number of problems yet to be explored.

ii Oreskes and her colleagues113 have argued numerical models of
complex natural systems cannot be logically “validated” (i.e.,
establish the soundness or legitimacy of a proposition). In a
complex system there are not only recognized parameters for which
we have no quantitative knowledge, but also unrecognized
parameters. In this situation, many models can produce the same
result, precluding validation of any given model. Rather, we can
“confirm” or strengthen our propositions.
iii Authors are unlikely to report a model in which experimental
confirmation has been attempted, but not successful. Oreskes113

notes she was unable to find such a case, and this author has never
seen a published example. While many, if not most numerical
models are published without any attempt at experimental
confirmation, it is likely many models with confirmation were not
initially confirmed. In these cases, authors would (appropriately)
modify the model until computational and experimental answers
coincided. However, this does not really imply confirmation. Rather,
confirmation would need to arise from a new and fully independent
set of results.
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eter, 1 mm thick) rubber transducer based upon elec-
trical inductance (and contrasted to other potential ap-
proaches based upon resistive or capacitive methods
used by later investigators). This device, they reported,
was accurate to within 25% of the actual pressure. Im-
portantly, Ingelmark and Blomgren realized contact
stresses averaged over some large region were not
likely as biologically meaningful as local peaks: “A
knowledge of such pressure peaks—should they exist—
would probably be of great importance for the under-
standing of the pathologic changes in the joints as well
as for the study of the relation between the functioning
of the joints and their morphologic structure.” Unfortu-
nately, Ingelmark’s device was sufficiently large that
true local peaks (i.e., at the levels undoubtedly impor-
tant for biological responses) could not be recorded;
that is, spatial resolution was problematic. Furthermore,
it was a single device that would only record in a single
location, which an investigator could not a priori insure
would represent stresses in an entire joint.

The transducer approach was not again utilized until
the mid 1970s, when Carlson et al.27 constructed a
hemiarthroplasty device for human implantation. This
device partly addressed two limitations of Ingelmark’s
device: measurement artifacts from insertion of a de-
vice of finite thickness between the articular surfaces
and multiple transducers (14) to provide more than a
single measurement. Furthermore, this device could be
and indeed was implanted in humans,52,61,62,137 allowing
dynamic pressure measurements in a variety of activi-
ties. However, this device was still limited to a few dis-
crete areas, local peak pressure estimates were limited
to the size of the transducer surface, recordings could
be made only of cartilage-on-metal (which would likely
be quite distinct from natural cartilage-on-cartilage), and
the authors reported no integration of the measure-
ments to insure the device could recover applied loads
(thus confirming the measurements). Two subsequent
groups1,20,21 did, however, map contact stresses using in
vitro experiments. Obviously, these experiments would
be limited by the limited loading conditions (which
might or might not “represent” critical loading condi-
tions from a biological point of view). Joint lubrication
might also differ in the in vitro experiments, resulting
in artifactual pressure recordings, although these dif-
ferences would likely be small.

Pressure Sensitive Films
The problem of spatial resolution was largely solved

by the introduction of a pressure sensitive film
(PreScale® Fuji Film Co., Ltd., Tokyo; now distributed
as Pressurex®, Sensor Products In. East Hanover, NJ)
in the late 1970s.42 (Company specifications note a spa-

tial resolution of 5 to 15 microns, theoretically fine
enough to study pressures at the cell level.) In addi-
tion, the thin nature of the film (0.076 mm) would re-
sult in relatively little artifact on flat surfaces.141 How-
ever, since the film was not very flexible, artifacts were
introduced on curved surfaces, including most animal
joints. Finally, the calibration procedures were tricky.
Nonetheless, owing to their advantages, a number of
investigators repor ted in vitro use in the
1980s.2,17,63,64,127,133,136,138 The images were, of course, quali-
tative, but scanning and semi-automated computerized
approaches26 afforded quantitative analysis of experi-
mental replications, and comparisons of conditions. In
addition, Caldwell et al.26 reported a numerical algorithm
to detect and remove crinkle artifacts in curved joints
(e.g., the hip). They and others30 further used a petal-
like arrangement of the film which would fit into the
joint (much like the flat paper placed on a globe of the
world). Thus, the refinements provided a reasonable
estimate of contact pressures with better resolution than
transducers. However, these images remained “snap-
shots” of one point in time, and were therefore limited
to a single, or at best a few, experimental loading con-
ditions, which as noted earlier might not reflect the bio-
logically important aspects of loading history.

Pressure Sensitive Mats
The ability to digitally sample and store large

amounts of data afforded by computers led to a later
refinement came using a mat with multiple capacitive
transducers (Pedar™, novel GMBH, Munich) capable
of recording dynamic pressures over time.110 That ad-
vantage is partly offset by a mat thickness (required by
the mechanical and electrical components) more likely
to introduce artifact, as well as a loss of spatial resolu-
tion (imparted by limitations on sampling frequency and
computer storage required for multiple sensors). Typi-
cally, the spatial resolution of these devices is in the
range of 1 cm.2 (Rapid advances in processing speeds
and memory, along with affordable miniaturization of
transducers may obviate reduce this limitation in the
foreseeable future.) Most of the applications of these
devices has been for external (e.g., skin) applica-
tions,25,43,56,57,120 although these devices have also been
developed for joints.31,141 A major disadvantage of these
mats in recording joint contact stress is their thickness
(now perhaps as thin as 0.5 mm). Their introduction
may result in artifactual recordings, particularly in small
joints with thin cartilage. These problems have partly
been solved by a different technology using high-reso-
lution, thin-film resistive sensors (F-Scan™, Tekscan,
South Boston).5,33,40,99,122 The major problem with these
devices is the stiffness of the films (considerably greater
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than that of the Pedar™ mats) making them only useful
for relatively flat surfaces.10,31,47,93 Thus, while current
approaches allow reasonable recordings of large and/
or relatively flat joints, they are less useful for small or
substantially curved joint surfaces.

ESTIMATES OF NORMAL CONTACT STRESSES
Astonishingly, experimental measurements of peak

or spatially averaged joint contact stresses are surpris-
ingly similar, and within an order of magnitude of each
other, regardless of the species or joint, and loading
method (Table 1). Such variations as are reported can

TABLE 1
Spatially Averaged and Peak Contact Stresses in Normal Joints

Author/Year Species Joint Spatially averaged Peak contact)
contact stress (MPa) stress (MPa)

(Pellegrini et al., 1993) Human Hand 0.4-0.9
(Tencer et al., 1988) Human Wrist 3.2
(Viola et al., 1998) Human Radioscaphoid 1.7±0.5
(Viola et al., 1998) Human Radiolunate 1.7±0.4
(Conzen and Eckstein, 2000) Human Shoulder 10
(Legal and Ruder, 1977) Human Hip 0.1
(Rushfeld et al., 1979) Human Hip 6.8*
(Brown and Ferguson, 1980) Human Hip 10
(Brinckmann et al., 1981) Human Hip 1.4-1.6 2.4-3.2
(Brown and Shaw, 1983) Human Hip 2.9 8.8
(Adams and Swanson, 1985) Human Hip 4.9-9.6
(Hodge et al., 1989) Human Hip 5.5*
(Maxian et al., 1995) Human Hip <2.0 6-10
(Tackson et al., 1997) Human Hip 5.6*
(Tsumura et al., 1998) Human Hip 2.5
(Hak et al., 1998) Human Hip 7.5-9.0
(von Eisenhart et al., 1999) Human Hip 7.7
(Hipp et al., 1999) Human Hip 2.1
(Ipavec et al., 1999) Human Hip 1.6-2.7
(Iglic et al., 2001) Human Hip 2.2 (male)

2.4 (female)
(Fukubayashi and Kurosawa, 1980) Human Tibiofemoral 3-4
(Ahmed and Burke, 1983) Human Tibiofemoral 2.75
(Brown and Shaw, 1984) Human Tibiofemoral 2.6 8.0
(Brown et al., 1991) Dog Tibiofemoral 0.5-6.0
(Kuroda et al., 2001) Human Tibiofemoral 0.5-0.7
(Trumble et al., 2001) Sheep Tibiofemoral 1.2
(Ahmed et al., 1983) Human Patellofemoral 3.44
(Manouel et al., 1992) Human Patellofemoral 0.1-1.3
(Clark et al., 2002) Cat Patellofemoral
(Wagner et al., 1992) Human Ankle >6 MPa (20-40%

of contact surface)
(Calhoun et al., 1994) Human Ankle 3-8
(Steffensmeier et al., 1996) Human Ankle 5.1±1.2 8.9±2.2
(Rosenbaum et al., 1996) Human Talonavicular, 1.1-1.4 1.8-2.0

Calcaneocuboid
(Thomas et al., 2000) Human Subtalar 2.3-6.0
(Cooper et al., 1997) Human Calcaneocuboid 2.3
(Lakin et al., 2001) Human Tarsometatarsal 0.5-5.7

The reports involve a number of dif fering methods and assumptions, and with widely varying loading conditions; these numbers often
reflect only a representative figure from sometimes many reported in the study. Thus, one should not attempt to directly compare the
results, but rather get a sense of the range of pressures. Articles marked with an asterisk (*) arise from the only in vivo data in the literature
but reflect cartilage-on-metal, rather than cartilage-on-cartilage contact stresses.



R. A. Brand

86 The Iowa Orthopaedic Journal

readily be explained by the differences in methods (in-
cluding spatial resolution for peak stresses) or experi-
mental conditions including loads. (Most authors make
the argument their loads are “physiological.”) Spatially
averaged stresses range from 0.1 to 2.0 MPa while peak
stresses range from about 2 to 10 MPa.

ESTIMATES OF CONTACT STRESS
IN ABNORMAL CONDITIONS

Any number of clinical conditions associated with
early degeneration (e.g., developmental dysplasia,
slipped capital femoral epiphysis, malreduced fractures)
intuitively lead to increases in contact stresses. Experi-
mentally, compared to normal joints, a variety of stud-
ies demonstrate peak static contact stresses in such
conditions are increased 2-5 times (Table 2). However,
these reports show considerable variation, as well as
overlap with static peak contact stresses in normal con-
ditions. If these peak static stresses reflect the entire
loading history affecting deterioration and if they have
been ascertained with adequate resolution (see com-
ments below), we could logically infer cartilage does
not have a large margin of safety between the stresses
required for normal maintenance, and those leading to
deterioration. I hasten to add, however, these are two
questionable premises, even if frequently made.iv

CONTACT STRESS DISTRIBUTIONS
IN NORMAL JOINTS

The reader will have just seen that peak and even
spatially averaged contact pressures are remarkably
similar from joint to joint and even species-to-species in

the limited data on the latter. The distribution of these
stresses is, however, quite variable, even within a given
joint and obviously dependent upon the experimental
conditions including directions of loading and con-
straints on bones adjacent to the joint. Pereira, et al.119

commented, “There was a high degree of scatter in the
mean pressure intensity data, which precluded our at-
tempts to quantify this parameter.” It is unlikely one
can draw generalizations on the limited amount of pres-
sure distribution.3,4,20,21,30,130 In these limited cases, the
authors illustrate isometric “contour” plots with one or
perhaps two regions of highest contact stress sur-
rounded by lower levels. These plots are based upon
single instances of loading, and in a moving joint with
variable loads, the patterns would differ in details both
qualitatively and quantitatively.67,104 However, not surpris-
ingly in the human acetabulum, the patterns reflect a
basic horseshoe shaped region smaller than but more
or less corresponding with all but the peripheral regions
of the horseshoe-shaped articular surface (if imagined
flattened out), although much of the joint is unloaded
or minimally loaded at any one time. Several reports
suggest the resultant joint loads on the acetabulum vary
considerably in location and direction throughout the
gait cycle,117,145 but remain relatively more constant in
location and direction on the femoral head.11-13,35,86,87

Thus, one would expect the contact stress patterns on
the proximal femoral articular surface to be more con-
stant than those on the acetabulum, but I am unaware
of any reports documenting that point.

WHAT ASPECTS OF JOINT CONTACT
AFFECT CARTILAGE MAINTENANCE

AND DEGRADATION?
At the outset, I noted the mechanical history is re-

sponsible for normal maintenance of cartilage, although

TABLE 2
Peak Contact Stresses in Abnormal Hips

Author/Year Normal Hips Dysplastic Hips Peak Dysplastic Hips Slipped capital Malreduced
Peak contact Peak contact After Osteotomy(MPa) femoral epiphysis acetabular fractures
stress (MPa) stress (MPa) after osteotomy (MPa) Peak contact

stress (MPa)
(Iglic et al., 1993) 1.2-2.7  3-6  1.2-2.0
(Michaeli et al., 1997) 5-8* 1-2.5*
(Hak et al., 1998) 7.5-9.0 6.0-20.5
(Tsumura et al., 1998) 2.5 5.3
(Hipp et al., 1999) 2.1-5.0 2.6-6.5
(Zupanc et al., 2001)  1.1-4.3
(Mavcic et al., 2000) 2.3 4.6

The reader should again note these values reflect the methods and assumptions of the study in question, and more emphasis should be
placed on relative, rather than absolute values. The higher values reported by Michaeli et al. 1997, (noted by asterisk) came from pressure
sensitive films in a cadaveric pelvis, while the lower values for a “dysplastic” hip came from a plastic model in which the lateral lip was
resected to simulate dysplasia. (Table taken from Brand et al., 2001, with permission.)

iv The eminent French neurologist, Paul Broca, commented, “The
least questioned assumptions are often the most questionable.”



Volume 25 87

Joint Contact Stress

at some levels is deleterious to cartilage and at yet oth-
ers perhaps facilitates repair. Exploration of the effects
of low, normal, and high levels of mechanical history
each reflect a legitimate area of exploration, but more
often than not investigators have traditionally been
mostly interested in what causes tissue degeneration,
and only more recently what facilitates repair. Several
questions immediately arise: What aspect or aspects
(parameters) of the mechanical history relate to the
responsiveness of cartilage cells and cartilage as a tis-
sue? What magnitude levels of those aspects result in
normal maintenance, deterioration, repair? (In other
words, what mechanical history does cartilage tolerate?)
Are these levels the same in all joints? Are these levels
the same for all ages? To what degree can cartilage
adapt to a new and unexpected mechanical history?

What Aspects of the Mechanical History Relate to
Cartilage Biology?

Implicitly, if intuitively, contact stresses have been
used as a surrogate for whatever aspect of the mechani-
cal history stimulates chondrocytes. Quite naturally, the
choice of parameters intimately depend upon the ques-
tion being asked. Whatever the question, however, a
single local contact stress peak or spatially averaged
peak, or even pattern measured under some loading
regimen presumed representative does not likely relate
directly to cartilage biology. Brown and his colleagues
ascertained that while in vitro defects in articular carti-
lage result in elevated contact stresses immediately
around defects, those stresses did not appear excessive
(e.g., rim pressures elevated on 10-30% compared to
peak local stresses on an intact surface).19 The degree
of elevation was only modestly related to defect size (1,
2, 3, 4, 5, 6, and 7 mm). The explanation for this failure
to elevate stresses seems obviously related to the com-
pliant nature of the cartilage: the rims are simply pushed
into the defect, thus abrogating the effects on a rim of
a more rigid surface.44,69,129 At the same time, the radi-
ally directed peak contact stress gradient was elevated
by as much as an order of magnitude. (Again, the de-
gree of elevation was at best modestly related to defect
size, with high gradients occurring with all sizes.) Since
contact stress gradients, particularly those associated
with regions of high contact stresses would relate to
fluid flow,69,101 the stress gradient more than the stress
per se seems a more likely surrogate candidate if expe-
rienced over time. In a related in vivo experiment (but
in vitro contact stress measurements) by Brown and
colleagues, 6 mm defects allowed to repair over a pe-
riod of 11 months were not associated with elevations
of rim contact stresses.109 Importantly, the repair tissue
was flimsy and did not contribute to load transmission

(that is, contact stresses were minimal if at all detected).
This suggests remaining cartilage adapts whether by
structural change44,129 or by biological change.89 Un-
doubtedly, in any joint incongruity, initially elevated
contact stress gradients would disappear, and would
likely do so in a fairly short time (initially owing to car-
tilage compliance and later owing to remodeling of the
cartilage and underlying subchondral bone). Thus, if
contact stress gradients per se are related to repair, they
would like be so related in the early stages until adap-
tation occurred.

While it seems obvious that tissues respond not to
some static parameter, but to complex time and spa-
tially varying loads, it is entirely unclear what aspects
of the mechanical environment and history are impor-
tant. Brand and Stanford14 proposed that tissues ignored
the majority of the mechanical signals they experienced,
and rather responded only to select features. This may
mean many submaximal loadings might have far more
effects than a few maximal loadings, in which case
maximal loading (and stressing) would be irrelevant.
(This would not necessarily suggest, however, that some
high loading environments could not lead to damage
or deterioration.) Consistent with that notion, Turner140

proposed three rules governing the adaptation of bone
to its mechanical history: 1.) Bone is driven by dynamic,
rather than static, loading; 2.) Only a short duration of
mechanical loading is necessary to initiate an adaptive
response; 3.) Bone cells accommodate to a customary
mechanical loading history, making them less respon-
sive to routine loading signals. These notions are sup-
ported by considerable experimental evidence cited in
the papers. Furthermore, Robling et al.128 reported the
same “dose” of mechanical stimulus over a period of
time had differing effects on bone adaptation depend-
ing upon how the mechanical history was “partitioned.”
Such biological effects have been long well known in
radiation biology, where “dose-fractionation” is routine
part of practice.9,73,83,135,144 Furthermore, recent experi-
mental studies document the time scale is critical for
biological responses in cartilage.28,36,123 Thus, in ascer-
taining biological responses, it is insufficient just to
consider contact stress magnitude, but one must also
consider the time frame over which individual loading
cycles are applied. Presuming these notions are correct
(and substantial evidence suggests they are), and they
apply to all tissues, then the contact stresses we mea-
sure may not relate directly to in vivo cartilage re-
sponses. While both contact stresses and stress gradi-
ents reflect the local distributions of overall joint loads,
until and unless we ascertain the contact stress or con-
tact stress gradient dose history—or “stress profile”114—
which relates to cartilage biology, we will undoubtedly
gain limited insight.
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Another important issue in ascertaining an optimal
range of mechanical histories for cartilage maintenance,
adaptation, or repair relates to spatial scale. If deleteri-
ously high stress histories occur over a small area (or
volume) involving a few cells, will that region die and
lead to clinically significant consequences? I think this
unlikely since a small region of dead cells can probably
recover. However, what if the area of cell death is over
100 micrometers, or, say 1 mm?

Cartilage has limited capacity for repair.98 In fact, all
known cells have limits on their ability to replicate
(“Hayflick limit”).51,58,76,92,97,108 This limited replicative
capacity appears to be related to the length of a frag-
ment (telomere) on the end of DNA chains.6,7,32,49-

51,81,92,94,102 With each replication the telomere length is
reduced and when it is sufficiently short, replication
cases. Cartilage cells, in particular appear to have a very
limited capacity to replicate,84,85,102 with perhaps only 25-
35 doublings during the life of a cell (contrasted to per-
haps 40-60 or more with other sorts of cells). Further,
“replicative senescence” is preceded by a phenotypic
senescence.125 Thus, the capacity of cartilage to produce
molecules essential for maintenance, may be especially
limited in aged cartilage due to a larger fraction of se-
nescent chondrocytes. If the cells in a small region (say
100 micrometers volume) of chronically overloaded car-
tilage replicate and/or produce extra matrix to adapt,
and subsequently become prematurely senescent they
will then fail to maintain their region of matrix and the
local mechanical properties will change. When this hap-
pens adjacent areas will have to take up the load, thus
leading to overloading and destruction in the adjacent
region, creating a vicious cycle in a spatially expanding
region. Huberti and Hayes63 noted high local patello-
femoral contact stresses (approximately 3-5 MPa) in the
normal-appearing cartilage in knees with degeneration
of the patellar cartilage elsewhere, and low stresses in
the regions of clearly abnormal cartilage. It is unclear,
however, whether the regions or volumes of articular
cartilage that were degenerated and under low contact
stress in the experiment once under high contact stress
prior to degeneration, although their observations are
consistent with that notion. Further, while we do not
know what regions or volumes of cartilage can be ir-
reparably damaged, quantitative information of this sort
is critical to knowing the spatial resolution required for
any measures of contact stress. Thus, the notion of con-
tact stress histories aside, a technique with a spatial reso-
lution of 5 mm may be entirely insensitive to the
changes in contact stresses to answer a question rel-
evant to tissue repair or deterioration.

What Magnitude Levels of Those Aspects of
Contact Stress Dose History Result in Normal
Maintenance, Deterioration, Repair?

Few in vivo or ex vivo studies address this impor-
tant question. Repo and Finlay126 demonstrated impact
stresses of 25 MPa (and strain rates of 500 and 1000
per second) were sufficient to cause chondrocyte death.
This level of contact stress is also close to the level re-
quired to produce patellar fracture.54 Thus, at the high
end, a single load producing 25 MPa will likely result
in either fracture or chondrocyte cell death. However,
it is important to recognize that cartilage normally ex-
periences peak contact stresses 1 to 2 orders of magni-
tude below this level (Table 1). Since a single acciden-
tal impact load engendering stresses below these levels
is unlikely to result in local peak contact stresses and
stress patterns similar to normal, we could argue a
single contact stress load is unlikely to relate to subse-
quent cell behavior. Recognizing stress history, not
single loading is critical, Brown and colleagues48,105 es-
timated the contact stress histories for 83 patients with
developmental dysplasia of the hip followed for an av-
erage of 29 years, and demonstrated the propensity for
degeneration related to the cumulative contact stress
“overdose.” That overdose was at a level of 10 MPa-
years, where the contact stress reflected a spatial mean.
(Note this figure arises not from local peaks, but spa-
tial averages that would generally be an order of mag-
nitude lower.) Importantly, “single-time snapshot pres-
sures” correlated only weakly (r=0.39) with long-term
outcome. This again suggests, static contact stresses
are not likely a good surrogate for biological behavior.
I am unaware of any other attempts to address this
question. However, these studies do suggest possible
bounds on cartilage tolerance.

Are These Levels the Same in All Joints?
The differences in propensity for osteoarthrosis be-

tween various joints is well known epidemiologi-
cally.39,65,82 Less well understood are the mechanical78,139

and biological differences between the cartilage in dif-
fering joints.29,77,139 Thus, it appears the adaptation to car-
tilage in each joint is unique, and it is possible the lev-
els of dose history required for normal maintenance and
damage differ. However, this argument is speculative
based upon inferential evidence.

Are These Levels the Same for All Ages?
Age-related changes in the biological23,77,82,106,107,121 as

well as mechanical8,78,79,111 behavior of joints are well
known. As with the question of differing joints, how-
ever, whether and to what degree the mechanical dose



Volume 25 89

Joint Contact Stress

histories relate to tissue biology are unknown. However,
investigators exploring the relationship between me-
chanical histories and cartilage responses should be
aware that age is likely an important factor.

To What Degree Can Cartilage Adapt to a New
and Unexpected Mechanical History?

Despite the important nature of this question, evi-
dence again remains sketchy. There is little question
cartilage can adapt74,95 or repair to at least a limited de-
gree72,88 in response to a new mechanical history. How-
ever, virtually nothing quantitative is known about the
optimal contact stress histories required for repair.

COMMENT
The loading history of a joint, or a region of a joint is

critical to normal maintenance of articular cartilage.
Investigators have long assumed contact stress a suit-
able mechanical parameter relating to cartilage biology.
However, for a variety of reasons, that assumption is
not likely a reasonable one for answering most ques-
tions relating to cartilage maintenance, adaptation, re-
pair, and deterioration. First, a single, or even a few,
contact stress measurements under very well defined
(ostensibly needed for reproducibility) and restricted
loading conditions may not adequately represent all
those experienced by a joint. Second, all biological re-
sponses occur because of a loading (“dose”) history,
and given evidence cells and tissues respond to a mi-
nority of their mechanical history, we do not know
which aspects of even a contact stress history result in
subsequent responses. Third, the region of cells or tis-
sues which if irreparably damaged will ultimately lead
to failure of joint repair and degeneration is not known.
Without some knowledge of tissue tolerance, we can-
not speculate the required resolution of contact stress
patterns, and rather must presume fine resolution is
required. Fourth, the levels of the contact stress his-
tory which result in normal maintenance or degenera-
tion are not known, but limited evidence suggests a
spatially averaged (not peak local) joint contact stress
“dose” of 10 MPa-years appears to be deleterious.

The basis for the critical nature of intermittent joint
loading in maintaining normal articular cartilage is
sound, and experimental studies consistently support
the concept. Intermittent loading results in flow of nu-
trients into and waste products out of cartilage, and in
addition provides the mechanical signals essential for
normal cell and tissue maintenance. On the other hand,
deleteriously low or high contact stresses result in joint
deterioration. Particular aspects of the environment may
facilitate repair of damaged cartilage. However, I am
unaware of any such studies that attempted to quantify

the mechanical history, and in particular the contact
stress history in their protocols. It would seem, how-
ever, based upon other evidence, motion alone in the
absence of adequate contact stress would not suffice
for either maintenance or repair of cartilage.

Contact stresses have been estimated in many joints,
and in a number of species, although rarely in vivo.
Despite a number of widely varying techniques to mea-
sure these contact stresses, the ranges of peak normal
stresses are relatively similar from joint to joint across
species, and in the range of 0.5 to 5.0 MPa. This sug-
gests diarthrodial joints have evolved with similar tis-
sues (cartilage, underlying bone, ligaments, capsule) to
achieve similar mechanical design criteria, and that the
articular cartilage in particular normally experiences a
narrow range of contact stresses. Disorders resulting
in elevated static peak local pressures (i.e., 2-4 times
normal or more, sometimes over 5.0 MPa) are loosely
associated with cartilage deterioration over time. Evi-
dence as well as intuition suggests contact stresses per
se are not associated with deterioration, although some
associated quantity (e.g., stress gradient) over time
might be. Therefore, we may not presume that contact
stresses, whether peak or spatially averaged provide a
good surrogate for biological behavior. Rather, spatial
and temporal aspects of the loading history induce the
biological responses.

Finally, let me make an observation about “weight-
bearing joints.” Many authors imply that those joints
involved directly in gait (i.e., the lower extremity joints
in bipedal animals) somehow experience greater loads
and stresses. While it might be true the loads are
higher, the joints are also much larger. The available
evidence I have reviewed suggests the contact stresses
(if not stress histories) are similar in all joints. Thus, it
is appealing to speculate joints have evolved to some
aspect of contact stresses or stress histories, not loads.
That being the case, the concept of a “weight-bearing
joint” is misleading and perhaps the term should be
abandoned.
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