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Abstract
Icilin, a cooling compound, produces vigorous wet-dog shakes in rats. We have reported previously
that icilin-induced wet-dog shakes are blocked by the kappa opioid receptor agonists, nalfurafine and
U50,488H, and that icilin evokes a dose- and time-dependent increase in glutamate within the dorsal
striatum. Since activation of kappa opioid receptors inhibits glutamate release intrastriatally, we
targeted glutamate release within the dorsal striatum using nalfurafine and examined the role of the
dorsal striatum in icilin-induced wet-dog shakes, more specifically, the effect that icilin-evoked
intrastriatal glutamate release has on the overt stimulant behavior. We report that nalfurafine (0.04
mg/kg) inhibits icilin (0.50 mg/kg)-induced wet-dog shakes and that this inhibition is reversed by
intrastriatal perfusion of the kappa opioid receptor antagonist, norbinaltorphimine (100 nM).
Furthermore, we antagonized icilin-evoked glutamate release with nalfurafine (0.04 mg/kg), and
reversed inhibition of glutamate release with intrastriatal norbinaltorphimine (100 nM). These
findings support a central component in the behavioral response to icilin and suggest that activation
of kappa opioid receptors antagonizes icilin-induced wet-dog shakes in rats by inhibiting glutamate
release within the dorsal striatum.
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1. Introduction
Icilin is a cold-inducing agent that activates two transient receptor potential channels, TRPM8
and TRPA1, in the dorsal root ganglia and trigeminal neurons of the periphery (McKemy et
al., 2002;Peier et al., 2002;Reid et al., 2002;Story et al., 2003;Bandell et al., 2004;Jordt et al.,
2004;Liu et al., 2006). Upon application to the skin or on the tongue, icilin produces “mild,
pleasant sensations of coolness, similar to menthol but discrete and non-irritating” and is
400-600 times more potent than menthol (Wei and Seid, 1983;Behrendt et al.,2004;Wei,
2005).Icilin may potentially be used in the treatment of pruritus, hemorrhoids, canker sores,
arthritis and pain (Wei and Seid, 1983;Wei, 2005).
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Current research has targeted icilin as a reference compound in extending the molecular
pharmacology of TRPM8 and TRPA1 receptors in the periphery in the hope of providing
further insight into cold transduction. TRPM8 is activated by cool temperatures (<25°C),
menthol and icilin (McKemy et al., 2002;Peier et al., 2002); whereas TRPA1 is activated by
noxious cold (<17°C), icilin, pungent natural compounds (mustard oil, wintergreen oil, clove
oil, cinnamon oil, ginger oil) (Bandell et al., 2004), and raw garlic (Bandell et al., 2004;Bautista
et al., 2005;Macpherson et al., 2005), but not by menthol (Story et al., 2003;Jordt et al.,
2004). Activation of these channels by their respective agonists results in calcium ion influx
and desensitization (McKemy et al., 2002;Peier et al., 2002;Story et al., 2003;Jordt et al.,
2004;Liu et al., 2006). Investigation of the downstream effect of channel activation remains
unclear, supporting the need to investigate the pharmacology of cold-inducing compounds in
vivo.

Icilin, the super cold-inducing compound, was first categorized as a member of a class of
biologically active non-opiates that precipitate a quasi-morphine withdrawal syndrome when
given acutely to rats (Wei, 1976). I.p. icilin precipitates excessive grooming, rapid forepaw
movement, abdominal writhing and wet-dog shakes, defined as “rapid twisting of the head and
trunk with the forepaws leaving the ground”, in rats (Burford and Chappel, 1972;Wei,
1976;Cowan and Watson, 1978;Wei, 1981). Icilin-induced shaking begins within 2-5 min
following administration and the dose of the compound mentioned in the present paper (0.5
mg/kg) produces approximately 70 wet-dog shakes within a 30-min observation period
(Werkheiser et al., 2006).

We have reported previously that s.c. pretreatment with nalfurafine (0.02, 0.04 mg/kg) or
U50,488H (5 mg/kg), the kappa opioid receptor agonists, inhibit icilin-induced wet-dog shakes,
excessive grooming and abdominal writhing, whereas ICI 204,448 (1, 5, 10 mg/kg), the
peripherally directed kappa agonist, does not (Werkheiser et al., 2006). Furthermore, icilin
(0.25, 0.50, 0.75 mg/kg) evokes a dose- and time-dependent increase in glutamate within the
dorsal striatum (Werkheiser et al., 2006) a region of the brain that controls the planning and
execution of motor behavior (Blandini et al., 2000; reviewed by Lovinger et al., 2003). Since
the glutamate increase in the dorsal striatum did not coincide with wet-dog shaking behavior
observed in rats following icilin administration, we conclude that the dorsal striatal glutamate
release is most likely an effect of icilin itself and not a consequence of the behavior induced
by the compound.

Toth and Lajtha (1989) reported that intrastriatal administration of either NMDA or kainate
precipitates wet-dog shakes in rats by increasing glutamate release within the striatum. As a
result of this finding, we wished to examine the role of intrastriatal glutamate release in the
mediation of icilin-induced wet-dog shakes. However, unlike intrastriatal NMDA and kainate,
intrastriatal icilin does not produce wet-dog shakes (unpublished observation) and we believe
that the compound acts directly on TRPM8 and TRPA1 in the periphery and elicits unknown
downstream signaling to induce wet-dog shakes in rats. Finally, Moghaddam (1993) has
previously shown that intense movement increases striatal glutamate levels.

In the present study, we wished to target glutamate release within the dorsal striatum. Since
kappa opioid receptors are located presynaptically on dopaminergic (Spanagel et al., 1993) and
glutamatergic (Meshul and McGinty, 2000) terminals within the striatum and activation of
these receptors decreases neurotransmitter levels (Hill and Brotchie, 1995,Rawls and McGinty,
1998;Gray et al., 1999;Hill and Brotchie, 1999;Rawls et al., 1999;Sbrenna et al., 1999), we
investigated whether an effective dose of nalfurafine (0.04 mg/kg) blocks icilin (0.50 mg/kg)-
induced wet-dog shakes by inhibiting glutamate release intrastriatally. In doing so, we can
confirm involvement of the dorsal striatum following icilin administration and suggest a
possible mechanism for kappa opioid mediated inhibition of icilin-induced wet-dog shakes.
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2. Methods
2.1. Animals and surgery

Male Sprague Dawley rats (150-175 g, Ace Laboratories, Boyertown, PA) were housed in
groups of 4 at 23 ± 1°C with food and water provided ad libitum, according to Temple
University Institutional Animal Care and Use Committee regulations. A standard light-dark
cycle was maintained with a timer-regulated light period from 0700 to 1900 h.

Rats were anesthetized with ketamine and acepromazine (150 mg/kg + 2.5 mg/kg, i.p.) and
secured into a stereotaxic frame (Harvard Apparatus, Holliston, MA) with the incisor bar
positioned at –3.3 mm. A microdialysis cannula (CMA/12; CMA/Microdialysis, Chelmsford,
MA) was implanted into the dorsal striatum using the following stereotaxic coordinates from
bregma, AP +0.8 mm, ML +3.0 mm and DV-4.0 mm (Paxinos and Watson, 1997). Following
implantation, the cannula was affixed with the dental acrylic, Durelon™ carboxylate (CMA/
Microdialysis). After solidification of the dental cement, each rat was placed singly in a cage
and returned to the animal facility for 2 days to recover.

2.2. In vivo microdialysis perfusion
On the day of the experiment, each rat was weighed and briefly anesthetized with isoflurane.
The dummy probe was removed from the cannula and replaced with a 2 mm CMA/12
microdialysis probe connected to FEP tubing. The rat was placed into an individual chamber
of a Plexiglas observation box.

Upon regaining consciousness, the rat acclimated in its chamber for 30 min and artificial CSF
[aCSF; NaCl (147 mM), CaCl2 (1.2 mM), KCl (2.7 mM), MgCl2 (0.85 mM)] flowed through
the probe at a rate of 2 μL/min, controlled by a syringe pump. Steady-state equilibrium of
dialysate was achieved with a 90-min washout period prior to four consecutive baseline
collections. Dialysate samples were collected in 15-min intervals and rat behavior was
observed for the duration of the experiment.

In experiment 1, following baseline collections, rats were pretreated with s.c. nalfurafine (0.04
mg/kg) or vehicle (saline) 30 min before i.p. icilin (0.50 mg/kg) or vehicle (1% Tween 80).
These agents were administered in a volume of 1 mL/kg. Dialysate samples were collected for
120 min following icilin or vehicle treatment and stored at -80°C for neurochemical analysis.
Dialysates from rats with proper probe placements were analyzed using HPLC.

In experiment 2, following baseline collections, norbinaltorphimine (NBNI; 100 nM) or aCSF
was infused through the microdialysis probe for the duration of the experiment. Sixty min
following the start of this infusion, rats were given s.c. nalfurafine (0.04 mg/kg) or saline. Icilin
or vehicle was given 30 min after nalfurafine. Dialysate was collected for 120 min following
icilin administration and stored at -80°C for neurochemical analysis. Samples from rats with
proper probe placements were analyzed using HPLC.

2.3. Behavioral experiment
Similar to the microdialysis experiment, rats were cannulated intrastriatally with a CMA/12
microdialysis probe and recovered for 2 days prior to experimentation. On the day of the
experiment, rats were allowed to acclimate for 2.5 h (correlating with the microdialysis time).
Norbinaltorphimine (100 nM) or aCSF was infused through the microdialysis probe for the
duration of the experiment. Sixty min after the start of infusion, rats were pretreated with s.c.
nalfurafine (0.04 mg/kg) or saline for 30 min, followed by icilin (0.50 mg/kg). Icilin-induced
wet-dog shakes were counted in 5-min increments for 30 min noting onset of action and the
presence of side effects (e.g. abdominal writhing). Because of the intensity of icilin-induced
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wet-dog shakes, we were unable to monitor shaking behavior while making sample collections
simultaneously. Similar to the previous microdialysis experiment, rats were euthanized and
brains removed to check for probe placement and damage.

2.4. Histology
Rats were euthanized with carbon dioxide gas and decapitated following microdialysis or
behavioral experiments. Brains were extracted and placed in 4% formaldehyde in phosphate
buffered saline (pH 7.0). Sections were sectioned with a cryostat and stained with 0.5% cresyl
violet. Probe placement and histological damage were determined by microscopic
visualization.

2.5. Amino acid analysis
Samples were usually run 5-7 days following experimentation. Probe placement and histology
were confirmed prior to analysis. For glutamate derivatization, 5 μL of dialysate or amino acid
standard was mixed with 5 μL sodium borate (8 mM, pH 9.5), followed by addition of 5 μL
KCN (12 mM). The resulting solution was mixed with 4 μL of naphthalene dicarboxylate acid
(NDA) and derivatized for 5 min. Reaction of glutamate in the samples with NDA, in the
presence of cyanide ions in borate buffer, produces a stable, electrochemically and UV-
detectable 1-cyano-(f)-isoindole derivative.

After derivatization, 15 μL of the mixture was injected on to a 5-μm C-18 reverse phase column
(150 × 4.6 mm) (Phenomenex Inc. Torrance, CA) with a LKB 2150 HPLC pump (Pharmacia
Biotech, Uppsala, Sweden) and eluted with 20 mM sodium citrate buffer (pH 7.5) containing
50% methanol, using a linear gradient with 100% methanol. Varying the buffer and the gradient
conditions affected glutamate retention times but did not influence quantitative analysis. The
flow rate was 0.60 mL/min. Glutamate was detected with a model HP 1050 diode array detector
(Hewlett Packard Company, Atlanta, GA). Glutamate was identified by overlaying absorption
spectra at 420 and 440 nm and quantifying at 420 nm using HP Chemstation software (Hewlett
Packard Company) based on peak area by comparison with an external standard calibration
curve ranging from 0.50 to 5 μM. The detection limit was 500 nM, based on signal to noise
ratio.

2.7. Materials
Icilin (AG-3-5), a gift from Delmar Chemicals Ltd. (Montreal, Canada), was suspended in 1%
Tween 80/distilled water. NBNI was purchased from Tocris Chemicals (Ellisville, MO) and
dissolved in aCSF. Nalfurafine, a gift from Adolor Company (Exton, PA), was dissolved in
saline. Amino acids were purchased from Sigma-Aldrich Chemical Company (St. Louis, MO)
and dissolved in double distilled water.

2.6. Data analysis
Glutamate levels were obtained prior to icilin or vehicle (1% Tween 80) administration. Each
post-baseline sample was expressed as the percentage of respective baseline values ± SEM of
results obtained from 5-11 rats. Results were analyzed using two-way analysis of variance
(ANOVA) for treatment x time with the repeated measures design followed by the Bonferroni
post-hoc test (Prism, GraphPad Software, San Diego, CA). Results were considered significant
at p<0.05.

To reflect overall changes in glutamate levels, area under the curve (AUC) values were
calculated from 15-60 min following icilin treatment, using KaleidaGraph (Synergy Software,
Reading, PA) and expressed in histograms. One-way analysis of variance was applied to each
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of the AUC values and compared using Newman-Keuls (GraphPad Prism). Results were
considered significant at p<0.05.

In behavioral experiments, group data are expressed as mean wet-dog shakes ± SEM of the
results obtained from 6-8 rats. Comparisons were performed using one-way analysis of
variance followed by the Newman-Keuls post-hoc test (GraphPad Prism). Results were
considered significant at p<0.05.

3. Results
3.1. Histology

Eighty-one of 94 rats were confirmed to have proper probe placement in both behavioral and
microdialysis experiments. The histology and placement depicted in Fig. 1 represent probe
placement and damage in our standard microdialysis experiments. Rats not confirmed as
having proper probe placement were excluded from our studies.

3.2. Nalfurafine on icilin-evoked glutamate stimulation within the dorsal striatum
Two-way ANOVA with repeated measures design showed time and treatment significance [F
(df 3,17)=2.231; p<0.05]. Icilin (0.50 mg/kg) significantly (p<0.01) increased glutamate 15-
min post administration, and this was significant (p<0.01) when compared to those icilin-
treated rats pretreated with nalfurafine or rats given nalfurafine/vehicle and vehicle/vehicle.
Although glutamate levels appeared slightly elevated 30-90 min following i.p. icilin, given the
variability at these time points, this elevation was not significant (Fig. 2A).

One-way ANOVA [F (df 3,20)=5.784] following AUC analysis showed that nalfurafine
pretreatment significantly; (p<0.01) reduced icilin-stimulated increase in glutamate levels
within the striatum compared to icilin-treated rats (Fig. 2B). Icilin evoked a significant (p<0.01)
increase in glutamate levels when compared to nalfurafine/vehicle and vehicle/vehicle.

3.3. Intrastriatal infusion of NBNI reverses nalfurafine inhibition of icilin-induced wet-dog
shakes

One-way ANOVA [F (df 3,21)=6.774] showed that nalfurafine inhibition of icilin-induced
wet-dog shakes was significantly (p<0.05) reversed by intrastriatal infusion of NBNI. NBNI
infusion did not influence the incidence of icilin-induced shaking behavior (Fig. 3).

3.4. Intrastriatal perfusion of NBNI reverses the inhibition of icilin-evoked glutamate changes
by nalfurafine

Analysis of AUC values using one-way ANOVA [F (df 5,29)=5.078)] followed by Newman-
Keuls post-hoc test showed that NBNI significantly (p<0.01) reversed nalfurafine inhibition
of icilin-evoked glutamate stimulation (Fig. 4) and was significant (p<0.05) compared to
controls (aCSF/nalfurafine; NBNI/saline; NBNI/nalfurafine; aCSF/saline).

4. Discussion
Nalfurafine (0.04 mg/kg, s.c.) inhibits icilin-induced wet-dog shakes (Werkheiser et al.,
2006). Here, we report that nalfurafine also inhibits icilin-evoked glutamate release within the
dorsal striatum, suggesting that kappa receptor agonists, such as nalfurafine, may inhibit icilin-
induced wet-dog shakes through this mechanism. To confirm this, we successfully reversed
nalfurafine antagonism of icilin-evoked wet-dog shakes by unilateral infusion of the kappa
antagonist, NBNI, into the dorsal striatum. Likewise, we have also shown that intrastriatal
NBNI can reverse nalfurafine inhibition of icilin-evoked glutamate release which implicates
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the dorsal striatum in its behavioral action in rats. From our findings, we implicate the central
nervous system and, more specifically, the dorsal striatum in icilin-induced shaking behavior.

Nalfurafine (Seki et al., 1999;Togashi et al., 2002;Inan and Cowan, 2004) an effective
antipruritic in uremic pruritus (Wikström et al., 2005) should act similarly to other kappa opioid
receptor agonists, e.g. U50,488H and U69,593, commonly used in microdialysis studies. When
given alone, U50,488H (You et al., 1999) and U69,593 (Rawls and McGinty, 1998;Gray et
al., 1999), do not affect glutamate levels within the striatum. We are first to confirm, through
microdialysis, that the clinically useful kappa receptor agonist, nalfurafine, does not affect
glutamate levels in the striatum. In addition, Rawls et al. (1998) reported that NBNI increases
glutamate levels within the region when given at a higher concentration; however, the
concentration we selected (100 nM) did not affect glutamate levels (data not shown).

It is interesting that local infusion of an antagonist can reverse the activity of a systemically
administered agonist, but not uncommon. Rawls and McGinty (2000) perfused naltrindole into
the striatum and significantly reduced amphetamine-evoked glutamate levels in this region.
Likewise, Gray et al. (1999) perfused NBNI directly into the striatum and reversed U69,593
inhibition of amphetamine-evoked glutamate stimulation within this region. Shippenberg et
al. (1993) blocked the development of conditioned place preference induced by systemic
morphine by infusing the D1 antagonist, SCH-23390, unilaterally into the ventral striatum.
Lastly, perfusion of the NMDA antagonist, (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-
phosphonic acid, unilaterally into the striatum, blocked stimulant behavior caused by the
systemic administration of the D1 receptor agonist, SKF-38393 (Keefe and Gerfen, 1996).

Since activation of kappa opioid receptors decreases glutamate release intrastriatally (Hill and
Brotchie, 1995;Rawls and McGinty, 1998;Gray et al., 1999;Hill and Brotchie, 1999;Rawls et
al., 1999) and extrastriatally (Gannon and Terrian, 1992;Maneuf et al., 1995;Sbrenna et al.,
1999), we cannot establish how icilin acts to increase glutamate levels in the dorsal striatum
or how a kappa agonist, like nalfurafine, reverses the behavioral or neurochemical action of
icilin in rats. Although we have shown that icilin increases glutamate release we have not
observed overt seizures in rats following intraperitoneal, intrastriatal or intracerebroventricular
injection of icilin (data not shown). In future experiments, we must separate glutamatergic
stimulation by extrastriatal afferents (e.g. corticostriatal and thalamocortico processes) from
that of trans-synaptic glutamate release by targeting components of striatal circuitry (e.g.
substantia nigra, globus pallidus, subthalamic nucleus) and better determine the role of the
dorsal striatum in icilin-induced wet-dog shakes.

Finally, nalfurafine antagonizes icilin-evoked glutamate release within the dorsal striatum, yet
fails to completely abolish the shaking behavior observed with even a low dose of icilin (0.50
mg/kg). Since kappa opioid receptor activation inhibits glutamate release in many extrastriatal
brain regions, the failure of nalfurafine to completely antagonize icilin-induced wet-dog shakes
along with the intensity of its overt stimulant behavior, supports the involvement of other brain
regions [e.g. the hypothalamus (Maldonado et al., 1992), locus coereleus (Hoshi et al., 1987;
Liu et al., 1999) hippocampus (Ohno et al., 1987) and ventral tegmental area (Wang et al.,
2004)] and neurotransmitters [e.g. serotonin (Yap and Taylor, 1983;Fone et al., 1991),
dopamine (David et al., 2005), acetylcholine (Turski et al., 1984)] in icilin-induced wet-dog
shakes. In the future, it is imperative to investigate the role of multiple brain regions and
neurotransmitters in icilin-evoked shaking behavior.

Nevertheless, we believe that our findings implicate a role for the central nervous system and,
more specifically, the dorsal striatum in icilin-induced wet-dog shakes. By doing so, we suggest
a possible mechanism for kappa-mediated inhibition of icilin-induced wet-dog shakes and
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extend the in vivo pharmacological profile of icilin, a therapeutically beneficial cold-inducing
agent, beyond its role as an agonist on TRPM8 and TRPA1 receptors within the periphery.
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Fig1.
A representative cresyl violet (0.5%) stained brain section that depicts probe placement and
histological damage resulting from insertion of microdialysis probe and subsequent
microdialysis experiment. The anatomical placement within the dorsal striatum of all dialysis
probes used in the study (AP +0.8 mm, ML +3.0 mm DV-4.0 mm) was based on Paxinos and
Watson (1997). CC=Corpus callosum; DS= Dorsal striatum.
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Fig 2.
A. Rats were injected with either icilin or vehicle after the 0 min collection. At 15 min, 0.50
mg/kg icilin (■) increased glutamate levels significantly compared to icilin rats pretreated with
nalfurafine (▲) or controls [saline (sal)/vehicle (veh) (●) or nalfurafine (nalfur)/veh (▼)] as
well as pretreatment levels (**p<0.01; two-way ANOVA followed by Bonferroni post hoc
test). B. Area under the curve (AUC) was analyzed for the first 60 min (15-60 min) following
icilin and confirmed inhibition of icilin-evoked glutamate release by nalfurafine (**p< 0.01;
one way ANOVA followed by Newman Keuls post-hoc test). Nalfurafine had no effect on
glutamate levels compared to pretreatment glutamate levels or saline/vehicle.
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Fig 3.
Perfusion of norbinaltorphimine (NBNI) directly into the dorsal striatum significantly reversed
nalfurafine inhibition of icilin (0.5 mg/kg)-induced wet-dog shakes (WDS) over the 30 min
test period (* p< 0.05; one-way ANOVA followed by Newman Keuls post-hoc test).
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Fig 4.
AUC analysis for the first 60 min following icilin showed that NBNI significantly (** p<0.01)
reversed nalfurafine inhibition of icilin (0.05 mg/kg) evoked glutamate increase (one-way
ANOVA followed by Newman-Keuls post-hoc test).
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