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Energy landscape theory is used to obtain optimized energy
functions for predicting protein structure, without using homology
information. At short sequence separation the energy functions
are associative memory Hamiltonians constructed from a database
of folding patterns in nonhomologous proteins and at large sep-
arations they have the form of simple pair potentials. The lowest
energy minima provide reasonably accurate tertiary structures
even though no homologous proteins are included in the construc-
tion of the Hamiltonian. We also quantify the funnel-like nature of
these energy functions by using free energy profiles obtained by
the multiple histogram method.

When a protein folds in the test tube, the information
contained in its one-dimensional sequence is transformed

into the three-dimensional information of its native protein
structure. It is not a surprise then that the theory of protein
folding has many common themes with more abstract problems
of the statistical mechanics of information processing (1). Be-
yond the analogies at a theoretical level, many approaches to the
practical problem of protein structure prediction can profitably
be viewed as connectionist schemes for learning the proper
sequence–structure associations from the database of known
protein structure–sequence pairs. The commonality of view-
point between folding and machine learning is quite explicit for
schemes to predict local secondary structures from sequence that
use neural networks (2). Going further, using this philosophy we
have developed a series of algorithms for predicting tertiary
structure that are based on simulated annealing of ‘‘associative
memory (AM) Hamiltonians’’ (3, 4). These models make very
active use of statistical mechanical landscape theory and capture
the notion of landscapes tunable from those with perfect funnels
to nearly random rugged landscapes (5–7). We have shown that
these methods work quite well when the database of input
structures includes one (or more) homologs. When more than
one homolog is present the predicted structures combine good
elements of each homolog (8) and indeed give a more accurate
structure than any of the inputs. How far can this ability to
generalize be pushed? What if no protein with similar overall
structure is yet known? Can even small fragments of correct
structure in known examples be combined? In this paper we will
describe the performance of optimized AM Hamiltonians that
do not use homologs in their input. Thus these algorithms
provide ab initio predictions of the three-dimensional protein
structures. We use the word ab initio not to mean starting from
the underlying physiochemical forces alone, as some do, but
rather as starting without knowledge of globally similar folds, the
less pure but more practical meaning (9).

One crucial idea in understanding protein folding in the
laboratory has been that proteins are not randomly chosen
systems but are special heteropolymers: their free energy land-
scape is only minimally frustrated so they fold into unique states
rather than having alternate deep traps of wildly different
structure. There may be exceptions to this general rule for many
biomolecules: prions in nature, the Janus proteins synthesized in

the laboratory (10) or, remarkably, some examples in the RNA
world. Nevertheless we can use this idea in a practical way by
ensuring that any energy function we use is minimally frustrated
for those natural proteins that are known to fold to unique
(average) low-resolution structures. To do this one must make
the idea of minimal frustration a quantitative principle rather
than merely a qualitative statement. This quantification involves
knowing the phase diagram of the protein model and especially
locating the folding and glass transitions (1). One way to do this
assumes that in the vicinity of non-native structures the land-
scape of natural proteins resembles that of a simple random
heteropolymer. If so, the minimal frustration principle can be
formulated as maximizing the energy gap between native struc-
tures and non-native decoys, in units of the energy variance of
the misfolded structures. We used this optimization procedure
for AM Hamiltonians long ago (4), but it also has been used to
find energy functions useful for sequence–structure alignment
and to set scaling parameters in energy functions whose form is
based on a priori reasoning from detailed molecular physics (11).

Unlike the situation for many machine learning problems
formulated in an abstract framework, the structure space for
proteins is not uniform and is quite varied: one must discrim-
inate native folds not only from other fully collapsed structures
but also from expanded ones with correct secondary structure,
collapsed structures with good phase separation between
hydrophobic and hydrophilic residues, etc. Different parts of
the energy function determine the stability of each of these
regions to varying extents. Thus implementing the minimal
frustration principle involves an iterative scheme that con-
strains the statistics of the different classes of decoys and that
self-consistently eliminates the deepest non-native traps. We
implemented such a scheme for AM Hamiltonians when
homologs were included in the database (12). Our goal here is
to report on the results of carrying out a similar scheme
without using homologs. In addition to describing the energy
function and detailed optimization scheme, we present results
of simulated annealing using the resulting energy function,
limiting ourselves here to a study of all alpha-helical proteins.
We also show free energy profiles that quantify how funnel-
like or rough are the energy landscapes that result from the
optimization scheme.

Materials and Methods
AM, Contact, and Backbone Potentials. To allow molecular dynam-
ics simulation of the entire folding process, we use a coarse-
grained description of the protein. Each amino acid residue is

Abbreviation: AM, associative memory.
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represented by the three atoms, Ca, Cb, and O. The correspond-
ing equations of motion for these atoms involve residue–residue
or sequence-dependent interactions in addition to a backbone
potential that maintains chain connectivity and correct peptide
stereochemistry. Interactions between residues at short to me-
dium range sequence separations are described by AM poten-
tials, and between more distant pairs by a series of piecewise
contact potentials whose forms are chosen to roughly mimic the
behavior of long-range pair correlations for Cbs. The AM
potential is based on correlations between a target’s sequence
and the sequence-structure patterns in a set m of memory
proteins. The pairs in the target and in the memory are first
associated by using a sequence–structure threading algorithm (4,
8), and in the present ab initio folding study, the memory proteins
contain no protein homologous to the targets (see Appendix).
Table 1 lists the highest Q memory protein for each target. Thus
only fragmentary, local in sequence patterns are expected to be
found by the threading procedure. The energy parameters g
encode similarity between residue pairs i and j in the target and
the aligned pairs i9 and j9 in the memory proteins. We use a
simplified, four-letter code {Pi} to represent the 20 naturally
occurring amino acids. The AM potential encoding these
sequence–structure patterns is given by

VAM 5 2O
m

n O
i , j

N

g~PiPjPi9
mPj9

m!Q~rij 2 ri9j9
m !,

where the structural similarity is measured by Gaussian functions
Q. The parameters {g} are learned by the optimization proce-
dure. Between nonadjacent residues the rij distances are taken
only between the Ca and Cb atoms on each residue. This gives
rise to four interactions per residue pair. Different g values are
used for the two proximity classes: short j 2 i , 5 and medium
range 5 # j 2 i # 12. The specific amino acids in each category
are hydrophilic (Ala, Gly, Pro, Ser, Thr), hydrophobic (Cys, Ile,
Leu, Met, Phe, Trp, Tyr, Val), acidic (Asn, Asp, Gln, Glu), and
basic (Arg, His, Lys). Interactions between residue pairs distant
in sequence (ui 2 ju $ 13) are described by pair potentials
between pairs of Cb atoms Vlong(Pi ,Pj ,r i j) 5 ¥k51

3

ck(N)gk(Pi,Pj)U(rij, rk), which are approximated by three
smoothed square wells covering the regions: 4.5 , rij , 8.0,
8.0 , rij , 10, 10 , rij , 15 (units of Å). The precise form
of U(rij,rk) is

U~rij,rk! 5
1
4
~~1.0 1 tanh~s~rij 2 rk

min!!~1.0 1 tanh~s~rk
max 2 rij!!,

where s controls the sharpness of the potential boundaries, and
rk

min,max are the endpoints of the intervals. The contact potential
includes an additional scaling, ck(N) 5 1y(Nak 1 bk), to account

for the variation in the number of contacts over the three contact
wells. C(N) is found from fitting the number of contacts in each
of the regions as a function of the sequence length of the target
proteins, and the parameters are given in Table 2.

The backbone potential, described in detail elsewhere (13, 14),
has been updated to include a periodic torsion potential (VFC)
that provides a better fit to the backbone torsion angles observed
in a recent Ramachandran map for nonglycine residues in
well-resolved x-ray structures (15). The total potential used in
the molecular dynamics simulations is

VT 5 ~VAM 1 Vlong! 1 lfcVFC 1 lxVx 1 lexVex 1 lharmVharm,

where Vx is a chirality potential that biases L-amino acid
chirality, Vex are the excluded volume potentials applied to
nonbonded carbon and oxygen atoms that approach within
3.5 Å for (j 2 i) , 5, and 4.5 Å for (j 2 i) $ 5. Vharm is the
sum of three quadratic potentials that are used along with a
series of SHAKE (16) constraints to provide backbone rigidity,
maintain the planarity of the peptide bond, and maintain the
appropriate bond angles. The sequence-dependent potentials,
VAM and Vcontact, are simultaneously optimized as described
below. The energy parameters g have been scaled so that the
average value of the native state energy per residue per inter-
action over the training set is 1. The weights of the backbone
terms, listed in Table 2, have been empirically chosen.

Constrained Self-Consistent Optimization. The simplest statistical
mechanical treatment of the phase diagram depends on only a
few average properties of native structures and globules. The
glass transition temperature is given by the energetic variance of
the misfolded ensemble Tg . ÎDE2yÎSmg . The collapse tem-
perature depends on the mean energy of the globule states, Tc .
Emg yN . The folding temperature Tf is given by the ratios of the
difference in energy between the native state and the globules
and the entropy, Tf . dEySc. More elaborate polymer theoret-
ical estimates of compact globules suggest this is a good approx-
imation (17). We find these collapsed structures do have some
nativelike components. The structures or conformations in the
molten globule ensemble have an average Q-value of 0.2 and a
radius of gyration Rg of 1.2. The unconstrained maximization of
TfyTg is equivalent to maximizing the ratio dEyDE.

In the AM Hamiltonians the potentials are a sum of terms ji,
each representing a basic form of interaction. In the present
study, the jis depend on amino acid class and the proximity of
two amino acids in the sequence, as described above. If the
interactions are weighted by linear parameters gi, the energy gap
and variance (and the corresponding temperatures) can be
expressed simply as dE 5 Ag and DE2 5 gBg. A and g are vectors
of dimensionality equal to the number of interaction types, and
B is a matrix given by

Ai 5 ^ji&mg 2 ji ,native

Bij 5 ^jijj&mg 2 ^ji&mg^jj&mg.

These averages depend on the frequencies at which any given
interaction occurs in the molten globule and native configura-
tions. Maximizing the energy ratio amounts to varying the
interaction weights gi and leads to an optimization problem that

Table 1. The Q score and name of the most homologous protein
used in the memory set for each training protein

Training protein Best memory Q

1r69 2a0b 0.29
1utg 2a0b 0.33
3icb 1nsg 0.33
256B(a) 1au1(a) 0.31
4cpv 1avs(b) 0.29
1ccr 1lki 0.22
2mhr 1rcb 0.27
1mba 1col(a) 0.24
2fha 1vin 0.18
1rgp 1axd 0.20

Table 2. Backbone potential parameters

lx lfc lex lharm s a1, b1 a2, b2 a3, b3

40.0 2.0 20.0 30.0 7Å21 1.0 0.0065,0.87 0.0419,0.13

lx, lfc, lex, and lharm are in units of the AM interaction energy, «.
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can be solved by straightforward linear algebra, g 5 B21 A up
to a scalar multiple.

The mean energy of the molten globule distribution (and the
corresponding collapse temperature) is a linear function of the
interaction weights, ^E&mg 5 A9g.

For off-lattice models, unlike many lattice model studies of
sequence design and folding kinetics, which often concentrate
on fully collapsed structures alone, efficient folding via mo-
lecular dynamics simulation requires a more complete statis-
tical mechanical treatment of the phase diagram. These better
approximations must account for the existence of partially
ordered ensembles of states, with varying degrees of collapse
and secondary structure formation (4, 12). So that such states
not become competitive with the native state energy, the
contribution to the mean energy of the globules from inter-
actions in each proximity class are constrained. In models with
interactions of different ranges there also can be different glass
transition temperatures associated with structures on different
length scales. This behavior is predicted by the generalized
random energy model of Derrida (18), which has been used for
random heteropolymers with contact potentials (17). It is
necessary to constrain the variances, as well as the means, of
subensembles, otherwise too large interactions in the short
sequence range could lead to the dynamical freezing of
short-range interactions, for example, at a temperature that is
high relative to the Tg for fixing structures involving the more
distant in sequence interactions (19). The mean energy and
variance of the molten globule distribution expressed in terms
of contributions from the short-, intermediate-, and long-range
interactions are fixed by imposing linear constraints in the
following optimization functional

R 5 Ag 2 O
k 5 1

5

lk~A9kg 2 ck! 2 O
k 5 6

10

lk~gB9kg 2 ck!,

where the first two terms in the sums correspond to the
secondary and supersecondary interactions, lk are the La-
grangian multipliers, and ck the constraint values. Maximizing
this functional is equivalent to maximizing the folding tem-
perature (energy gap) while fixing the collapse and glass
transition temperatures of the subensembles. In writing the
functional we have ignored correlations between the various
interaction classes. Indeed these correlations are so small that
they are hard to statistically determine by sampling. The
constraints are chosen so that the energy of any molten globule
configuration is evenly distributed among the length scales
(20). Because the globules have f lickering, native-like ele-
ments the glass transition temperature Tg is estimated from the
variance B9, which contains only the non-native part of the
energy of any molten globule configuration. Projecting out
native-like contacts is consistent with the assumptions of the
random energy model estimate of Tg. Constrained optimiza-
tion leads to the simple variational equation

K O
k 5 6

10

lkB9kLg 5 KA 2 O
k 5 1

5

lkA9kL ,

where ^ & indicates an average over a set of training proteins. The
ensemble of compact misfolded structures for each training
protein is generated initially from translations of the training
sequences along a database of unrelated structures. Subsequent
iterations are generated by molecular dynamics. Because the
misfolded structures are partially ordered and have a tendency
to satisfy any especially large interaction energy term, the
variational equation is solved iteratively to obtain the interac-
tions weights g(n). In this self-consistent optimization the low-

energy misfolded structures are generated through molecular
dynamics simulations by using the g(n21) values from the pre-
vious round. The ensembles are generated in constant temper-
ature simulations and the structures are censored to have Q ,
0.4. Each round of optimization combines the interaction pa-
rameters from previous optimization by a simple average, g9n 5
«gn21 1 (1 2 «)gn. This is analogous to conjugate gradient
optimization.

At each step n in the constrained self-consistent optimiza-
tion, the energy gaps and variances of the molten globule states
obtained in constant temperature molecular dynamics simu-
lations with the gn21 iterate energy parameters were evaluated.
The optimized interaction weights g are the solutions of the
matrix linear algebra equation (12) for the training set and the
current set of misfolded states. The AM Hamiltonian with two
proximity classes has 512 interaction weights, and the contact
potential with three proximity classes has an additional 30. For
a given set of training proteins and a given misfolded ensemble,
some of these interactions may be sampled only rarely due to
practical limitations on the size of the training set and the set
of misfolded states. To avoid attaching an erroneously large
weight to such noisy interactions, we have filtered the modes
of the B9 matrix with very small variance:

~B*! 2 1 5 M~l*! 2 1MT.

Here M is the matrix of eigenvectors of the unfiltered B9
matrix and (l*)21 is the diagonal matrix obtained from the
diagonal matrix of eignvalues by zeroing out eigenvalues below
a cut-off. By setting small eigenvalues equal to zero, we ignore
these modes.

Results
The interaction weights g were optimized by using a set of
well-resolved Protein Databank structures from the class of
alpha-helical proteins. Ten training proteins were chosen from
the most populated fold architectures (topologies) in the Cath
(21) database: nonbundle [1r69(434repressor), 1utg(uteroglo-
bin), 3icb(recoverin), 4cpv(recoverin), 1ccr(arc repressor),
1mba(globin), 1rgp(G-protein, GTPase Activation domain)]
and bundle [2mhr(four-helix bundle), 256ba(four-helix bun-
dle), 2fha(granulocyte colony-stimulating factor)]. The 10
training proteins were aligned to a set of 36 alpha-helical
proteins (see Appendix) by using the threading algorithm of
Koretke et al (8). Individual memory sets were modified so that
each one contained no proteins homologous to the training
protein used. The alignments of the training proteins to the
corresponding sets of memory proteins constitute the AM
Hamiltonian.

The gaps and variances generated with the last round
of iteration are shown in Fig. 1. Consistent with the imposed
constraints, the energy gap between the folded state and
the mean of the molten globule distribution is roughly
equally divided between the short-range and long-range
interactions.

Structure Prediction Without Homologs via Molecular
Dynamics
Starting from extended configurations with randomized fc
angles, the 10 training set proteins and three proteins that were
not part of the training set were annealed by molecular dynamics
using the energy parameters corresponding to Fig. 1. Using the
standard annealing protocol, each run uses approximately 6 h on
a SGI Origin 200 workstation. The results seem to be well
equilibrated, so it is possible shorter runs would do as well. We
measure the progress of the molecular dynamics trajectories by
means of two order parameters, Q and Qcut. Q is the fraction of
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all native Ca pair distances, and Qcut is the same fraction,
counting only pairs within some cut-off distance:

Q 5
2

~N 2 1!~N 2 2!
O

i , j 2 1

exp F2
~rij 2 rij

N!2

2sij
2 G

Qcut 5

Oi , j 2 1u~rc 2 rij
N!exp F2

~rij 2 rij
N!2

2sij
2 G

Oi , j 2 1u~rc 2 rij
N!

.

Here rij refers to Ca distances, and we have chosen rc 5 8.0 Å.
The advantage of Qcut is in its similarity to typical contact order
parameters, such as have been used in lattice studies. The
off-lattice Q, on the other hand, includes pairs that are separated

by large distances and is sensitive to domain rotations and other
distortions.

The Q of the best structure in each of the runs performed for
all 10 training proteins is given in Fig. 2. The data in the figure
indicate that simulated annealing using the energy function is
more successful on shorter proteins than it is on longer ones. Fig.
3 presents sample folding and unfolding trajectories for 434
repressor, of length 63, and myoglobin, which has length 146. The
folding trajectory of myoglobin is typical of the longer training
proteins, in that collapse to nearly the final value of Q occurs at
a relatively high temperature. Moreover, the size of the fluctu-
ations in Q is somewhat smaller than in the case of the repressor.
Both of these observations suggest that the collapse character-
istics of the energy function are not yet optimum for longer
proteins. Even so comparison of the folding and unfolding
trajectories shows that the potential yields more native-like
structures with energies comparable to those of the best struc-
tures in the folding run. Although it has lower overall quality, the
Qbest structure still has a Q of over 0.4 for up to half of the
molecule.

For the test set we chose three alpha-helical targets from the
CASP3 structure prediction experiment (22), which were rated
as moderately difficult: 1bg8(a), 1jwe, and 1bqv. Again, no
homologous proteins were used in the memory set. Further-
more, these proteins are not homologs of any of those used in
training. As shown in Table 3, our method gives substantially
correct structures for these proteins. The superpositions of
predicted and native structures in Fig. 4 indicate that the correct
topology has been achieved over the majority of the protein in
all cases. The Qbest structures appearing in Table 3 are typically
sampled near the folding temperature and further annealing

Fig. 2. Qbest values obtained from the simulated annealing runs of the 10
training proteins. The proteins are ordered by sequence length. A total of 2–5
runs were performed for member of the training set and the best Q encoun-
tered in the run is plotted as Qbest.

Fig. 3. Folding and unfolding trajectories for myoglobin (1mba) and 434
repressor (1r69). (Upper) Q as a function of temperature. (Lower) The poten-
tial energy as a function of temperature.

Table 3. Summary of results from simulated annealing of test
set proteins

Protein N Qbest rmsdbest Qf Nf rmsdf

1bqv 110 0.28 13.2 0.43 70 5.08
1jwe 114 0.28 11.9 0.36 60 7.4
1bg8(a) 76 0.40 8.87 0.44 65 5.3

All simulations began from a random coil configuration. Qbest is the struc-
ture with the best overall Q, rmsdbest is the rms deviation of that structure. Qf,
Nf and rmsdf refer to superpositions of fragments of the best Q structure onto
the corresponding fragment of the x-ray structure.

Fig. 1. Distribution of conformational energies for the 434 repressor. The
figure shows the energies of the misfolded ensemble of states as well as that
of the native state. The misfolded conformations were generated in a con-
stant temperature molecular dynamics simulation at a reduced temperature
of 1.2. Energies were evaluated by using the final interaction weights ob-
tained from the self-consistent optimization procedure.

14238 u www.pnas.org Hardin et al.



Fig. 4. Structural alignments of Qbest structures from simulated annealing of one training set protein (434 repressor) and the three test set proteins to their x-ray
structures. Native structures are shown as lines, and the predicted structures as solid ribbons.
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degrades the overall structure as shown in the folding trajectories
in Fig. 3. The precise structures observed at low temperatures
typically have energies lower than that of the x-ray structure.

At any given temperature the structure of the energy land-
scape may be explored more quantitatively by examining the
total free-energy and energy as a function of Qcut. Using a
multiple-histogram sampling technique (23), we computed the
free energy profiles for our optimized model. For comparison we
also calculated the free energy surface for a Go-like model with
the same backbone, which stabilizes only native contacts (24).
The Go model possesses a nearly ideal, funneled landscape (14).
The results of this analysis at a temperature near the folding
temperature are shown in Fig. 5. In both cases, the total energy
is funneled towards the native state, Qcut 5 1. As expected, the
Go model is smoothly funneled over the entire range. The energy
function optimized for structure prediction yields a more
caldera-like landscape. For the training protein 1r69 the land-
scape is funneled only to about Qcut 5 0.6, after which the energy
profile levels off. For 1bg8(a), the deviation from a perfect
funnel is more dramatic, with the energy actually increasing
somewhat as higher Q states are sampled.

Conclusion
The results of this paper show that the present self-consistent
optimized AM Hamiltonian allows the ab initio structure pre-
diction of small alpha-helical proteins via molecular dynamics
with simulated annealing. Preliminary investigation of a similar
treatment for ayb and all b proteins already yields results of
similar quality. The ability to predict correct overall structures
without using homology information was achieved by introduc-
ing a finer division of amino acid classes beyond just simple
hydrophobicity as well as constraints to control the energetic
balance between short-, intermediate-, and long-range interac-
tions. Degradation in the quality of prediction by simulated
annealing with increasing sequence length might be addressed by
simply splitting the training set, and separately optimizing for
longer proteins. This may reflect an important role of nonad-
ditive forces in the collapse. We see that the AM Hamiltonian
framework provides an approach that allows the harmonious
marriage of threading and ab initio strategies for protein struc-
ture prediction.

Appendix
The 10 alpha-helical proteins varied in length from 63 to 100 and
83 amino acids: 1r69, 1utg, 3cib, 256ba, 4cpv, 1ccr, 2mhr, 1mba,
2fha, 1rgp. They were selected to represent the various classes of
well-resolved x-ray structures appearing in the pdb select 95 (25).
After removing structures determined by NMR, those with
resolution greater than 2.0 Å and those with length greater than
200, pairwise alignments of the remaining proteins were con-
ducted, and the list was iteratively processed to eliminate any
protein with a Q to any other protein in the list greater than 0.5.
This resulted in a list of 38 proteins from which the memory
proteins for the AM Hamiltonian potentials were selected. The
selection process eliminated any memory protein with structural
overlap greater than Q . 0.4 to any of the training proteins. The
38 memory proteins were: 1a17, 1a28a, 1aa7b, 1aep, 1ah7, 1ail,
1ak0, 1au1a, 1avsb, 1axda, 1b4fh, 1baj, 1beo, 1bgf, 1bjaa, 1bl0a,
1c3d, 1cf7, 1cola, 1e2aa, 1hiws, 1hula, 1huw, 1jhga, 1kxu, 1lbd,
1lis, 1lki, 1nsgb, 1pbv, 1rcb, 1szt, 1tx4a, 1vin, 256ba, 2a0b, 2abk,
5icb.
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