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Top i ca l Rev iew

Can homeostatic circuits learn and remember?
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Alterations in synaptic strength are thought to represent the cellular basis of learning and
memory. While such processes appear to be fundamental to all synapses, until recently there
has been a relative dearth of information regarding synaptic ‘memory’ processes in autonomic
circuits. Here we examine recent advances in our understanding of plasticity at glutamatergic
synapses onto magnocellular neurosecretory cells in the hypothalamus, paying particular
attention to the contributions of noradrenaline in coding long-lasting pre- and postsynaptic
changes in efficacy. We also highlight recent work demonstrating that glial cells play a crucial
role in the induction of long-term potentiation. Based on the work reviewed here, we have a
clearer picture of the synaptic and cellular mechanisms that allow autonomic pathways to learn
and remember.
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It is generally accepted that alterations in the output of
a neural circuit require alterations in the strength of the
individual synapses that comprise that circuit (Bains et al.
1999; Malenka & Bear, 2004). This concept, which can
involve long-term changes in synaptic signalling, forms
the basis of how the brain learns and remembers. Synaptic
plasticity of this type is probably ubiquitous throughout
the nervous system yet its description has been limited
largely to circuits responsible for motor, cognitive and
behavioural processes with few descriptions of long-lasting
synaptic changes in neural pathways involved in restoring
homeostatic set points (e.g. osmotic balance) or pathways
that respond quickly to essential physiological demands
(e.g. lactation).

What would be the advantages of learning and
remembering in autonomic circuits? If one considers
that changes in the internal or external environment can
occur swiftly and endure for prolonged periods of time,
long-term alterations in synaptic strength may increase the
gain and/or sensitivity of system output for the duration
of the physiological challenge so that the demands of the
organism are met more efficiently. For example, in vivo
studies demonstrating augmented release of the neuro-
hormones vasopressin (VP) and corticotropin releasing
hormone (CRH) from the pituitary gland in response to
repetitive hypovolaemic challenges (Lilly et al. 1983, 1986;
Thrivikraman et al. 1997) hints at underlying learning and
memory processes that may reside in autonomic circuitry.
We will focus here on synaptic mechanisms that may
contribute to learning and memory at glutamate synapses

on the magnocellular neurosecretory cells (MNCs) of
the hypothalamus which are responsible for the synthesis
and secretion of VP and oxytocin (OT). MNCs from the
paraventricular nucleus (PVN) and supraoptic nucleus
(SON) send their axons to the posterior pituitary to release
VP or OT directly into the blood. OT is released into the
blood during parturition to facilitate uterine contractions
and in response to suckling behaviour during lactation to
promote milk letdown from the mammary glands. VP is
released in response to changes in body fluid homeostasis
(for review see Leng et al. 1999). These cells represent the
final integration step for both local changes in osmolarity
and afferent signals before neurohormone is secreted. This
property makes the MNCs ideally suited for the study
and interpretation of changes in synaptic strength as such
alterations can be directly related to changes in system
output (neurohormone release).

A number of other studies have provided the framework
to better understand the fundamentals of glutamatergic
signalling in this system. These will not be reviewed
here, but briefly, it is evident that excitatory postsynaptic
signals require the activation of AMPA/KA receptors
and NMDA receptors, while presynaptic metabotropic
glutamate receptors (mGluRs) are also present to decrease
transmitter release. Additionally, there is an important
role for glial cells in regulating transmitter spillover
and synapse independence. Here we will review some
recent advances in how presynaptic, postsynaptic and
glial-mediated mechanisms confer long-lasting plasticity
at excitatory glutamatergic synapses on the MNCs. We will
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examine activity-dependent and -independent synaptic
modifications induced by neuro and gliotransmitters,
including glutamate, ATP and d-serine, with a particular
focus on the neuromodulator noradrenaline (NA), which
is crucial in regulating MNC responses during lactation
(Michaloudi et al. 1997), parturition (Meddle et al.
2000) and challenges to fluid homeostasis (Day et al.
1984).

Tailoring mGluR activity to suit physiological demand

One of the initial demonstrations of synaptic learning and
memory in MNCs came from examining the effectiveness
of mGluRs after repetitive challenges with NA. mGluRs
are a heterogeneous family of G-protein-coupled receptors
categorized into three subfamilies (Conn & Pin, 1997).
There is extensive evidence that group III mGluRs
(mGluR 4, 7 and 8) regulate glutamate release onto MNCs
(Schrader & Tasker, 1997; Gordon & Bains, 2003; Panatier
et al. 2004). These receptors are located presynaptically
and function both as autoreceptors, which act as short
loop negative feedback receptors to mitigate the release of
glutamate, and heteroreceptors, which decrease the release
of GABA from neighbouring inhibitory terminals (Piet

Figure 1. Priming of mESPC frequency and amplitude by NA
Left panel: in control conditions, synaptic glutamate activates presynaptic mGluRs keeping mEPSC frequency low.
Middle panel: initial α1-adrenoceptor activation increases PKC activity causing an enhancement of mEPSC frequency
without changing mEPSC amplitude. Although the facilitating effect on mEPSC frequency is still limited by the
activity of functional mGluRs, during this time PKC is working to inactivate these autoreceptors. Right panel: the
consequences of mGluR inactivation become apparent when an additional NA challenge is administered in which
an increase in mEPSC frequency is observed that is substantially larger than the first. Successive α1-adrenoceptor
activation also results in dramatically larger mEPSCs that arise from the rapid release of stored calcium. The
mechanism underlying amplitude priming, however, has not been elucidated. The voltage clamp traces of mEPSCs
are adapted from Gordon & Bains (2003). Scale bars, 50 pA and 1 s.

et al. 2004). mGluRs are targeted (Sorensen et al. 2002) and
regulated (Macek et al. 1998; Peavy et al. 2002) by intra-
cellular messengers, including protein kinase C (PKC). In
the PVN, NA elicits a robust increase in the frequency
of miniature excitatory postsynaptic currents (mEPSC)
that requires Gq-linked α1-adrenoceptors and the
subsequent activation of PKC (Gordon & Bains,
2003). This ‘physiological’ activation of PKC inactivates
presynaptic group III mGluRs, effectively removing auto-
inhibition from glutamatergic synapses (Gordon & Bains,
2003). The functional consequences of this dis-inhibition
include a more robust increase in glutamate release in
response to subsequent applications of NA (Fig. 1). The
inactivation of mGluRs may partially explain in vivo
data demonstrating synergistic effects between glutamate
and NA on MNC excitability (Parker & Crowley, 1993).
The application of glutamate alone would increase MNC
activity, but at the same time temper the release of synaptic
glutamate by activating presynaptic mGluRs. In the
presence of NA, however, the inactivation of mGluRs
would remove the target by which exogenous glutamate
would curtail synaptic glutamate release. A mechanism
such as this might serve as one means by which autonomic
pathways, once primed by an initial challenge that releases
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NA in the hypothalamus, can respond more effectively to
additional stressors.

Inactivation of mGluRs can endure for at least 1 h in
the brain slice (author’s unpublished observation) but the
persistence of mGluR inactivation in the intact animal
remains incompletely understood. In control conditions,
mGluRs are tonically active on glutamate terminals
(Schrader & Tasker, 1997) and this level of activity is further
enhanced during dehydration (Boudaba et al. 2003) and
lactation (Oliet et al. 2001) when the retraction of glial
processes from synaptic elements (Tweedle & Hatton,
1977; Hatton & Tweedle, 1982) increases the accessibility
of synaptic glutamate to presynaptic mGluRs (Oliet,
2002). These findings argue against persistent mGluR
inactivation in response to dehydration and lactation, but
do not rule out the possibility that an acute, intense stressor
such as hypovolaemia may be better suited to unmask this
effect in the intact animal.

Increasing signal strength through
multi-vesicular release

In addition to the priming effects of NA on mEPSC
frequency, NA also causes a robust increase in the
amplitude of mEPSCs in PVN. This effect requires
calcium from presynaptic stores which synchronizes
the release of multiple glutamatergic vesicles (Fig. 1)
(Gordon & Bains, 2005). Detailed quantal analysis
combined with pharmacological tools revealed that large
mEPSCs observed during NA were associated with
a greater concentration of glutamate in the synaptic
cleft when compared with smaller mEPSCs. How the
release of additional vesicles and thus more glutamate
contributes to large amplitude mEPSCs during NA is still
unexplored. Possibilities include: (1) true multi-vesicular
release (MVR) at a single active zone or (2) MVR
in which single vesicles are synchronized across closely
apposed active zones, where accumulation of glutamate
at a single postsynaptic site occurs via transmitter
crosstalk (Wadiche & Jahr, 2001). A qualitatively similar
increase in the amplitude of mEPSCs has also been
reported following brief high-frequency stimulation of
MNC afferents (Kombian et al. 2000), but a mechanism
contributing to this observation has yet to be defined.
Similar to mEPSC frequency priming, NA-mediated MVR
becomes more evident with subsequent applications of
NA in some cells (Fig. 1) (Gordon & Bains, 2003). While
the specific mechanisms of this process have not yet been
elucidated, it is clear that some form of trial-to-trial
information storage is occurring for MVR at glutamatergic
synapses in MNCs.

Glial cells and long-term postsynaptic memory

These long lasting changes in presynaptic release
properties may interact with changes in postsynaptic

strength, similar to those described at synapses throughout
the nervous system (Malenka & Bear, 2004). This process,
termed long-term potentiation (LTP) or long-term
depression (LTD), has best been described under
conditions where coincident presynaptic and postsynaptic
glutamatergic activity provides sufficient transmitter
release and relief of magnesium block from NMDA
receptors, to increase calcium influx and alter the
number of postsynaptic AMPA receptors available to bind
glutamate (Malinow & Malenka, 2002). In the SON,
glutamate afferents, and in particular those originating
in the organum vasculosum of the lamina terminalis
(OVLT), exhibit NMDA receptor-dependent LTP and LTD
(Panatier et al. 2006a). Interestingly, the induction of
plasticity is precisely controlled by the astrocytes (a type of
glial cell) that ensheath the synaptic contacts. In the SON,
astrocytes serve as the sole source of d-serine (Panatier
et al. 2006b), the endogenous ligand for the glycine binding
site on the NMDA receptor. These experiments reveal that
when the concentration of d-serine is relatively high there
is robust NMDA activation resulting in reproducible LTP
in response to high-frequency stimulation of afferents.
Compromising the availability of d-serine, either by
inhibiting its synthesis or by decreasing the physical
interposition between glial cells and synapses, causes an
LTD of synapses in response to the same stimulation
parameters. The ability to induce LTP in the absence of
glial cells could be recovered by applying a more intense
stimulation protocol, suggesting that glial cells use d-serine
to not only activate NMDA receptors, but also to set
the threshold for plasticity in this system (Panatier et al.
2006b).

In addition to this activity-dependent form of
synaptic plasticity, recent work has described an
activity-independent form of long-term potentiation that
also relies on glial cells. While the end result, an insertion
of AMPA receptors to increase postsynaptic strength, is
the same, the steps by which this point is reached are
quite different. This latter form of plasticity critically
depends on the release of ATP in response to NA
(Gordon et al. 2005) and provides the first demonstration
linking calcium-permeable ATP-gated P2X channels to
AMPA receptor trafficking into the postsynaptic receptor
field. Even more striking, however, is that ATP was not
released by the neurons, but rather by glial cells which
possess α1-adrenoceptors (Fig. 2). This was confirmed by
demonstrating that (1) pure glial cell cultures released
ATP in the response to NA and (2) NA was unable to
increase the amplitude of mEPSCs when contact between
glial cells and synaptic elements was decreased following
dehydration. Collectively, these data suggest that the
physical relationship between neurons and glial cells can
allow, disallow or alter the threshold for the glial-mediated
induction of long-lasting postsynaptic plasticity and thus
synaptic memory in the MNCs.
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The utilization of glia ATP and P2X channels by NA
or afferent neuronal signalling and NMDA channels is
interesting as each type of plasticity possesses specific
properties. Unlike NMDA channels, P2X channels are not
regulated by magnesium in a voltage-sensitive manner
and thus do not require the same local depolarization
to become activated (North, 2002). Therefore, while
NMDA-mediated plasticity occurs at specific activated
synapses, P2X-mediated plasticity has no requirement for
coincidence detection to trigger synaptic strengthening, a
property that may be particularly useful for potentiating
hormone output in the absence of concerted afferent
glutamatergic activity. Additionally, glial cell processes can
also form physical communication points with adjacent
glia, resulting in a lattice of interconnected cells capable
of propagating short- and long-range signals (Charles

Figure 2. Induction of long-term synaptic strengthening by NA-mediated release of glial ATP depends
on the physical neuro-glia relationship
Upper panel, left: in the control state, where there is a relative abundance of glial processes surrounding synaptic
elements, glial cell α1-adrenoceptor activation triggers the release of ATP which can then activate postsynaptic
P2X channels on MNCs. P2X channel activation results in calcium influx and the activation of phosphotidyl inositol
3-kinase (PI3K) leading to the insertion of AMPA receptors which is manifested as a long lasting increase in mEPSC
amplitude. Upper panel, right: during states of chronic dehydration or lactation where there is a withdrawal of glial
processes from around synaptic elements, NA fails to elicit changes in mEPSC amplitude. Lower panel: average
mEPSC traces taken during control and 30 min after treatment. Left: NA causes a long-lasting increase in mEPSC
amplitude, an effect that is mimicked by the P2X receptor agonist BzATP. Right: the long-lasting enhancement of
mEPSC amplitude caused by NA is blocked either by the P2X7 antagonist Brilliant Blue G (BBG) or by withdrawal
of glial processes. Scale bars: 10pA, 5 ms. Data adapted from Gordon et al. (2005).

et al. 1991). This raises the possibility of glial influence
over spatial neuronal ‘domains’. That NA utilizes glial
ATP for the induction of long-term strengthening of
excitatory synapses, a molecule central to the propagation
of long-range glial signals (Anderson et al. 2004), suggests
that NA may also target glial cell networks to control
synaptic efficacy globally.

Plasticity and system behaviour

A critical aspect of MNC physiology is their ability to
undergo distinct patterns of action potential discharge
in vivo to elevate neurohormone secretion. Specifically,
individual VP cells produce a phasic bursting pattern,
whereas OT cells display coordinated milk ejection
bursts. Although the mechanisms responsible for these
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phenomena have remained largely elusive, the current
belief is that both the release of neurohormone itself from
the dendrites of the MNCs (Moos et al. 1998) combined
with intrinsic membrane properties (Bourque et al. 1998)
are responsible. Notably, NA has been shown to enhance
the somatodendritic release of these peptides (Armstrong
et al. 1986), which in turn can facilitate further NA
release (Ludwig et al. 2000), and NA has been shown
to facilitate MNC firing by altering K+ conductances
(Dudek et al. 1989). Whether the types of aforementioned
plasticity recruit the dendritic release of hormone and
potentially regulate the firing behaviour of VP and OT
cells requires further investigation. It is likely that NA and
ATP, while important for augmenting system excitability
and, along with d-serine, putatively important for learning
and memory in the MNCs, are probably part of a more
complex network of signals that generates the totality of
MNC behaviour.

Together, the types of plasticity described here (Fig. 3)
may be important for MNC system behaviour by
constituting a novel method for selectively inducing or
limiting changes in synaptic efficacy depending on the
relative abundance or absence of glial cell processes

Figure 3. Long-lasting plasticity at
glutamatergic synapses on MNCs
Summary of different types of enduring
plasticity at glutamatergic synapses on MNCs,
which incorporate presynaptic, postsynaptic
and glial signalling to enhance excitatory drive
for extended periods of time. NA utilizes the
presynaptic terminal to prime glutamate release
by inactivating mGluRs and to trigger MVR by
recruiting calcium release from internal stores.
The two remaining elements of the tripartite
synapse are utilized concurrently to elicit AMPA
receptor insertion postsynaptically and thus a
long-lasting change in synaptic strength. NA
acts on glial cells to trigger the release of ATP
which subsequently acts on postsynaptic P2X
channels to induce activity-independent
changes in synapse function. Finally, glia-
derived D-serine acts as an essential
co-transmitter with synaptically released
glutamate to activate postsynaptic NMDA
receptors in the induction of classical
activity-dependent plasticity.

surrounding MNC synapses. Long-term strengthening of
excitatory synapses by glial ATP or d-serine may be utilized
at the onset of dehydration or lactation to combat the
ensuing challenge and only after they persist will astrocytic
processes retract to ‘lock’ synapses in the potentiated state.
It follows then that after retraction, plasticity requiring
glial cells will not be induced as easily while other types
of plasticity not requiring glial cells are permissible. These
ideas are supported by: (1) the observation in dehydrated
animal in which mEPSCs display larger amplitudes (Di
& Tasker, 2004), which might have resulted from earlier
actions of NA and ATP or d-serine; (2) the demonstration
that NA is incapable of inducing further postsynaptic
strengthening (Gordon et al. 2005), while the d-serine
effect requires greater afferent activation (Panatier et al.
2006b) when glial cell processes have withdrawn; and (3)
that NA can still elicit MVR, which does not rely on glial
cells (author’s unpublished observation).

While elucidated in a very specific set of synapses, the
types of aforementioned plasticity or derivatives of them
may be utilized in other autonomic centres or in other
regions of the brain. At excitatory synapses in the caudal
nucleus tractus solitarius (cNTS), where visceral afferent
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information enters the CNS, ATP has been shown to
elicit large-amplitude mEPSCs by acting on presynaptic
ATP-gated P2X channels (Shigetomi & Kato, 2004).
Ionotropic P2X channels allow for calcium influx, a process
that here, is speculated to trigger the synchronization
of multiple vesicles. The similarity of this effect to the
NA effect described at glutamate synapses on MNCs is
interesting because there have been many documented
synergistic and/or collaborative actions between NA and
ATP (Burnstock, 2004). For example, in the hypothalamus,
experiments have demonstrated that hormone release
from an explant preparation is potentiated when ATP and
NA are co-applied (Kapoor & Sladek, 2000). Furthermore,
ATP plays a pivotal role in relaying signals from A1
noradrenergic cell groups to MNCs (Day et al. 1993; Buller
et al. 1996). In light of this information, the observation of
NA-mediated MVR in the PVN and ATP-mediated MVR in
the cNTS begs for an examination of potential cooperative
or synergistic effects between these two molecules.

Since synaptic glutamatergic input drives the activity
of MNCs (Nissen et al. 1995; Jourdain et al. 1998),
which in turn is coupled tightly to hormone release from
the posterior pituitary, understanding the mechanisms
that regulate the strength of these synapses promotes
a more comprehensive understanding of the processes
that regulate the output of MNCs. These findings also
begin to shine the spotlight on synaptic mechanisms that
may contribute to learning and memory in autonomic
circuits.
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