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Visual neuroscientists seek to answer two

related questions. First, what does the visual

system do? Second, how does it do it?

While an answer to the second question

is a description based on anatomy and

biophysics, an answer to the first question

is a description of computations performed

on images. Important steps in providing this

description were made with the publication

of two classical studies on primary visual

cortex by Movshon et al. (1978a,b). These

studies have not aged in their readability,

and do not require an interpretive key to

be enjoyed by the contemporary reader. As

an introduction, however, this Perspectives

article briefly reviews the state of the art

at the time of their appearance, their

main findings, and their influence on three

decades of subsequent investigations.

The 1960s brought important advances

in the understanding of the computations

performed by the retina. An influential view

emerged that described retinal ganglion cells

as linear filters, i.e. as processes that compute

a weighted sum of the intensities in the

stimulus, with weights given by the receptive

field (Enroth-Cugell & Robson, 1966). This

simple ‘linear model’ applied to the majority

of ganglion cells in the cat retina (those of the

X type, corresponding to P cells in primates).

It was quite powerful, as it promised to

predict the responses of X ganglion cells to

arbitrary stimuli, on the basis of the simple

knowledge of the receptive field.

This purely linear view was complemented

by the discovery that another kind of

ganglion cells, those of Y type (which

correspond to M cells in primates), perform

non-linear operations, suggesting that they

sum the distorted output of subunits

that in turn have linear receptive fields

(Enroth-Cugell & Robson, 1966; Hochstein

& Shapley, 1976). This arrangement confers

position invariance: for stimuli of high

spatial frequency, Y cells respond equally

regardless of position within the receptive

field.

These advances suggested new ways of

looking at simple and complex cells in

primary visual cortex. Hubel & Wiesel

(1962) had defined simple cells as having

distinct antagonistic regions in their

receptive fields, and had suggested that

knowing those regions, one could predict

‘the responses to any shape of stimulus,

stationary or moving’. They had defined

complex cells as any cell that was not

simple, and had reported that complex

cells achieved position invariance within

their receptive field: they would respond to

a stimulus of the appropriate orientation

regardless of position within the receptive

field. These attributes of simple and complex

cells resembled those of X and Y ganglion

cells. Some authors proposed that the

correspondence could be anatomical, i.e.

that it reflected predominance of X inputs to

simple cells and of Y inputs to complex cells

(Stone, 1972; Movshon, 1975), a suggestion

that was not later confirmed. More generally,

however, the linear and non-linear models

and the stimulation procedures that had

been so useful to analyse X and Y cells

(Enroth-Cugell & Robson, 1966; Hochstein

& Shapley, 1976) constituted promising

starting points for a concise and precise

characterization of simple and complex

cells.

In addition to the breakthroughs in

retinal physiology, another force was

pushing towards the use of quantitative

engineering techniques in primary visual

cortex: such techniques were proving

successful to study human perception. In

particular, the University of Cambridge –

where Movshon, Thompson and Tolhurst

operated – was a hotbed of research

into the relations between single neuron

responses and perceptual phenomena.

These phenomena were investigated with

rigorous psychophysical measures, and

described with quantitative models based

on image filtering (Graham, 1989; Wandell,

1995). Much of this research rested on the

concept of ‘channels’, which are linear filters.

Simple cells in the cortex seemed to be good

candidates for such a role. Did they exhibit

linear summation? The time had come to

apply the power of linear systems analysis

and related techniques to primary visual

cortex.

In their first article, Movshon et al.

(1978a) applied linear systems analysis to

the responses of simple cells. They measured

responses of simple cells to gratings and bars,

and asked if such responses were consistent

with the output of a linear receptive field

(Fig. 1A).

Much as Enroth-Cugell & Robson (1966)

had done for X retinal cells, they asked if

the responses to drifting sinusoidal stimuli

were sinusoidal, as one would expect from a

linear filter. The results supported this view,

provided that the responses were rectified

by the spike threshold, which shows only the

part of the responses that lie above threshold

(Fig. 1A).

The authors then asked how the responses

depended on the spatial phase of a

standing grating whose contrast oscillated

sinusoidally in time. This test had been

applied to X and Y retinal cells by

Hochstein & Shapley (1976). Here the

linear model was put to a quantitative

test, and the fit was good, provided again

that the output of the receptive field

was passed through a rectification stage

that thresholded it (Fig. 1A). Movshon,

Thompson and Tolhurst were even able to

suggest how high the threshold should be

relative to rest. They expressed this threshold

in the units of firing rate responses,

spikes s−1. For example, for the cell in

their Fig. 4, the estimated threshold was

8 spikes s−1 (if the receptive field were to

output 12 spikes s−1, the neuron would

output 4 spikes s−1).

Finally, the authors asked a key question:

was the selectivity of simple cells pre-

dictable on the basis of the receptive field

alone, as had been suggested by Hubel and

Wiesel, and as would be expected of a

linear filter? To test this hypothesis, they

turned again to the approach that had

demonstrated the linearity of X retinal cells

(Enroth-Cugell & Robson, 1966). First, they

measured responses to drifting gratings of

various spatial frequencies (Fig. 2A). Then,

they measured responses to bars flashed at

various positions, thus estimating the profile

of the receptive field (Fig. 2B, histograms).

According to the linear hypothesis, the

first data set could be used to predict

the second one. This was indeed the case

for the cells (Fig. 2B, curve): just as pre-

dicted by the linear model, the selectivity

of simple cells for spatial frequency could be
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Figure 1. The models of simple and complex cells proposed by Movshon,
Thompson and Tolhurst (Movshon et al. 1978a,b)
A, linear model of simple cells. The first stage is linear filtering, i.e. aweighted sum
of the image intensities, with weights given by the receptive field. The second
stage isrectification: only the part of the responses that is larger than a threshold is
seen in the firing rate response.B, subunit model of complex cells. The first stage is
linear filtering by a number of receptive fields such asthose of simple cells (here we
show four of them with spatial phases offset by 90 deg). The subsequent stages
involve rectification, and then summation.

predicted on the basis of the receptive field

profile.

For all its success in explaining responses

of simple cells, the linear model (Fig. 1A)

could not possibly work for complex cells.

Complex cells are insensitive to the precise

position of a bar within the receptive field,

and respond both to the onset and to the

offset of the bar. Neither of these properties

could arise from a single linear receptive

field. Hubel & Wiesel (1962) had therefore

described complex cells as summing the

output of a number of simple cells with

similar orientation preference but different

receptive field profiles.

Borrowing from the subunit model

proposed for Y ganglion cells by Hochstein

& Shapley (1976), such a description could
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Figure 2. Linearity of spatial summation in simple cells the experiment in Fig. 9 of the first 1978 article
by Movshon, Thompson and Tolhurst (Movshon et al. 1978a)
Responses were simulated from a model simple cell with a linear spatial receptive field that summates strongly
distorted thalamic inputs (Carandini et al. 2002). A, spatial frequency tuning of the simple cell. The ordinate marks
the amplitude of the sinusoidal modulation caused by drifting sinusoidal gratings, whose spatial frequency is plotted
on the abscissa. B, profile of the receptive field of the simple cell. The histogram shows the firing rate elicited by
flashing bars in various spatial positions across the receptive field. Negative responses indicate responses elicited
when withdrawing the bar. The curve shows the prediction based on linearity, obtained by Fourier transform of
the data in A.

be made quantitative by postulating a

number of linear receptive fields orientated

in space (subunits), whose outputs are

rectified by threshold, and integrated into

a single response (Fig. 1B). In their second

article, Movshon et al. (1978b) went on to

propose such a subunit model for complex

cells (Fig. 1B), and to justify each of its

components. They started by performing

the same three measures that they had

performed in simple cells.

First, the authors studied the modulation

in firing rate caused by drifting sinusoidal

gratings. Complex cells responded

phasically only at the lowest spatial

frequencies, but as soon as the frequency

approached the optimal, the responses

became constant in time. This was

consistent with a subunit model (Fig. 1B).

Each of the subunits would respond with

a sinusoid, but the rectified sinusoids

would be offset in time, and therefore they

would sum to an approximately constant

value.

Second, they asked how complex cell

responses depended on the spatial phase of a

standing grating whose contrast reversed in

time. Just as for Y ganglion cells (Hochstein

& Shapley, 1976), the cells did not care

for spatial phase, giving two responses for

each cycle of the stimulus (once for each

sign of contrast). These results again were

consistent with the subunit model (Fig. 1B):

each subunit would give positive responses

only once in each cycle, and only at specific

spatial phases, but the sum of the positive
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subunit responses would rise twice in each

cycle, irrespective of spatial phase.

Third, they asked whether the selectivity of

complex cells was predictable on the basis of

the receptive field alone. The answer was a

resounding no: as predicted by the subunit

model (Fig. 1B), receptive fields of complex

cells don’t have strong distinct subregions,

so it is not possible to predict their selectivity

from a receptive field profile.

While all these results seemed consistent

with a subunit model (Fig. 1B), a key

attribute of that model remained to be

verified: are the receptive fields of the sub-

units really linear? To test this hypothesis,

the authors devised an elegant experiment,

in which they measured the interaction of

dark and light bars in different positions of

the receptive field.

To understand this experiment, consider

a simplified model of complex cell that

includes only four subunits (Fig. 1B), and

imagine placing a bright bar over the central

positive region in the receptive field of the

first subunit. This subunit will give a strong

positive response, and will thus operate well

above threshold. Conversely, the third sub-

unit, which has the opposite receptive field,

will be strongly suppressed, and will operate

much below threshold. The second and

fourth subunits, in turn, will barely respond,

so they will operate (as normally) slightly

below threshold. Adding a second bar to

the stimulus therefore will mostly reveal the

receptive field properties of the first subunit.

Indeed, as shown in Fig. 8 of the original

article, the interaction profiles between bars

resemble receptive fields. If these receptive

fields of the subunits operate linearly (and if

all subunits are similar in spatial frequency

preferences), then it should be possible to

predict the spatial frequency selectivity of

the neuron based on the receptive field

profile of the subunits, just as for simple

cells (Fig. 2). The results of this experiment,

illustrated in Fig. 9 of the original article,

confirm this prediction, providing strong

support for the subunit model of complex

cells (Fig. 1B).

The results of the two articles therefore can

be summarized by two models: the linear

model of simple cells (Fig. 1A), and the

subunit model of complex cells (Fig. 1B).

These models share two key attributes: (1) all

the image processing is performed by linear

filters; (2) the non-linearities operate on the

time-varying signals that are output by the

filters.

These models have formed the basis for

much that has followed in the subsequent

three decades. There is obviously no space

here to cover this territory, for which we refer

the reader to recent reviews (e.g. Carandini

et al. 2005). What might be more useful

would be to discuss those aspects that, with

100% hindsight, could have been analysed

differently, and would arguably have led to

slightly different conclusions.

First, when comparing responses to

gratings to the profiles of the receptive field

(Fig. 2), whether for simple cells or for the

subunits of complex cells, a free scaling

factor was allowed to obtain a match. Such

a scaling factor should not be necessary

for the simple models shown in Fig. 1,

but it is necessary for actual cells, whose

responsiveness depends very much on the

local distribution of contrast. To account

for this dependence, the models were later

extended to include a divisive stage that

controls responsiveness on the basis of the

distribution of local contrast (for reviews see

Heeger, 1992; Carandini et al. 1999).

Second, the authors were perhaps wise

to concentrate on one spatial dimension,

and thus to avoid the contentious issue of

orientation selectivity. Orientation tuning

curves were not measured in this study,

arguably because rotating the stimulation

device involved placing one’s hand within

centimetres of electrocution, something that

was done only reluctantly, once for each cell

(J. A. Movshon, personal communication).

Had the authors measured 2-dimensional

receptive field profiles they could have asked

whether these profiles predicted orientation

selectivity. This issue remained open for

decades and is not entirely closed to this date

(reviewed by Ferster & Miller, 2000).

Finally, perhaps the greatest limitation

of these studies is that they concentrated

on the spatial domain, and did not test

linearity in the temporal domain. On the

one hand, as was shown in the subsequent

decades, the concept of spatial receptive field

can be fruitfully extended to 3-dimensional

space–time, to account for phenomena of

direction selectivity (in fact, the nascent

signs of such an extension can be seen

already in the second 1978 article). On

the other hand, as demonstrated later by

Tolhurst et al. (1980), in primary visual

cortex temporal summation is far from

linear: responses are much more transient

than would be expected from the frequency

selectivity curves. This non-linearity is

puzzling: how could a receptive field be

spatially linear and temporally non-linear?

It is now thought that because a cortical

cell sums inputs from a variety of spatially

displaced thalamic neurons, even if the

individual inputs are grossly distorted by

saturating and threshold non-linearities, the

overall spatial summation properties of the

neuron will remain approximately linear

(Carandini et al. 2002; Priebe & Ferster,

2006). Indeed, the simulations shown here

(Fig. 2) resulted from a model cell that

summates such strongly non-linear inputs.

This model cell passes the test of spatial

linearity devised by the 1978 papers (Fig. 2),

yet it would fail any test of temporal linearity.

If it took three decades to obtain this

realization, it is possibly because these 1978

papers made such a compelling case for

linearity, and the field took them as evidence

that every step in the visual system up

to the primary visual cortex had to be

linear. The reasoning, partly explicit in

these papers and implicit in much of the

subsequent literature, was that there could

be no non-linear stages from the cones to

the cortex because those stages would have

prevented the cortical cells from passing the

linearity tests.

These are modest limitations, and they

are evident only with three decades of

hindsight. Overall the impact of these

papers on the field was forceful and

positive. As is evident from glancing at

any recent review (e.g. Carandini et al.

2005) much of what was done to this

date to explain responses of primary

visual cortex, e.g. to explain properties

such as orientation selectivity, direction

selectivity and binocular integration, rested

on the results of these two classical

papers. Moreover, these studies succeeded

in providing a foundation for the models of

pattern perception based on psychophysical

channels (Graham, 1989). Our only hope is

that similarly powerful quantitative studies

will soon appear for areas beyond the

primary visual cortex.
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