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Fluctuations in the abundance of molecules in the living cell may
affect its growth and well being. For regulatory molecules (e.g.,
signaling proteins or transcription factors), fluctuations in their
expression can affect the levels of downstream targets in a net-
work. Here, we develop an analytic framework to investigate the
phenomenon of noise correlation in molecular networks. Specifi-
cally, we focus on the metabolic network, which is highly inter-
linked, and noise properties may constrain its structure and func-
tion. Motivated by the analogy between the dynamics of a linear
metabolic pathway and that of the exactly soluble linear queuing
network or, alternatively, a mass transfer system, we derive a
plethora of results concerning fluctuations in the abundance of
intermediate metabolites in various common motifs of the meta-
bolic network. For all but one case examined, we find the steady-
state fluctuation in different nodes of the pathways to be effec-
tively uncorrelated. Consequently, fluctuations in enzyme levels
only affect local properties and do not propagate elsewhere into
metabolic networks, and intermediate metabolites can be freely
shared by different reactions. Our approach may be applicable to
study metabolic networks with more complex topologies or pro-
tein signaling networks that are governed by similar biochemical
reactions. Possible implications for bioinformatic analysis of
metabolomic data are discussed.

noise correlation � biochemical networks � nonequilibrium steady-state

Because of the limited number of molecules for typical molecular
species in microbial cells, random fluctuations in molecular

networks are common place and may play important roles in vital
cellular processes. For example, noise in sensory signals can result
in pattern formation and collective dynamics (1), and noise in
signaling pathways can lead to cell-to-cell variability (2). Also,
stochasticity in gene expression has implications on cellular regu-
lation (3, 4) and may lead to phenotypic diversity (5, 6), whereas
fluctuations in the levels of (toxic) metabolic intermediates may
reduce metabolic efficiency (7) and impede cell growth.

In the past several years, a great deal of experimental and
theoretical efforts have focused on the stochastic expression of
individual genes, at both the translational and transcriptional levels
(8–10, 26). The effect of stochasticity on networks has been studied
in the context of small, ultra-sensitive genetic circuits, where noise
at a circuit node (i.e., a gene) was shown to either attenuate or
amplify output noise in the steady state (11, 12). This phenomenon,
termed ‘‘noise propagation,’’ makes the steady-state fluctuations at
one node of a gene network dependent in a complex manner on
fluctuations at other nodes, making it difficult for the cell to control
the noisiness of individual genes of interest (13). Several key
questions that arise from these studies of genetic noise include (i)
whether stochastic gene expression could further propagate into
signaling and metabolic networks through fluctuations in the levels
of key proteins controlling those circuits, and (ii) whether noise
propagation also occurs in those circuits.

Recently, a number of approximate analytical methods have
been applied to analyze small genetic and signaling circuits; these
include the independent noise approximation (14–16), the linear
noise approximation (14, 17), and the self-consistent field approx-
imation (18). Perhaps due to the different approximation schemes
used, conflicting conclusions have been obtained regarding the
extent of noise propagation in various networks (see, e.g., ref. 17).

Moreover, it is difficult to extend these studies to investigate the
dependences of noise correlations on network properties, e.g.,
circuit topology, nature of feedback, catalytic properties of the
nodes, and the parameter dependences. It is also difficult to
elucidate these dependences by using numerical simulations alone,
because of the large number of degrees of freedom involved even
for a network with a modest number of nodes and links.

In this study, we describe an analytic approach to characterize the
probability distribution for all nodes of a class of molecular net-
works in the steady state. Specifically, we apply the method to
analyze fluctuations and their correlations in metabolite concen-
trations for various core motifs of the metabolic network. The
metabolic network consists of nodes, which are the metabolites,
linked to each other by enzymatic reactions that convert one
metabolite to another. The predominant motif in the metabolic
network is a linear array of nodes linked in a given direction (the
directed pathway), which are connected to each other via converg-
ing pathways and diverging branch points (19). The activities of the
key enzymes are regulated allosterically by metabolites from other
parts of the network, whereas the levels of many enzymes are
controlled transcriptionally and hence are subject to deterministic
as well as stochastic variations in their expressions (20). To under-
stand the control of metabolic network, it is important to know how
changes in one node of the network affect properties elsewhere.

Applying our analysis to directed linear metabolic pathways, we
predict that the distribution of molecule number of the metabolites
at intermediate nodes is statistically independent in the steady state,
i.e., the noise does not propagate. Moreover, given the properties
of the enzymes in the pathway and the input flux, we provide a
recipe that specifies the exact metabolite distribution function at
each node. We then show that the method can be extended to linear
pathways with reversible links, with feedback control, to cyclic and
certain converging pathways, and even to pathways in which flux
conservation is violated (e.g., when metabolites leak out of the cell).
We find that in these cases correlations between nodes are negli-
gible or vanish completely, although nontrivial fluctuation and
correlation do dominate for a special type of converging pathways.
Our results suggest that for vast parts of the metabolic network,
different pathways can be coupled to each other without generating
complex correlations, so that properties of one node (e.g., enzyme
level) can be changed over a broad range without affecting behav-
iors at other nodes. We expect that the realization of this remark-
able property will shape our understanding of the operation of the
metabolic network, its control, as well as its evolution. For example,
our results suggest that correlations between steady-state fluctua-
tions in different metabolites bear no information on the network
structure. In contrast, temporal propagation of the response to an
external perturbation should capture, at least locally, the morphol-
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ogy of the network. Thus, the topology of the metabolic network
should be studied during transient periods of relaxation, and not at
steady-state.

Our method is motivated by the analogy between the dynamics
of biochemical reactions in metabolic pathways and that of the
exactly solvable queuing systems (21, 22) or, alternatively, as mass
transfer systems (23, 24). Our approach may also be applicable to
analyzing fluctuations in signaling networks, because of the close
analogy between the molecular processes underlying the metabolic
and signaling networks. To make our approach accessible to readers
who may not be familiar with nonequilibrium statistical mechanics,
we will present in the main text only the mathematical results
supported by stochastic simulations and defer derivations and
illustrative calculations to the supporting information (SI) Text.
Although our analysis is general, all examples are taken from amino
acid biosynthesis pathways in Escherichia coli (25).

Individual Nodes
A Molecular Michaelis–Menten (MM) Model. To set up the grounds for
analyzing a reaction pathway and to introduce our notation, we start
by analyzing fluctuations in a single metabolic reaction.

Recent advances in experimental techniques have made it pos-
sible to track the enzymatic turnover of substrate to product at the
single-molecule level (27, 28), and to study instantaneous metab-
olite concentration in the living cell (29). To describe this fluctu-
ation mathematically, we model the cell as a reaction vessel of
volume V, containing m substrate molecules (S) and NE enzymes
(E). A single molecule of S can bind to a single enzyme E with rate
k� per volume, and form a complex, SE. This complex, in turn, can
unbind (at rate k�) or convert S into a product form, P, at rate k2.
This set of reactions is summarized by

S � E9|=
k�

k�

SEO¡
k2

P � E. [1]

Analyzing these reactions within a mass-action framework,
keeping the substrate concentration fixed, and assuming fast
equilibration between the substrate and the enzymes (k� �� k2),
leads to the MM relation between the macroscopic flux c and the
substrate concentration [S] � m/V:

c � vmax[S]���S� � KM	 , [2]

where KM � k�/k� is the dissociation constant of the substrate
and the enzyme, and vmax � k2[E] is the maximal flux, with [E] �
NE/V being the total enzyme concentration.

Our main interest is in noise properties, resulting from the
discreteness of molecules. We therefore need to track individual
turnover events. These are described by the turnover rate wm,
defined as the inverse of the mean waiting time per volume between
the (uncorrelated) synthesis of one product molecule to the next.
Assuming again fast equilibration between the substrate and en-

zymes, the probability of having NSE complexes given m substrate
molecules and NE enzymes is simply given by the Boltzmann
distribution

p�NSE�m, NE	 �
K�NSE

Zm, NE

m!NE!
NSE!�m�NSE	!�NE�NSE	!

, [3]

for NSE 
 NE and m. Here K�1 � Vk�/k� is the Boltzmann factor
associated with the formation of an SE complex, and the Zm,NE

takes care of normalization [i.e., chosen such that ¥NSE
p(NSE�m,

NE) � 1]. Under this condition, the turnover rate wm �
k2/V ¥NSE � p(NSE�m, NE) is given approximately by

wm � vmax

m
m � �K � NE � 1	

� ��K�3	 , [4]

with vmax � k2NE/V (see SI Text). We note that for a single
enzyme (NE � 1), one has wm � vmaxm/(m � K), which was
derived and verified experimentally (28, 30).

Probability Distribution of a Single Node. In a metabolic pathway, the
number of substrate molecules is not kept fixed; rather, these
molecules are synthesized or imported from the environment, and
at the same time turned over into products. We consider the influx
of substrate molecules to be a Poisson process with rate c. These
molecules are turned into product molecules with rate wm given by
Eq. 4. The number of substrate molecules is now fluctuating, and
one can ask what is the probability �(m) of finding m substrate
molecules at the steady state. This probability can be found by
solving the steady-state Master equation for this process (see SI
Text), yielding

��m	 � �m � K � �NE � 1	
m � �1 � z	K�NEz m, [5]

where z � c/vmax (32). The form of this distribution is plotted in
SI Fig. 5 (solid black line). As expected, a steady state exists only
when c � vmax. Denoting the steady-state average by angular
brackets, i.e., �xm�  ¥mxm�(m), the condition that the incoming
flux equals the outgoing flux is written (with s  �m�) as

c � �wm� � vmax

s
s�(K�NE)

. [6]

Comparing this microscopically derived flux-density relation
with the MM relation of Eq. 2 by using the obvious correspondence
[S] � s/V, we see that the two are equivalent with KM � (K � NE)/V.
Note that this microscopically derived form of MM constant is
different by the amount [E] from the commonly used (but approx-
imate form) KM � K/V, derived from mass-action. However, for
typical metabolic reactions, KM � 10–1,000 �M (24), whereas [E]
is not more than 1,000 molecules in a bacterium cell (�1 �M); thus,
the values of the two expressions may not be very different.

We will characterize the variation of substrate concentration in
the steady state by the noise index

�s
2 �

�s
2

s2 �
vmax

c ��K � NE	
, [7]

where �s
2 is the variance of the distribution �(m). Because c �

vmax and increases with s toward 1 (see Eq. 6), �s decreases with
the average occupancy s as expected. It is bound from below by
1/�K � NE, which can easily be several percent. Generally, large
noise is obtained when the reaction is catalyzed by a small
number of high-affinity enzymes (i.e., for low K and NE).
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Fig. 1. Linear biosynthesis pathway. (a) Tryptophan biosynthesis pathway in
E. coli. (b) Model for a directed pathway. Dashed lines depict end-product
inhibition. CPAD5P, 1-O-carboxyphenylamino 1-deoxyribulose-5-phosphate;
NPRAN, N-5-phosphoribosyl-anthranilate; IGP, indole glycerol phosphate; PPI,
pyrophosphate; PRPP, 5-phosphoribosyl-1-pyrophosphate; T3P1, glyceralde-
hyde 3-phosphate.
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Linear Pathways
Directed Pathways. We now turn to a directed metabolic pathway,
where an incoming flux of substrate molecules is converted,
through a series of enzymatic reactions, into a product flux (19).
Typically, such a pathway involves the order of 10 reactions. Each
reaction takes as precursor the product of the preceding reaction,
and frequently involves an additional side-reactant (such as a water
molecule or ATP) that is abundant in the cell (and whose fluctu-
ations can be neglected). As a concrete example, we show in Fig. 1a
the tryptophan biosynthesis pathway of E. coli (25), where an
incoming flux of chorismate is converted through six directed
reactions into an outgoing flux of tryptophan, making use of several
side-reactants. Our description of a linear pathway includes an
incoming flux c of substrates of type S1 along with a set of reactions
that convert substrate type Si to Si�1 by enzyme Ei (see Fig. 1b) with
rate wmi

(i) � vimi/(mi � Ki � 1), according to Eq. 4. We denote the
number of molecules of intermediate Si by mi, with m1 for the
substrate and mL for the end-product. The superscript (i) indicates
explicitly that the parameters vi � k2

(i) NE
(i)/V and Ki � (K(i) � NE

(i))
describing the enzymatic reaction Si 3 Si�1 are expected to be
different for different reactions.

The steady state of the pathway is fully described by the joint
probability distribution �(m1, m2, . . . , mL) of having mi molecules
of intermediate substrate type Si. Surprisingly, this steady-state
distribution is given exactly by a product measure,

��m1, m2, . . . , mL	 � �
i�1

L

�i�mi	, [8]

where �i(m) is as given in Eq. 5 (with K � NE replaced by Ki and
z by zi � c/vi), as shown in SI Text. This result indicates that in
the steady state, the number of molecules of one intermediate is
statistically independent of the number of molecules of any other
substrate.† The result has been derived previously in the context
of queuing networks (21, 22) and of mass-transport systems (24).
Either may serve as a useful analogy for a metabolic pathway.

Because the different metabolites in a pathway are statistically
decoupled in the steady state, the mean si � �mi� and the noise index
�si

2 � c�1vi/Ki can be determined by Eq. 7 individually for each node
of the pathway. It is an interesting consequence of the decoupling
property of this model that both the mean concentration of each
substrate and the fluctuations depend only on the properties of the
enzyme immediately downstream. Whereas the steady-state flux c
is a constant throughout the pathway, the parameters vi and Ki can

be set separately for each reaction by the copy-number and kinetic
properties of the enzymes (provided that c 
 vi). Hence, for
example, in a case where a specific intermediate may be toxic,
tuning the enzyme properties may serve to decrease fluctuations in
its concentration, at the price of a larger mean. To illustrate the
decorrelation between different metabolites, we examine the re-
sponse of steady-state fluctuations to a 5-fold increase in the
enzyme level [E1]. Typical time scale for changes in enzyme level
much exceeds those of the enzymatic reactions. Hence, the enzyme
level changes may be considered as quasi-steady state. In Fig. 2a we
plot the noise indices of the different metabolites. Whereas noise in
the first node is significantly reduced upon a 5-fold increase in [E1]
fluctuations at the other nodes are not affected at all.

Reversible Reactions. The simple form of the steady-state distribu-
tion 8 for the directed pathways may serve as a starting point to
obtain additional results for metabolic networks with more elabo-
rate features. We demonstrate such applications of the method by
some examples below. In many pathways, some of the reactions are
in fact reversible. Thus, a metabolite Si may be converted to
metabolite Si�1 with rate vmax

� mi/(mi � Ki
�) or to substrate Si�1 with

rate vmax
� mi/(mi � Ki

�). One can show, in a way similar to ref. 24, that
the decoupling property (Eq. 8) holds exactly only if the ratio of the
two rates is a constant independent of mi, i.e., when Ki

� � Ki
�. In

this case the steady state probability is still given by Eq. 5, with the
local currents obeying

vi
�zi � vi�1

� zi�1 � c. [9]

This is nothing but the simple fact that the overall f lux is the
difference between the local current in the direction of the
pathway and that in the opposite direction.

In general, of course, Ki
� � Ki

�. However, we expect the
distribution to be given approximately by the product measure in
the following situations: (a) Ki

� � Ki
�; (b) the two reactions

are in the zeroth-order regime, s �� Ki
�; and (c) the two reactions

are in the linear regime, s 

 Ki
�. In the latter case Eq. 9

is replaced by

vi
�

Ki
� zi �

vi�1
�

Ki�1
� zk�1 � c.

Together, it is only for a narrow region (i.e., si � Ki) where the
product measure may not be applicable. This prediction is tested
numerically, again by comparing two pathways (now containing
reversible reactions) with 5-fold difference in the level of the first
enzyme. From Fig. 2b, we see again that the difference in noise
indices exist only in the first node, and the computed value of the
noise index at each node is in excellent agreement with predic-
tions based on the product measure (symbols). Similar decor-

†We note, however, that short-time correlations between metabolites can still exist and
may be probed for example by measuring two-time cross-correlations; see discussion at
the end of the text.
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Fig. 2. Noise in metabolite molecular number (�s �
�s/s) for different pathways. Monte Carlo simulations
(bars) are compared with the analytic prediction (sym-
bols) obtained by assuming decorrelation for different
nodes of the pathways. The structure of each pathway
is shown under each image. Parameter values were
chosen randomly such that 103 
 Ki 
 104 and c 
 vi 

10c. Similar decorrelation was obtained for 100 differ-
ent random choices of parameters and for 100 different
sets with Ki 10-fold smaller (data not shown). The effect
on the different metabolites of a change in the velocity
of the first reaction, v1 � 1.1c (dark gray) 3 5c (light
gray), is demonstrated. Similar results are obtained for
changes in K1 (data not shown). (a) Directed pathway.
Here the decorrelation property is exact. (b) Directed pathway with two reversible reactions. For these reactions, v3,4

� � 8.4, 6.9c; v3,4
� � 1.6, 3.7c; K3,4

� � 2500, 8000;
and K3,4

� � 7700, 3700. (c) Linear dilution of metabolites. Here 	/c � 1/100. (d) End-product inhibition, where the influx rate is given by 
 � c0[1 � (mL/KI)]�1 with
KI � 1,000. (e) Diverging pathways. Here metabolite 4 is being processed by two enzymes (with different affinities, KI � 810, KII � 370) into metabolites 5 and
7, respectively. ( f) Converging pathways. Here two independent three-reaction pathways, with fluxes c and c� � c/2, produce the same product, S4.
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relation was obtained for 100 different random choices of
parameters, and for 100 different sets with Ki 10-fold smaller
(data not shown).

Dilution of Intermediates. In the description so far, we have
ignored possible catabolism of intermediates or dilution due to
growth. This makes the flux a conserved quantity throughout the
pathway and is the basis of the flux-balance analysis (33). One
can generalize our framework for the case where flux is not
conserved, by allowing particles to be degraded with rate um.
Suppose, for example, that on top of the enzymatic reaction a
substrate is subjected to an effective linear degradation, um �
	m. This includes the effect of dilution due to growth, in which
case 	 � ln(2)/(mean cell division time), and the effect of
leakage out of the cell. As before, we first consider the dynamics
at a single node, where the metabolite is randomly produced (or
transported) at a rate c0. It is straightforward to generalize the
Master equation for the microscopic process to include um,
and solve it in the same way. With wm as before, the steady-state
distribution of the substrate pool size is then found to be

��m	 �
1
Z �m � K � 1

m � �c0�		m

�v�	 � K 	m
, [10]

where (a)m  a(a � 1)���(a � m � 1). This form of �(m) allows
one to easily calculate moments of the molecule number from
the partition function Z as in equilibrium statistical mechanics,
e.g., s � �m	 � c0dZ/dc0, and hence the outgoing flux, c � c0 �
	s. Using the fact that Z can be written explicitly in terms of
hypergeometric functions, we find that the noise index grows
with 	 as �s

2 � v/(Kc0) � 	/c0. The distribution function is given
in SI Fig. 5 for several values of 	.

Generalizing the above to a directed pathway, we allow for 	, as
well as for vmax and K, to be i-dependent. The decoupling property
of Eq. 8 does not generally hold in the nonconserving case (34).
However, in this case the stationary distribution still seems to be
well approximated by a product of the single-metabolite functions
�i(m) of the form of Eq. 10, with c0/	3 ci�1/	i. This is supported
again by the excellent agreement between noise indices obtained by
numerical simulations and analytic calculations using the product
measure Ansatz (see Fig. 2c). In this case, change in the level of the
first enzyme does ‘‘propagate’’ to the downstream nodes. But this
is not a ‘‘noise propagation’’ effect, as the mean fluxes �ci	 at the
different nodes are already affected. (To illustrate the effect of
leakage, the simulation used parameters that corresponded to a
huge leakage current, which is 20% of the flux. This is substantially
larger than typical leakage encountered, say, due to growth-
mediated dilution, and we do not expect propagation effects due to
leakage to be significant in practice.)

Interacting Pathways
The metabolic network in a cell is composed of pathways of
different topologies. Although linear pathways are abundant,
one can also find circular pathways (such as the TCA cycle),
converging pathways, and diverging ones. Many of these can be
thought of as a composition of interacting linear pathways.
Another layer of interaction is imposed on the system due to the
allosteric regulation of enzyme activity by intermediate metab-
olites or end products. To what extent can our results for a linear
pathway be applied to these more complex networks? Below we
address this question for a few of the frequently encountered
cases. To simplify the analysis, we will consider only directed
pathways and suppress the dilution/leakage effect.

Cyclic Pathways. We first address the cyclic pathway, in which the
metabolite SL is converted into S1 by the enzyme EL. Borrowing a
celebrated result for queuing networks (35) and mass transfer
models (36), we note that the decoupling property of Eq. 8

described above for the linear-directed pathway also holds exactly
even for the cyclic pathways.‡ This result is surprising mainly
because the Poissonian nature of the ‘‘incoming’’ flux assumed in
the analysis so far is lost.

In an isolated cycle the total concentration of the metabolites,
stot, and not the flux, is predetermined. In this case, the flux c is
given by the solution to the equation

stot � 

i�1

L

si�c	 � 

i�1

L cKi

vi � c
. [11]

Note that this equation can always be satisfied by some positive
c that is smaller than all vi values. In a cycle that is coupled to
other branches of the network, f lux may be governed by metab-
olites going into the cycle or taken from it. In this case, f lux
balance analysis will enable determination of the variables zi,
which specify the probability distribution.

End-Product Inhibition. Many biosynthesis pathways couple between
supply and demand by a negative feedback (19, 25), where the
end-product inhibits the first reaction in the pathway or the
transport of its precursor (see, e.g., the dashed lines in Fig. 1). In this
way, flux is reduced when the end-product builds up. In branched
pathways, this may be done by regulating an enzyme immediately
downstream from the branch point, directing some of the flux
toward another pathway.

To study the effect of end-product inhibition, we consider
inhibition of the inflow into the pathway. Specifically, we model the
probability at which substrate molecules arrive at the pathway by a
stochastic process characterized by the rate 
(mL) � c0[1 �
(mL/KI)h]�1, where c0 is the maximal influx (determined by avail-
ability of the substrate either in the medium or in the cytoplasm),
mL is the number of molecules of the end-product (SL), KI is the
dissociation constant of the interaction between the first enzyme E0
and SL, and h is a Hill coefficient describing the cooperativity of
interaction between E0 and SL. Because mL is a stochastic variable
itself, the incoming flux is described by a nontrivial stochastic
process that is manifestly non-Poissonian.

The steady-state flux is now

c � �
�mL	� � c0���1 � �mL�K1	
h��1�. [12]

This is an implicit equation for the flux c, which also appears in
the right-hand side through the distribution �(m1, . . . , mL).

By drawing an analogy between feedback-regulated pathway and
a cyclic pathway, we conjecture that metabolites in the former
should be effectively uncorrelated. The quality of this approxima-
tion is expected to become better in cases where the ratio between
the influx rate 
(mL) and the outflux rate wmL

is typically mL
independent. Under this assumption, we approximate the distribu-
tion function by the product measure of Eq. 8, with the form of the
single node distributions given by Eq. 5. Note that the conserved
flux then depends on the properties of the enzyme processing the
last reaction and in general should be influenced by the fluctuations
in the controlling metabolite. These fluctuations propagate
throughout the pathway at the level of the mean flux, as expected
from any node characterized by a high control coefficient (7).

Using this approximate form, Eq. 12 can be solved self-
consistently to yield c(c0), as is shown explicitly in SI Text for h �
1. The solution obtained is found to be in excellent agreement with
numerical simulation (SI Fig. 6a). The quality of the product
measure approximation is further scrutinized by comparing the
noise index of each node upon increasing the enzyme level of the

‡In fact, the decoupling property holds for a general network of directed single-substrate
reactions, even if the network contains cycles.
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first node by 5-fold. Fig. 2c shows clearly that the effect of changing
enzyme level does not propagate to other nodes. Although being
able to accurately predict the flux and mean metabolite level at each
node, the predictions based on the product measure are found to
be underestimating the noise index by up to 10% (compare bars and
symbols). We conclude that in this case correlations between
metabolites do exist, but not dominate. Thus, analytic expressions
derived from the decorrelation assumption can be useful even in
this case (see SI Fig. 6b).

Diverging Pathways. Many metabolites serve as substrates for
several pathways. In such cases, different enzymes can bind to the
substrate; each catabolizes a first reaction in a different pathway.
Within our scheme, this can be modeled by allowing for a metab-
olite Si to be converted to metabolite S1

I with rate wmi

I � vImi/(mi �
KI � 1) or to metabolite S1

II with rate wmi

I � vIImi/(mi � KII � 1).
The parameters vI,II and KI,II characterize the two different
enzymes.

Similar to the case of reversible reactions, the steady-state
distribution is given exactly by a product measure only if wmi

I �w
i

II is
a constant, independent of mi (namely when KI � KII). Otherwise,
we expect it to hold in a range of alternative scenarios, as described
for reversible pathways.

Considering a directed pathway with a single branch point, the
distribution 5 describes exactly all nodes upstream of that point. At
the branch point, one replaces wm by wm � wm

I � wm
II, to obtain the

distribution function

��m	 �
cm

Z
�K I	m�K II	m

m!��K Iv II � K IIv II	��v I � v II		m
. [13]

From this distribution one can obtain the fluxes going down each
one of the two branching pathway, cI,II � ¥wm

I,II�(m). Both fluxes
depend on the properties of both enzymes, as can be seen from
Eq. 13, and thus at the branch point the two pathways influence
each other (37). Moreover, f luctuations at the branch point
propagate into the branching pathways already at the level of the
mean flux. This is consistent with the fact that the branch node
is expected to be characterized by a high control coefficient (7).

Although different metabolite upstream and including the
branch point are uncorrelated, this is not exactly true for metab-
olites of the two branches. Nevertheless, because these pathways are
still directed, we further conjecture that metabolites in the two
branching pathways can still be described, independently, by the
probability distribution 5, with c given by the flux in the relevant
branch, as calculated from Eq. 13. Indeed, the numerical results of
Fig. 2e strongly support this conjecture. We find that changing the
noise properties of a metabolite in the upstream pathway do not
propagate to those of the branching pathways.

Converging Pathways: Combined Fluxes. We next examine the case
where two independent pathways result in synthesis of the same
product, P. For example, the amino acid glycine is the product of
two (very short) pathways, one using threonine and the other serine
as precursors (Fig. 3a) (25). With only directed reactions, the
different metabolites in the combined pathway, namely, the two
pathways producing P and a pathway catabolizing P, remain de-
coupled. The simplest way to see this is to note that the process
describing the synthesis of P, being the sum of two Poisson
processes, is still a Poisson process. The pathway that catabolizes P
is therefore statistically identical to an isolated pathway, with an
incoming flux that is the sum of the fluxes of the two upstream
pathways. More generally, the Poissonian nature of this process
allows for different pathways to dump or take from common
metabolite pools, without generating complex correlations.

Converging Pathways: Reaction with Two Fluctuating Substrates. As
mentioned above, some reactions in a biosynthesis pathway involve

side-reactants, which are assumed to be abundant (and hence at a
constant level). Let us now discuss briefly a case where this
approach fails. Suppose that the two products of two linear path-
ways serve as precursors for one reaction. This, for example, is the
case in the arginine biosynthesis pathway, where L-ornithine is
combined with carbamoyl-phosphate by ornithine-carbamoyltrans-
ferase to create citrulline (Fig. 3b) (25). Within a flux balance
model, the net fluxes of both substrates must be equal to achieve
steady state, in which case the macroscopic MM flux takes the form

c � vmax

[S1]�S2�

�KM1 � �S1�	�KM2 � �S2�	
.

Here [S1,2] are the steady-state concentrations of the two sub-
strates, and KM1,2 the corresponding MM constants. However,
f lux balance provides only one constraint to a system with two
degrees of freedom.

In fact, this reaction exhibits no steady state. To see why, consider
a typical time evolution of the two substrate pools (Fig. 4). Suppose
that at a certain time one of the two substrates, say S1, is of high
molecule-number compared with its equilibrium constant, m1 ��
K1. In this case, the product synthesis rate is unaffected by the
precise value of m1, and is given approximately by vmaxm2/(m2 � K2).
Thus, the number m2 of S2 molecules can be described by the
single-substrate reaction analyzed above, whereas m1 performs a
random walk (under the influence of a weak logarithmic potential),
which is bound to return, after some time �, to values comparable
with K1. Then, after a short transient, one of the two substrates will
become unlimiting again, and the system will be back in the scenario
described above, perhaps with the two substrates changing roles
(depending on the ratio between K1 and K2).

Importantly, the probability for the time � during which one of
the substrates is at saturating concentration scales as ��3/2 for large
�. During this time the substrate pool may increase to the order ��.
The fact that � has no finite mean implies that this reaction has no
steady state. Because accumulation of any substrate is most likely
toxic, the cell must provide some other mechanism to limit these
fluctuations. This may be one interpretation for the fact that within
the arginine biosynthesis pathway, L-ornithine is an enhancer of
carbamoyl-phosphate synthesis (dashed line in Fig. 3b).

carbamoyl phosphate L ornithine

citrulline

L arginino succinate

L arginine

L threonine

L serine

glycine

2A3O

a b

Fig. 3. Converging pathways. (a) Glycine is synthesized in two independent
pathways. (b) Citrulline is synthesized from products of two pathways. 2A3O,
2-amino-3-oxobutanoate.
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Fig. 4. Time course of a two-substrate enzymatic reaction, as obtained by a
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substrates, with t being an arbitrary time unit.
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In contrast, a steady state always exists if the two metabolites
experience linear degradation, as this process prevents indefinite
accumulation. However, in general one expects enzymatic reactions
to dominate over futile degradation. In this case, equal influxes of
the two substrates result in large fluctuations, similar to the ones
described above (32).

Discussion
In this work we have characterized stochastic f luctuations of
metabolites for dominant simple motifs of the metabolic network
in the steady state. Motivated by the analogy between the
directed biochemical pathway and the mass transfer model or,
equivalently, as the queuing network, we show that the inter-
mediate metabolites in a linear pathway, the key motif of the
biochemical network, are statistically independent. We then
extend this result to a wide range of pathway structures. Some of
the results (e.g., the directed linear, diverging, and cyclic path-
ways) have been proven previously in other contexts. In other
cases (e.g., for reversible reaction, diverging pathway, or with
leakage/dilution), the product measure is not exact. Neverthe-
less, based on insights from the exactly solvable models, we
conjecture that it still describes faithfully the statistics of the
pathway. Using the product measure as an Ansatz, we obtained
quantitative predictions, which turned out to be in excellent
agreement with the numerics (Fig. 2). These results suggest that
the product measure may be an effective starting point for
quantitative, nonperturbative analysis of (the stochastic proper-
ties of) these circuit/networks. We hope this study will stimulate
further analytical studies of the large variety of pathway topol-
ogies in metabolic networks, as well as in-depth mathematical
analysis of the conjectured results. Moreover, it will be inter-
esting to explore the applicability of the present approach to
other cellular networks, in particular, stochasticity in protein
signaling networks (2), whose basic mathematical structure is
also a set of interlinked MM reactions.

Our main conclusion, that the steady-state fluctuations in each
metabolite do not depend on the fluctuations in other upstream
metabolites, is qualitatively different from conclusions obtained for
gene networks in recent studies, e.g., the “noise addition rule” (14,
15) and its extension to cases where the signals and the processing
units interact (17). Some cases that were found in ref. 17 to exhibit
residual noise propagation generalize our results to the case of
‘‘bursty,’’ non-Poissonian, noise. While bursty noise is not expected
for metabolic and signaling reactions, it is nevertheless important to
address the extent to which the main finding of this work is robust

to the nature of stochasticity. Our results, as well as generalized
mass-transport models (38, 39), suggest that statistical indepen-
dence goes well beyond the Poisson case.

The absence of noise propagation for a large part of the meta-
bolic network allows intermediate metabolites to be shared freely
by multiple reactions in multiple pathways, without the need of
installing elaborate control mechanisms. In these systems, dynamic
fluctuations (e.g., stochasticity in enzyme expression that occurs at
a much longer time scale) stay local to the node and are shielded
from triggering system-level failures (e.g., gridlocks). Conversely,
this property allows convenient implementation of controls on
specific nodes of pathways, e.g., to limit the pool of a specific toxic
intermediate, without the concern of elevating fluctuations in other
nodes. We expect this to make the evolution of metabolic network
less constrained, so that the system can modify its local properties
nearly freely to adapt to environmental or cellular changes. The
optimized pathways then can be meshed smoothly into the overall
metabolic network, except for junctions between pathways where
complex fluctuations not constrained by flux conservation.

Recently, metabolomics, i.e., global metabolite profiling, has
been suggested as a tool to decipher the structure of the metabolic
network (40, 41). Our results suggest that in many cases, steady-
state fluctuations do not bear information about the pathway
structure. Rather, correlations between metabolite fluctuations
may be, for example, the result of fluctuation of a common enzyme
or coenzyme or reflect dynamical disorder (28). Indeed, a bioin-
formatic study found no straightforward connection between ob-
served correlation and the underlying reaction network (42). In-
stead, the response to external perturbation (29, 40, 43) may be
much more effective in shedding light on the underlying structure
of the network and may be used to study the morphing of the
network under different conditions. It must be noted that all results
described here are applicable only to systems in the steady state;
transient responses such as the establishment of the steady state and
response to external perturbations will likely exhibit complex tem-
poral as well as spatial correlations. Nevertheless, it is possible that
some aspects of the response function may be attainable from the
steady-state fluctuations through nontrivial fluctuation–dissipation
relations as shown for other related nonequilibrium systems
(23, 44).
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