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Existing disease cluster detection methods cannot detect clusters
of all shapes and sizes or identify highly irregular sets that
overestimate the true extent of the cluster. We introduce a graph-
theoretical method for detecting arbitrarily shaped clusters based
on the Euclidean minimum spanning tree of cartogram-trans-
formed case locations, which overcomes these shortcomings. The
method is illustrated by using several clusters, including historical
data sets from West Nile virus and inhalational anthrax outbreaks.
Sensitivity and accuracy comparisons with the prevailing cluster
detection method show that the method performs similarly on
approximately circular historical clusters and greatly improves
detection for noncircular clusters.

biosurveillance � disease cluster detection � graph theory

Tests for the detection of disease clusters (1) are essential tools
for identifying emergent infections and elucidating demo-

graphic and environmental factors influencing diseases. The
shapes of these clusters are unpredictable (2–6). However, the
prevailing cluster detection method, a scan statistic that applies
a likelihood ratio test to a large number of overlapping circles in
a study region, reports only circular clusters (7, 8). Straightfor-
ward extensions of the circular scan statistic, such as an elliptical
scan (9) and a rectangular scan (10), are also limited to detecting
specific outbreak shapes.

Few methods aim to detect clusters of arbitrary shape. One
class of methods based on graph theory has recently emerged to
address this problem (11–14). However, these have several
limitations: they are restricted to clusters that fit inside a circular
region of fixed size (11), they attempt to examine a set of
potential clusters too large to exhaustively search (12), they have
poor specificity (13), or they have yet to be implemented or
evaluated (14).

In addition to the difficulties inherent in any disease cluster
detection method, such as accounting for the underlying popu-
lation density and controlling the level of significance given
multiple potential clusters of various sizes and in various loca-
tions, arbitrary shape cluster detection presents particular chal-
lenges. As more shapes are considered, the statistical power
declines, and the computational running time may become
unreasonable for typical problem sizes (11). Furthermore, if the
exact case locations are available, then considering every con-
ceivable shape is problematic; it is always possible to draw a
bizarrely shaped region of infinitesimally small total area that
includes every case. This problem surfaces when data are
aggregated into small regions. Indeed, one study identified
excessively large clusters with highly irregular shapes having
greater likelihood ratios than the inserted clusters that were the
detection targets (13).

In this study, we address these challenges by removing the
notion of shape from consideration and replacing it with a
mathematical formalization of potential clusters based on inter-
case distances. We introduce a method to locate clusters of any
shape based on Euclidean minimum spanning trees (EMSTs),
which have previously found application in heuristic methods to

divide other kinds of data into a predetermined number of
subsets (15, 16). Application of the method to synthetic, West
Nile virus, and anthrax data sets show that sensitivity and
accuracy are substantially improved compared with the circular
scan statistic method applied to noncircular clusters, which likely
include the majority of real disease clusters.

EMST Cluster Detection
Our cluster detection method consists of three sequential tasks.
A density-equalizing cartogram of the study region and disease
cases is first constructed from a Voronoi diagram of the controls.
Second, the family of potential clusters to evaluate is defined,
because it is not computationally feasible to consider all 2n

subsets of n cases. Third, the statistical significance of each
potential cluster is evaluated. We address each of these tasks.

Cartogram Construction. We begin with the precise spatial coor-
dinates of a set of disease cases and controls and a map of the
study area. We first create a Voronoi diagram of the control
locations, which subdivides the study area into the regions closest
to each control location (17) [see supporting information (SI)
Fig. 5]. The density of controls within each Voronoi region is
simply the number of controls in the region, which may be more
than one if multiple controls can occur at the same location,
divided by the region’s area. We use this density function to
create a density-equalizing cartogram of the Voronoi diagram.
Cartograms have previously been used for aggregate data to test
for clustering of several diseases (18–22). To construct one, each
point on the original map is essentially magnified or demagnified
according to its local density. The result is a distorted map on
which the density of controls is constant everywhere. Each case
is placed on the cartogram at a random location within the region
corresponding to its original Voronoi region, and all subsequent
analyses are performed by using these new case locations. Under
the null hypothesis of constant relative risk, the new locations of
the cases on the Voronoi diagram cartogram are uniformly and
independently distributed. We use a diffusion-based cartogram
construction algorithm (22), although other contiguous carto-
gram algorithms may also be suitable.

Potential Clusters. We call a potential cluster a subset of points S
satisfying the property that every subset of S is ‘‘closer’’ to at least
one other point in S than to any other point outside of S. To
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formalize this definition, we begin by defining the distance
�(X, Y) between two sets X and Y to be the smallest distance
separating the sets:

��X, Y� � �mina�X
b�Y

��a , b� if X � 0/ and Y � 0/
� otherwise

, [1]

where �(a, b) is the Euclidean distance between two points. We
also define the internal distance of a nonempty set S to be the
maximum distance between any two nonempty subsets of S
whose union is S:

��S� � max
A

�
�X�S

A
�

�Y�S
X�Y�S

��X , Y� . [2]

We formally define a potential cluster as follows:
Definition. Let V be a nonempty set of cases of a disease. A

potential cluster is a nonempty set S � V satisfying
�(S) � �(S, V � S).

Note that the entire set V is a potential cluster, as are the sets
{v} for every v � V. If v is the nearest neighbor of w and w is the
nearest of v, then {v, w} is a potential cluster.

We want to consider every potential cluster in V, but it is not
straightforward from the definition how to locate potential
clusters, nor how many of them are present. Progress was made
toward finding potential clusters in a different application in
bioinformatics (16) by using the minimum spanning tree of V, a
connected graph T spanning a set of points having minimal total
weight

w�T� � �
e�E�T�

w�e�, [3]

where E(T) denotes the set of edges of T, and the weight w(e) of
an edge e is in this case the Euclidean distance between the
endpoints of e. (For a detailed review of graph theoretical
definitions, see ref. 23.) Given a set V of n points, every potential
cluster is a connected subgraph of the EMST T of V (16).
However, even for small epidemiological data sets, the number
of connected subgraphs may be extremely large; EMSTs of 50
and 75 random points have approximately 106 and 108 connected
subgraphs, respectively.

We prove that it is not necessary to consider all connected
subgraphs of T to find the potential clusters. Remarkably, there
are at most 2n � 1 potential clusters, of which n are trivial sets
consisting of only one vertex. Furthermore, the potential clusters
may be quickly found from an EMST by using a greedy edge
deletion procedure. After constructing an EMST of the set of
cartogram case locations V, we iteratively delete the longest
remaining edge of T. At each iteration we consider the two newly
emergent connected components, each of which is a potential
cluster. In this way, we evaluate all n � 1 nontrivial potential
clusters for statistical significance by using a test described below
(see Fig. 1). A proof that this procedure identifies the set of
potential clusters is found in Appendix.

Statistical Significance. To assign a P value to any potential cluster,
a test statistic is required, along with its distribution under the
null hypothesis H0 of independently, uniformly distributed cases
on the cartogram. Let � be a potential cluster generated under
H0, and let S be an observed potential cluster. We define

PS � Pr �w��� � w�S� � card��� � card�S�	, [4]

where w is the weight of the potential cluster subgraph, and card
denotes the number of cases. PS is the P value corresponding to
the observed candidate cluster weight, conditioned on the
number of cases in S. Because cases in a true cluster are closer
together than expected, the weight w(S) of a potential cluster S
corresponding to a hot spot is likely to be smaller than a random
EMST potential cluster subgraph containing the same number
of cases. Consequently, a hot spot should have a low value of PS.
We define the test statistic P to be the minimum value of PS over
the set of nontrivial potential clusters containing at most half of
the cases. Monte Carlo techniques are used to fit PS as a function
of w(S) to a Gaussian distribution for each possible value of
card(S). The null distribution of P is subsequently estimated,
again by Monte Carlo, and a cutoff value corresponding to the
desired level of significance � is obtained.

The most significant cluster is reported, but the method could
easily be modified to report all significant clusters without
affecting the asymptotic running time.

Results
We applied the SaTScan circular scan statistic (8) and EMST
method to several types of data sets, finding that the EMST
method was substantially better able to detect noncircular
clusters. The SaTScan Bernoulli model was used with a maxi-
mum geographic window size containing 50% of the cases for
each data set. For each method and data set, the most significant
cluster with a P value of at most 0.05 computed by using 9,999
Monte Carlo replications was reported; thus the specificity,
defined as the probability of reporting no significant cluster in
data generated under the null hypothesis, was 0.95 for both
methods and all data sets. The sensitivity, equal to the fraction
of clusters that were detected, was calculated for each data set
and method. To quantify the extent of overlap between the most
likely cluster and the actual cluster, we defined two other
measures. We defined FTC to be the fraction of true cluster cases
that were correctly found in the most likely cluster, and FMLC to
be the fraction of cases in the most likely cluster that coincided
with the true cluster.

West Nile Virus, New York City, 1999. The EMST method and
SaTScan had similar performance detecting a 1999 outbreak of
West Nile virus in New York City (24). This finding was
encouraging because the 56 cases appear to have an approxi-
mately circular distribution (see Fig. 2), suggesting an advantage
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Fig. 1. Procedure to locate potential clusters illustrated for a set of 15 cases.
The EMST is first constructed (Top Left). This is a tree connecting each case
(circle) that minimizes the total summed edge distance. At each step, the
longest remaining edge is deleted, forming two new connected components
(red). Components that were unchanged from the previous step are shown in
blue. The connected components are in one-to-one correspondence with the
set of potential clusters.
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for the circular scan statistic. We defined a study area consisting
of Connecticut, New Jersey, and New York and generated 10,000
controls within the map distributed in proportion to 2000 U.S.
census county population data. To evaluate the methods, we
required data sets with both outbreak and nonoutbreak cases. In
addition to the West Nile virus cases, we generated 400, 600, 800,
1,000, or 1,200 additional nonoutbreak background cases dis-
tributed according to the underlying population distribution. As
the number of background cases increased, the West Nile virus
cluster became harder to detect. We created 1,000 data sets for
each background case number. The data sets could represent, for
example, emergency visits for neurological symptoms in a
multistate surveillance area, with controls drawn from all emer-
gency visits. Fig. 2 shows a typical data set along with its Voronoi
diagram cartogram transformation and the most likely cluster
obtained by both methods. The results of applying SaTScan and
the EMST method to the data sets are summarized in Table 1.
Both methods displayed similar comparative performance for all
numbers of background cases. The sensitivity of both methods
declined from 1.0 for 400 background cases to 0.96 and 0.89 for
1,200 background cases for the EMST method and SaTScan,
respectively. The percent change in FTC of the EMST method
compared with SaTScan varied from �0.4% to 16%, and the
percent change in FTC varied from �14% to �6.8%.

Inhalational Anthrax, Sverdlovsk, Russia, 1979. The EMST method
had greater accuracy than SaTScan when applied to a highly
noncircular outbreak of 62 cases of inhalational anthrax occurring

in Sverdlovsk, Russia in 1979 (2). Because we lacked spatial
references for the data necessary to geocode the case locations, we
used a uniform distribution within a square study region to generate
10,000 controls. The set of cases consisted of 400, 600, 800, 1,000,
or 1,200 uniformly distributed background cases, in addition to the
anthrax case locations. These could represent, for example, visits for
respiratory complaints to an emergency department, with controls
drawn from all visits. For each number of background cases, 1,000
data sets were generated. A typical data set is shown in Fig. 3, along
with the most likely cluster detected by SaTScan and the EMST
method. The mean sensitivity, FTC, and FMLC are summarized in
Table 2. The EMST method had comparable or greater sensitivity
than SaTScan for all background population sizes, and it correctly
identified a greater fraction of the anthrax cases (FTC) for all
background population sizes. Both methods’ sensitivity declined as
more background cases were added: from 0.98 to 0.52 for the EMST
method and from 0.98 to 0.35 for SaTScan. The EMST method had
a lower value of FMLC than SaTScan, indicating that it overesti-
mated the cluster to a greater extent than SaTScan. However, the
percent decline in FMLC incurred by using the EMST method
instead of SaTScan was about half of the gain in FTC.

Circular Clusters, Boston, MA. We also compared the ability of the
EMST method and SaTScan to detect circular clusters. Because
the circular scan statistic is optimized to detect circular clusters,
we were surprised to find that the EMST method was as sensitive
as SaTScan. The study area consisted of the 59 zip codes within
10 km of Boston, MA. Ten thousand controls were distributed

a b
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Fig. 2. Detection of 1999 New York West Nile virus cases by SaTScan and the EMST method. (a) A typical data set consisting of the 56 West Nile virus cases (red
and orange) and 400 background cases (blue and gray) are shown on a map of Connecticut, New Jersey, and New York. Only part of the map is shown for clarity.
The West Nile virus case locations have been randomly skewed for privacy (34). The most likely cluster identified by SaTScan is shown (red and blue). The green
shading represents the density of controls in each county. (b) The Voronoi diagram cartogram of part of the study area is shown along with the transformed
case locations. Although the Voronoi diagram cartogram regions are not shown, the distortion of county boundaries induced by the cartogram transformation
is apparent. The minimum spanning tree (black edges) connects the most likely cluster identified by the EMST method (red and blue). The control density varies
by �2.0% over the entire map.

Table 1. SaTScan and EMST method applied to West Nile virus

SaTScan EMST Comparisons

n SN FTC FMLC SN FTC FMLC 
 SN, % 
 FTC, % 
 FMLC, %

400 1.00 0.69 0.61 1.00 0.80 0.53 �0.5 �16 �14
600 1.00 0.63 0.54 1.00 0.69 0.48 �0.2 �9.1 �11
800 0.99 0.58 0.48 1.00 0.61 0.44 �0.7 �5.1 �8.5

1,000 0.99 0.55 0.44 0.99 0.55 0.41 �0.4 �0.1 �6.8
1,200 0.89 0.49 0.40 0.96 0.50 0.38 �8.0 �3.4 �4.6

n, no. of background cases added to cluster cases; SN, average sensitivity; FTC, average fraction of true cluster
detected; FMLC, average fraction of most likely cluster coinciding with the true cluster (averaged over data sets for
which a significant cluster was found); 
, percent difference.
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on the map in proportion to zip code population data from the
2000 U.S. census. Data sets of 500 total cases were created, each
containing a synthetic circular cluster in a random location with
a radius of 1, 2, or 3 km placed within the study region. We
defined the relative cluster density to be the case density within
the cluster divided by the case density outside the cluster. This
ratio varied from two to five in the data sets. For each combi-
nation of outbreak radius and relative cluster density, 1,000 data
sets were created. For small clusters containing on average �35
cases, the EMST method had greater sensitivity. However, it is
likely that stochastic effects caused such clusters to have non-
circular shapes in general. Indeed, the smaller the cluster, the
more pronounced the EMST method’s relative improvement in
sensitivity. For larger clusters, the EMST method had similar
sensitivity to SaTScan (0.1% less to 4.1% more) and similar
values of FTC (3.4% less to 0.4% more). However, SaTScan
always had a larger value of FMLC, indicating that it located large
circular clusters with more overall accuracy than the EMST
method. See SI Table 4 for detailed results.

Rectangular Clusters, Boston, MA. In a study of rectangular clusters,
we found that the EMST method had greater sensitivity than
SaTScan. Sets of 500 cases containing artificial rectangular
clusters having a height-to-width ratio of 1, 4, or 16 and relative
cluster density between two and five were generated within the
same study region as above, and 10,000 controls were distributed
in proportion to the background population as above. The
cluster area was fixed at 20 km2, and 1,000 data sets were
generated for each combination of parameters by randomly
placing a rectangular cluster within the study region map. The
results are summarized in Table 3. In general, the EMST method

had greater sensitivity than SaTScan (0.2% less to 166% more),
with the greatest percent increase in sensitivity when the cluster
signal strength was weak or the height-to-width ratio was large.
The EMST method captured a greater extent of the true cluster
(FTC) than SaTScan for all cluster types (2.6% to 419% more).
For most cluster types, there was a parallel decline in the fraction
FMLC of the most likely cluster coinciding with the true cluster
(20% less to �3.2% more).

Arbitrary Shapes. It is possible to gain insight into the EMST
method’s performance on other cluster shapes without addi-
tional intensive computer simulations. The EMST test statistic
depends only on the cartogram, the total number of cases, and
the cardinality and weight of a potential cluster. Hence, we can
extrapolate the P value obtained for one potential cluster to
others having different shapes, but the same number of cases and
weight. To illustrate this, we selected one most likely cluster of
35 cases from one of the Boston analysis data sets. The EMST
method assigned a P value of 0.0001 to this potential cluster. Fig.
4 shows several configurations of potential clusters having the
same number of cases and EMST weight, but very different
shapes. If embedded as potential clusters within a Boston data
set of 500 total cases, they would each achieve the same P value
of 0.0001. In fact, any potential cluster of 35 cases of any shape
can be scaled in size to have the same weight, illustrating that the
method can capture an infinite array of regular and irregular
shapes.

Discussion
We find that the EMST method is a powerful and accurate
alternative to the circular scan statistic for noncircular clusters.

True positive

False postive

False negative

True negative

a b

Fig. 3. SaTScan and EMST detection of 1979 Sverdlovsk anthrax outbreak. (a) A representative data set of 63 anthrax cases (red and orange) and 400 uniformly
distributed background cases (blue and gray) is shown, along with the most likely cluster determined by SaTScan (red and blue). (b) The EMST method most likely
cluster (red and blue) is shown for the same data set, connected by the minimum spanning tree of the cartogram-transformed cases (black edges).

Table 2. SaTScan and EMST method applied to anthrax

n

SaTScan EMST Comparisons

SN FTC FMLC SN FTC FMLC 
 SN, % 
 FTC, % 
 FMLC, %

400 0.98 0.32 0.65 0.98 0.48 0.49 �0.4 �48 �24
600 0.88 0.28 0.53 0.86 0.39 0.40 �2.3 �38 �25
800 0.60 0.19 0.44 0.72 0.32 0.32 �19 �68 �28

1,000 0.53 0.17 0.37 0.60 0.26 0.26 �12 �55 �31
1,200 0.35 0.11 0.32 0.52 0.21 0.22 �46 �100 �31

n, no. of background cases added to cluster cases; SN, average sensitivity; FTC, average fraction of true cluster
detected; FMLC, average fraction of most likely cluster coinciding with the true cluster (averaged over data sets for
which a significant cluster was found); 
, percent difference.
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At a specificity of 95%, the method had comparable sensitivity
to SaTScan applied to large synthetic circular clusters and an
approximately circular West Nile virus outbreak. When applied
to small circular clusters, synthetic rectangular clusters, and a
highly irregular anthrax cluster, the EMST method had greater
sensitivity. Although SaTScan had better accuracy detecting
large circular clusters, the EMST method had comparable or
superior accuracy for all other cluster types. The EMST method
is also able to detect a large variety of shapes, including highly
irregular ones.

In addition to accurately locating clusters of any shape and
size, the EMST method has two unique properties. First, its test
statistic is based only on the weight of the potential cluster
subgraph. To our knowledge, all other tests that provide the
location of any detected clusters while allowing the user to set the
level of significance for the test use the likelihood ratio test
statistic developed by Kulldorff and Nagarwalla (7). This test
statistic requires the area of each region considered, which in
turn requires a precise definition, including the shape, of the
region. Second, we formally define a cluster in mathematical
terms that are independent of cluster geometry, and which
depend only on intercase distances. Traditionally, clusters are
often imprecisely defined; for example, Knox’s frequently cited
definition is ‘‘a geographically bounded group of occurrences of

sufficient size and concentration to be unlikely to have occurred
by chance’’ (25).

Of other cluster detection methods designed to capture clus-
ters of any shape, the EMST method is most similar mathemat-
ically to the upper level set method of Patil and Taillie (14),
which examines a well defined family of contiguous administra-
tive regions with high relative rates. Assunção et al. (13) used
minimum spanning tree of graphs with different vertices, edges,
and edge weights to consider contiguous administrative regions
having similar disease rates, whether high or low. By contrast, we
locate sets of individual cases corresponding to a mathematical
formalization of a cluster, using specific subsets of the EMST.
General tests of clustering (1) such as Tango’s maximized excess
events test (26), and disease mapping methods, such as Bayesian
partition models (27, 28), kriging (29), and generalized additive
models (30, 31), handle arbitrary geometric configurations of
cases without difficulty. However, these address separate prob-
lems within spatial epidemiology, and comparison of clustering
and disease mapping methods to cluster detection methods is not
straightforward (32).

The EMST method can easily be extended to analyze regional
summary data, consisting of counts of observed and expected
disease cases for each region on a map. A cartogram is con-
structed to equalize the density of expected disease cases, and
each observed case is randomly placed on the cartogram within
its region of occurrence. After constructing the cartogram, the
procedure for case-control data are followed.

One limitation inherent in this and other methods for aggre-
gated data is that exact spatial locations are not used, which
decreases cluster detection sensitivity and accuracy (33). This is
also a limitation for the procedure detailed above for case-
control data, because a loss of spatial information is incurred by
randomizing cases within their regions of occurrence on the
Voronoi diagram cartogram. Because the expected area of each
region on the cartogram tends toward zero as the number of
control locations increases, this loss can be minimized by in-
creasing the number of controls. For 10,000 distinct controls on
a square map, as used in our study, the loss of spatial information
is modest; each case is expected to move �1% of the length of
one side of the square.

We found that the EMST method gains in FTC for noncircular
clusters were partially offset by a decline in FMLC, indicating that
the EMST method reports fewer false negatives, but more false
positives, than SaTScan. The relative cost to society of false
negatives and false positives depends on many factors. The cost
of false negative cases includes, for example, an increased risk of

Table 3. SaTScan and EMST method applied to rectangular clusters

Parameters SaTScan EMST Comparisons

r d SN FTC FMLC SN FTC FMLC 
 SN, % 
 FTC, % 
 FMLC, %

1 2 0.56 0.47 0.82 0.61 0.50 0.65 �8.2 �6.0 �20
1 3 0.92 0.82 0.90 0.95 0.86 0.78 �3.2 �4.7 �13
1 4 0.99 0.91 0.93 0.99 0.94 0.85 �0.2 �2.6 �8.9
1 5 1.00 0.93 0.95 1.00 0.97 0.88 �0.2 �4.5 �7.3
4 2 0.43 0.26 0.69 0.58 0.42 0.62 �36 �63 �10.0
4 3 0.95 0.64 0.77 0.97 0.86 0.74 �2.2 �34 �4.4
4 4 1.00 0.73 0.79 1.00 0.95 0.80 �0.1 �29 �0.4
4 5 1.00 0.78 0.81 1.00 0.97 0.84 0.0 �25 �3.2

16 2 0.21 0.06 0.66 0.55 0.31 0.52 �166 �419 �21
16 3 0.82 0.25 0.72 0.98 0.74 0.60 �21 �199 �17
16 4 0.99 0.31 0.76 1.00 0.86 0.67 �0.9 �177 �11
16 5 1.00 0.35 0.77 1.00 0.93 0.73 0.0 �166 �6.0

r � ratio of cluster height to width; d � relative cluster density; SN, average sensitivity; FTC, average fraction
of true cluster detected; FMLC, average fraction of most likely cluseter coinciding with the true cluster; 
, percent
difference.

Fig. 4. Equally detectable potential clusters of various shapes. A most likely
cluster of 35 points selected from among the Boston circular cluster data sets,
along with its minimum spanning tree, is shown in the upper left. Seven other
configurations of 35 points, having minimum spanning trees with exactly the
same weight, are also shown. Subject to the constraint imposed by the
definition of a potential cluster, all eight clusters have equivalent detectability
by the EMST method. If embedded as potential clusters in a Boston data set of
500 total cases, all would achieve the same P value of 0.0001.

9408 � www.pnas.org�cgi�doi�10.1073�pnas.0609457104 Wieland et al.



spread of a disease and the possibility that infected individuals
who are unaware of the outbreak may not seek early treatment
for symptoms, while the cost of false positive cases includes
unnecessarily investigating and alarming the community. In
retrospective research and prospective surveillance, the shape of
true clusters are not known a priori. Thus, in most cases, a
method that is able to detect clusters of any shape is preferable.
Hence the EMST method may represent a practical adjunct to
methods currently used in public health practice.

Appendix
We show that potential clusters are in one-to-one correspon-
dence with a small class of subsets of an EMST T. For w � 0, we
define Tw to be the graph derived from T by deleting all edges
of T having weight greater than w. We label the n � 1 edges of
T in order of decreasing weight, so that w(e1) � w(e2) � . . . �
w(en�1) 
 0. If the edge weights are distinct, then there are n
distinct graphs Tw; these are the graphs T � Tw(e1) Tw(e2)

. . . Tw(en�1) T0. Tw(ek�1) is formed from Tw(ek) by deleting
one edge, which splits one connected component of Tw(ek) into
two components. Thus Tw(ek�1) has k � 1 connected components,
k � 1 of which are present in Tw(ek), and two of which are newly
created. There are 2n � 1 total distinct connected components
among all of the graphs Tw (see Fig. 1). If the edge weights
are not distinct, then a variation of this argument shows that
2n � 1 is an upper bound on the number of distinct con-
nected components. The following characterizes the connected
components:

Lemma 1. Let V be a nonempty set of points in a plane (representing
cases of a disease). Let T be an EMST of V, S a nonempty subset
of V, and TS the subgraph of T induced by S. The set S is a potential
cluster if and only if TS is a connected component of T0 or of Tw(ek)

for some k.
The proof is made easier by two simple lemmas, which we

prove in SI Text.

Lemma 2. Let TS be a connected subgraph of T with vertex set S.
Then �(S) (Eq. 2) is equal to the maximum weight of an edge in TS

if �S� 
 1, and 0 otherwise.

Lemma 3. If S is a nonempty, proper subset of V, then �(S, V � S)
is equal to the minimum weight of an edge in T spanning the cut
(S, V � S).

Proof of Lemma 1. We first show that every potential cluster
induces a connected component of T0 or Tw(ek) for some k.
Equivalently, we show that if a subgraph H of T is not a
connected component of Tw(ek) or T0, then the vertex set of H is
not a potential cluster. Xu et al. (16) showed that every potential
cluster induces a connected subgraph of T, so that if H is not
connected, then its vertex set is not a potential cluster. Suppose
H is a connected subgraph of T, which is not a connected
component of Tw(ek) for any k, or T0. H must have at least one
edge; let ej be an edge of H of maximal weight. Let C be the
connected component of Tw(ej) containing ej. Because H is a
connected subgraph of Tw(ej) containing ej, H C. We refer
interchangeably to a graph and its vertex set to simplify notation.
There exists some edge e � T spanning H and C � H, and
because e � C, w(e) � w(ej). By Lemma 2, �(H) � w(ej), and by
Lemma 3, �(H, V � H) � �(H, C � H) � w(e) � w(ej). Hence
�(H, V � H) � �(H) and H is not a potential cluster.

To finish the proof, we must show that every connected
component of Tw(ek) for any k or T0 is a potential cluster. This is
trivial for Tw(e1) � T or T0, whose components are the individual
vertices. Let TS be a connected component of Tw(ek) � T with
vertex set S. Then �(S) � w(ek) by Lemma 2. Because
V � S � �, there must be some edge e � T spanning S and
V � S. Because the edge is not in Tw(ek), w(e) 
 w(ek). This is true
for every spanning edge, so by Lemma 3, �(S, V � S) 
 w(ek).
Hence �(S) � �(S, V � S), and so S is a potential cluster.

Note that the proof does not rely on the uniqueness of T, so
degenerate EMSTs do not affect the ability of the method to
capture all potential clusters. If the set of cases V are continu-
ously distributed on the cartogram, as in the present study, then
in theory the EMST is unique with probability 1. However,
degenerate EMSTs may occur with extremely low probability
because of the inability of computers to support arbitrary
precision.
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