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The comprehensive inventory of functional elements in 44 human genomic regions carried out by the ENCODE
Project Consortium enables for the first time a global analysis of the genomic distribution of transcriptional
regulatory elements. In this study we developed an intuitive and yet powerful approach to analyze the distribution
of regulatory elements found in many different ChIP–chip experiments on a 10∼100-kb scale. First, we focus on the
overall chromosomal distribution of regulatory elements in the ENCODE regions and show that it is highly
nonuniform. We demonstrate, in fact, that regulatory elements are associated with the location of known genes.
Further examination on a local, single-gene scale shows an enrichment of regulatory elements near both transcription
start and end sites. Our results indicate that overall these elements are clustered into regulatory rich “islands” and
poor “deserts.” Next, we examine how consistent the nonuniform distribution is between different transcription
factors. We perform on all the factors a multivariate analysis in the framework of a biplot, which enhances biological
signals in the experiments. This groups transcription factors into sequence-specific and sequence-nonspecific clusters.
Moreover, with experimental variation carefully controlled, detailed correlations show that the distribution of sites
was generally reproducible for a specific factor between different laboratories and microarray platforms. Data sets
associated with histone modifications have particularly strong correlations. Finally, we show how the correlations
between factors change when only regulatory elements far from the transcription start sites are considered.

[Supplemental material is available online at www.genome.org.]

Transcription of protein-coding genes is mediated by RNA poly-
merase II (POLR2A, formerly known as Pol2) and requires a com-
plex set of cis-acting transcriptional control sequences and fac-
tors that bind them. POLR2A is dependent on auxiliary general
transcription factors (TFs), such as the TBP-associated factors, or
TAF proteins, to be fully functional. The complex that they
form—known as the basal transcription apparatus (Nikolov and
Burley 1997)—recognizes the core promoters located at nucleo-
tide positions from �45 to +40 relative to the transcription ini-
tiation site (Butler and Kadonaga 2002) to initiate constitutive
gene transcription. Immediately upstream of the core promoter
region are the promoter proximal elements, which are typically
multiple recognition sites for particular sequence-specific ubiq-
uitous TFs such as SP1, NFI, and NFY that serve to modulate the
basal transcription activity of the core promoter (Kadonaga
2004). However, the large size of the mammalian genomes and

the general need for more sophisticated control systems to regu-
late very large numbers of interacting genes require mammalian
cells to use rather elaborate control elements to regulate gene
transcription. For example, regulation of expression of individual
human genes is often controlled by several sets of cis-acting regu-
latory elements, including promoters, enhancers (Martin 2001),
silencers (Pozzoli and Sironi 2005; Boyer et al. 2006), insulators
(Bell et al. 2001; Kuhn and Geyer 2003), and response elements
(Geserick et al. 2005). In concert with chromatin remodeling,
histone modifications such as acetylation and methylation also
play an important role in the transcriptional regulatory process
(Berger 2002; Turner 2002). In recent years it has become possible
to globally map transcriptional regulatory elements (TREs) using
high-throughput methods such as chromatin immunoprecipita-
tion coupled with microarray probing (ChIP–chip) (Horak and
Snyder 2002) or DNA sequencing of immunoprecipitated frag-
ments (ChIP–PET) (Ng et al. 2005).

Launched in September 2003, The ENCyclopedia of DNA
Elements (ENCODE) Project Consortium aims to identify all func-
tional elements in the human genome sequence (The ENCODE
Project Consortium 2004). The pilot phase of the project is fo-

9Corresponding author.
E-mail mark.gerstein@yale.edu; fax (360) 838-7861.
Article is online at http://www.genome.org/cgi/doi/10.1101/gr.5573107.
Freely available online through the Genome Research Open Access option.

Letter

17:787–797 ©2007 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/07; www.genome.org Genome Research 787
www.genome.org



cused on 14 manually chosen human
genomic regions and 30 randomly se-
lected ones, which in total compose
30 mega-bases (∼1%) of the human
genome sequence. Of all possible func-
tional elements in the ENCODE regions,
epigenetic modifications and cis-
regulatory elements, including promot-
ers and TF-binding sites (TFBSs; together
referred to as TREs in this report), are
a major form of transcriptional regula-
tion in eukaryotes. To identify the com-
plex set of cis-acting transcriptional con-
trol sequences and modification sites in
the ENCODE regions, a large number of
proteins (including POLR2A) that play
various roles in transcription and several
types of histone modifications were as-
sayed by different participating labora-
tories.

The ENCODE experimental assays
of the transcriptional regulation, which
collectively represent the first concerted
effort to systematically identify TREs in
the human genome on a large scale,
have generated a large amount of data.
With this information available (The
ENCODE Project Consortium 2007), it is
now possible to conduct detailed surveys
of different TFs and their TREs on vari-
ous genomic levels (Fig. 1A). The pro-
moter assay finds the promoter regions
immediately upstream to genes’ tran-
scription start sites (TSSs) on a 100-base-
pair (bp) level, and the chromatin struc-
ture analysis examines the correspon-
dence between various TREs and aspects
of chromatin architecture that impli-
cates mega-bases of DNA. In contrast,
our analysis of the genomic distribution
of TREs was conducted on an intermedi-
ate genomic level, which involves
10∼100 kb of DNA encompassing several
genes on average.

With such an unprecedented data
set, it is now also possible to examine TF
coassociation on a large genomic scale.
It is highly desirable to present the problem and subsequently
analyze the data in a consistent and coherent statistical frame-
work. To do this, we first coded the ChIP–chip experimental
results as a binary 105 � ∼30,000,000 data matrix (Fig. 1B)
and then transformed it into a 105 � 5669 count matrix using
a sliding window to both reduce the matrix size and incorpo-
rate contextual information from neighboring nucleotide posi-
tions (Fig. 1C). By presenting the data set in the matrix form,
many well-studied, mathematically-sound statistical methods
and techniques such as the principal component analysis and
data randomization (Fig. 1D) can be adopted to tackle the prob-
lem.

Below, we evaluate the genomic distribution of the newly
identified TREs both by themselves and together with the gene
distribution, determine TRE clusters and deserts in the ENCODE

regions, and study the relationship among the TFs that have been
assayed.

Results

We analyzed 105 lists of regulatory elements of 29 TFs in the
ENCODE regions. A list of TREs of a particular TF specifies the
location in the genome of the regulatory elements of this factor
under certain cellular and experimental conditions. Disregarding
overlaps among sites, there are a total of 15,211 TREs identified.
The numbers of TREs in each list, ranging from 1–1083 with an
average of ∼145 per list, are plotted in Supplemental Figure 1 with
lists from the same laboratory grouped together and labeled ac-
cordingly. The overall landscape of all 44 ENCODE regions with
identified TREs is depicted in Figure 2 and clearly shows a posi-

Figure 1. Schematic introduction of the several concepts used in this study. (A) Studies of different
transcription factors and their regulatory elements on various genomic levels. (TRE) Transcriptional
regulatory element; (TSS) transcription start site. (Modified from The ENCODE Project Consortium
2004 and reprinted with permission from AAAS [www.sciencemag.org] © 2004.) (B) The binary data
matrix. Each row is the result track of a ChIP–chip experiment. Red dots are identified transcriptional
regulatory elements, in which each nucleotide position is coded as one. (C) The count matrix. A sliding
window (the green boxes in B) was used to incorporate contextual information from neighboring
positions. Each gray dot represents the number of nucleotide positions in TREs in a sliding window. (D)
Correlating two ChIP–chip tracks. The correlation can be done on either two binary vectors or two
corresponding count integer vectors (actually used, not shown). Two tracks can also be randomized to
generate a background distribution of the correlation.
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tive correlation of the TRE density with both nonexonic conser-
vation and gene density in a genomic region.

TREs are nonrandomly distributed in the ENCODE regions
with local enrichment and depletion

Combined regulatory elements of 29 TFs examined in this study
are distributed throughout 44 ENCODE regions with an uneven
density (Fig. 2). To assess the statistical significance of this den-
sity heterogeneity in the TRE genomic distribution, we compared
the actual distribution with a randomized one (the null model).
Since there are several groups of similar TFs, the actual TRE ge-
nomic distribution may be distorted by the repeated measure-
ment of some identical regulatory elements. To minimize this
distortion, we used an integrated composite list of 828 genomic
elements and performed a �2 goodness-of-fit test to assess the
nature of genomic TRE distribution. The �2 test rejected the null
hypothesis that TREs are randomly distributed in the ENCODE
regions (�2 = 708.68, d.f. = 226, P < 2.2 � 10�16, using 150-kb

genomic partitions) and thus confirmed
the perception that the TREs are not
evenly distributed throughout the
ENCODE regions.

Figure 3 shows the significant dif-
ference between the actual TRE distribu-
tion and the randomized one (com-
bined from 10 times of genomic permu-
tations of TREs). The distribution of
randomly dispersed TREs is a right-
skewed, monotonic distribution, which,
with 150-kb genomic subregions, peaks
at approximately three TREs per bin and
then quickly decreases as the number of
TREs per subregion deviates further
from the average. It resembles a Poisson
distribution due to its intrinsically ran-
dom component but deviates from it as
the random dispersion of TREs was
restricted to only the nonrepetitive
ENCODE sequences. Unlike the “Pois-
sonesque”-null distribution, the actual
TRE distribution shows many genomic
subregions with extreme numbers of
TREs. For example, with 150-kb subre-
gions, there are 87 subregions with zero
or one TRE and 16 with >10 TREs.

By mapping the full set of TREs
onto the human genome sequence, we
identified 583 genomic subregions with
TRE enrichment and 726 subregions
with TRE depletion (the TRE “islands”
and “deserts,” respectively) in the
ENCODE regions. The longest TRE is-
land is composed of 68 various tran-
scriptional regulatory sites and covers a
35-kb region from HOXA9 to HOXA11
in the HOXA cluster on chromosome 7.
High-ranking TRE islands also show that
the genomic sequence of EHD, the testi-
lin gene that is highly expressed in tes-
tis, is saturated by various histone modi-
fication and TFBSs (Fig. 4A). Although

most TRE islands are spatially close to known genes, we noticed
some of them are located in the intergenic regions in the ge-
nome. For example, six small TRE islands are found in a 100-kb
intergenic region between KATNAL1 and HMGB1 on chromo-
some 13 (Fig. 4B).

TREs have a similar genomic distribution as know genes
and are enriched at both ends of genes

As cis-acting DNA elements through which TFs regulate gene ex-
pression, TREs are intimately linked to certain genes or genes
in general. To study the spatial relationship between these
two types of genomic entities, we first compared the genomic
distribution of TREs with that of known genes in ENCODE
regions. As Figure 5A shows, there is an overall similarity between
these two distributions, which was measured by the correlation
between the numbers of TREs and known genes in a series of
isometric (150-kb), nonoverlapping partitions of the ENCODE
regions. The normality test shows that the correlation coefficient

Figure 2. The landscape of the TREs identified by the 105 ChIP–chip experiments in the ENCODE
regions. The green and blue ticks represent TREs of sequence-specific and sequence-nonspecific tran-
scription factors identified by the original experiments respectively. The smaller red ticks mark the
locations of genomic elements from the integrated tree-weighted composite list (Trinklein et al. 2007).
The placement of 30 randomly picked ENCODE regions (ENr—) in a three-by-three table reflects the
stratification in their original selection: The rows are 0%–50%, 50%–80%, and 80%–100% nonexonic
conservation from top to bottom, and the columns are 0%–50%, 50%–80%, and 80%–100% gene
density from left to right.
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of the null model, which assumes randomly dispersed TREs
in the nonrepetitive sequences of the ENCODE regions, is
distributed as N(0.14, 0.062). The actual correlation, 0.57,
between the occurrence of TREs and known genes is highly
significant when it is compared with the null distribution (Fig.
5B).

Although this comparison proved that the occurrences of
TREs and (known) genes in the genome are highly correlated, it
does not explain how TREs are distributed locally relative to the
gene transcription sites. To address this problem, we studied the
distribution of TREs on a finer scale by examining the enrich-
ment (or the lack of it) of TREs at TSSs, transcription end sites
(TESs), and transcription middle sites (TMSs, the genomic middle
point between TSSs and TESs) of known genes in ENCODE re-
gions. The comparison between the actual count number, c, of
TREs near one type of these sites and its corresponding null dis-
tribution, �, constitutes an implicit test of the null hypothesis
that TREs are not enriched in the vicinity of this particular type of
transcription sites.

With 44 ENCODE regions combined, the test rejected
the null hypothesis with regard to TSSs as there are 63 TREs
near (within 500 bp of) TSSs in all ENCODE regions while
the null distribution is normal with 20 as its mean (µ�) and
five as its standard deviation (��) (Fig. 5C). The null distributions
of the numbers of TREs near TSSs, TESs, and TMSs (counting
was done after the permutation of TRE genomic locations) are
all empirically normal and almost identical to N(20, 52). The
fold enrichment of TREs near the vicinity of them over the
random background (c/µ�) is 3.2, 3.6, and 1.6, respectively
(Fig. 5D). Although there is a slight enrichment of TREs near
the middle point of gene transcripts, it is much weaker than
that of TREs near the start sites and the end sites of gene tran-
scription.

Multivariate analysis enables biological signal detection despite
systematic variation and noise

The result of each ChIP–chip experiment is affected by numerous
factors, including systematic experimental design, materials,
data analysis methods, and random noise. Since all the experi-
mental data were analyzed by the same false discovery rate
method (Efron 2004), a significant portion of this system vari-
ability can be explicitly captured by four categorical variables: the
TF, the cell line, the microarray platform, and the laboratory.
Pairwise correlation of the 105 ChIP–chip experimental results
under consideration generated a 105 � 105 symmetric correla-
tion matrix. Although it fully describes the relationships between
the experiments in the data set, this correlation matrix is difficult
to analyze as the complex experimental factors (the four afore-
mentioned categorical variables) are compounded together.

Instead, we use the biplot to explore the relationship among
these 105 ChIP–chip experimental results and subsequently
among the TFs that were assayed. We obtained a two-
dimensional representation of the observations by plotting the
first two principal components. By using only the top two prin-
cipal components, we were able to discard noise but keep main
biological signals in the data. Biplot was also used to show TFs
and genomic bins together, in a way that represents graphically
their joint interrelationship in one plot. It graphs TFs as lines and
genomic bins as points together within a common space. Thus
we can examine three different relationships—TF to TF, genomic
bin to genomic bin, and TF to genomic bin—all in one (bi)plot at
the same time.

Formally speaking, a biplot is a graphical representation of
the data, in which observations (genomic bins) and variables
(experiments or TFs) are plotted in a low dimensional space as
points and lines, respectively (Gabriel 1971). Correlations among
the experiments are inversely proportional to the angles between
the lines. Positive, zero, and negative correlations are represented
by acute, right, and obtuse angles, respectively. The distances
between the points correspond to the similarities between the
profiles of genomic bins: Two bins relatively similar across all the
experiments are depicted as points that fall relatively close to
each other within the graphic space (see Methods and the Biplot
subsection in the Supplemental Material).

As mentioned above, a list of TREs of a particular TF specifies
the location of its regulatory elements in the genome under cer-
tain cellular and experimental conditions. By partitioning the
ENCODE regions into isometric genomic bins, we can quantify
the distribution of TREs of a TF by counting the number of
nucleotides that its TREs cover in each bin. In essence, this pro-
cedure quantitatively describes the relationship between two
types of entities—a TRE list and a series of consecutive genomic
bins. Given 105 ChIP–chip experiments and 5996 5-kb nonover-
lapping genomic bins, this generates a 5996 � 105 data matrix.
If the ChIP–chip experiments are treated as 105 random variables
and the genomic bins as 5996 observations of them, the relation-
ships between the ChIP–chip experiments and the genomic bins
can be studied using a biplot.

The biplot in Figure 6A, generated from our 5996 � 105
matrix, reveals an interesting structure hidden in this data set:
The 105 experiments, represented as lines in the figure, can be
divided into two highly distinct clusters. One of the clusters is
mainly composed of 41 Affy ChIP–chip experiments; the other
combines 64 non-Affy ones. The nearly perpendicular orienta-
tion of these two line clusters indicates that Affy and non-Affy

Figure 3. TRE distribution in ENCODE regions. Colors signify different
genomic subregion sizes. The dots in the same color represent the actual
TRE distribution with a particular subregion size. Given the number of
TREs in a genomic bin, each dot marks how many such bins are in the
ENCODE regions. The null distributions of randomized TREs are repre-
sented by dashed curves. Notice both the actual and the null distributions
change only slightly when the genomic bin size varies.
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data are virtually uncorrelated. Affy ChIP–chip experiments were
carried out using Affy tiling arrays and the HL-60 cell line, nei-
ther of which was used by other laboratories. Either array plat-
form or cell line, or both, contributed to the observed noncorre-
lation. However, given the currently available data sets, it is not
possible to ascertain which factors contributed to the observed
noncorrelation and by how much. Based on this observation and
the fact that non-Affy data form a larger data set, we focused our
following data analysis in this section on non-Affy data only.

Two distinct clusters of TFs emerges from the multivariate
analysis

To study the overall relationships between TFs (not their rela-
tionships in a particular cell line), we merged TRE lists by taking
the union of all TRE lists of each factor. This procedure produced
18 combined lists, one for each of 18 TFs. A second biplot (Fig.
6B) was generated from this non-Affy data set. Again, the biplot
reveals an interesting structure hidden in the data. The line ori-
entations show that the TFs can be divided into two relatively
distinct clusters. One is composed of POLR2A, TAF1, H3ac, H4ac,
H3K4me1, H3K4me2, H3K4me3, E2F1, E2F4, and MYC; the other
combines SP1, SP3, STAT1, JUN, SMARCC1, SMARCC2,
H3K27me3, and SUZ12. It is interesting to note that the hierar-
chical clustering of these 18 combined lists reveals very similar
cluster structure, both at coarse and fine levels (Fig. 7A). How-
ever, hierarchical clustering does nothing about the data noise

and shows only one-third of the interrelationship; i.e., the rela-
tionship among TFs only. The identities of these two clusters are
readily revealed by an examination of their participating factors.
In fact, they can be interpreted as clusters of sequence-specific
and sequence-nonspecific TFs, respectively.

TREs are positively correlated for TFs that fall within the
respective clusters; this is indicated by the small angles between
lines that represent TFs within the two clusters. One good ex-
ample is SMARCC1 and SMARCC2 in the second cluster. This
high correlation is expected as they are two subunits in the same
SWI/SNF chromatin remodeling complex (Wang et al. 1996a,b).
Many other pronounced examples can be found in the first clus-
ter, whose compactness indicates high correlation among its con-
stituent TFs, such as POLR2A, TAF1, and histone modification
sites. SP1, SP3, and STAT1, the sequence-specific factors, in the
second cluster are also correlated with each other, although to a
lesser extent. This is expected as they recognize different DNA
sequence motifs (see above), which may or may not locate near
to each other in the genome. SP1, SP3, and STAT1 in the second
cluster also correlate with factors in the first cluster. In contrast,
SMARCC1, SMARCC2, H3K27me3, and JUN are virtually uncor-
related with factors in the first cluster.

When only the TREs that are >2 kb away from annotated
TSSs were used to cluster TFs, a different cluster pattern emerged
(Fig. 7B). Four TFs changed their cluster membership: SP1, SP3,
and STAT1 are now grouped with sequence-nonspecific factors,

Figure 4. Samples of TRE islands. (A) TRE islands that cover the entirety of EHD on chromosome 11. (B) TRE islands in the 100-kb intergenic region
between KATNAL1 and HMBG1 on chromosome 13. TRE islands, individual component TREs, and known genes are shown on three different tracks. In
B, the distal intergenic TRE islands are shown as white boxes with green borders. The genomic coordinates of both chromosome 11 and 13 are based
on the NCBI build 35 of the human genome assembly.
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while E2F4 joins the sequence-specific ones. The two SMARCCs,
JUN, SUZ12, and H3K27me3 behave as before. This change of
pattern indicates that there may be novel promoters or alterna-
tive promoters that are bound by SP1, SP3, and STAT1. Sequence-
specific factors can be classified into classes depending upon the
genomic distributions of their TREs. Some are heavily involved in
the general transcriptional machinery, while many are only func-
tional in certain cell lines or under a specific condition, and these
latter factors tend to bind to distinct regions of the genome.

Points in a biplot represent observations and in this case
5996 5-kb genomic bins. Figure 6C shows that some points are
distributed along the sequence-specific cluster edge of the right
angle spanned by these two clusters, more points along the se-
quence-nonspecific cluster edge, and the rest are scattered inside
of the right angle. This distribution pattern reflects the fact that
some genomic bins are bound mainly by sequence-specific TFs,
more bins are bound mainly by sequence-nonspecific ones, and
the rest are bound by both to a comparable degree. Thus the two
distinct clusters of genomic bins represented by the points along
the two edges of the right angle can be regarded as the genomic
“markers” for sequence-specific and sequence-nonspecific TFs,
respectively.

ChIP–chip experimental results are generally reproducible
between different laboratories and microarray platforms

As mentioned earlier, four categorical variables—the TF, the cell
line, the microarray platform, and the laboratory—capture a sig-

nificant portion of the variability in the
ChIP–chip experiments analyzed here.
Although not every possible combina-
tion of these variables was assayed, the
whole data set can be summarized as
follows: The binding of 29 TFs to the
ENCODE regions was assayed in eight
cell lines on three microarray platforms
by seven different laboratories (see
Methods). As a result, the 105 ChIP–chip
experiments can be classified and se-
lected according to a different combina-
tion of those four categorical variables.

The analysis of the relationship be-
tween the experimental results of these
105 ChIP–chip experiments is very im-
portant, since it can provide an assess-
ment of the quality of the experiments
as well as lead to biological knowledge
discovery. Due to the difficulty of using
the whole correlation matrix, we cal-
culated the correlation between sub-
sets of these ChIP–chip experimental
results where some experimental vari-
ables were kept fixed. This procedure
explicitly controls experimental var-
iations. By keeping the TF and the
cell line identical, correlations between
a set of ChIP–chip experimental re-
sults measure the overall data repro-
ducibility between different laboratories
(on the same platform) or between mi-
croarray platforms (by the same labora-
tory).

The goal of the pilot phase of the ENCODE Project is not
only to find biological novelties but also to standardize the ex-
perimental protocols for the next phase of the Project. To assess
data reproducibility of ChIP–chip experiments conducted by dif-
ferent laboratories, we selected pairs of experiments that assayed
the same TF in the same cell line on the same microarray plat-
form but were conducted by two different laboratories. Six such
experimental pairs are present in the data set, and the correlation
of the results of each pair of experiments was calculated (Fig. 8A).
It shows that the laboratories (not necessarily the same pair for
two comparisons) gave much more comparable results for TFs
H2ac, H3ac, H3K4me2, and H3K4me3 than for MYC and STAT1.
Since the former experiments were all carried out using PCR ar-
rays and the latter high-density tiling arrays, the low agreement
on both MYC and STAT1 ChIP–chip experiments by different
laboratories may be due to the type of microarray used to assay
these two TFs. However, the discrepancy may also be explained
by the sequence specificity of these TFs since, coincidentally,
H2ac, H3ac, H3K4me2, and H3K4me3 are all sequence-
nonspecific histone modifications and MYC and STAT1 are the
sequence-specific TFs, which are more sensitive to the noise of
the experimental process.

For platform comparison, pairs of ChIP–chip experiments
that assayed the same TF in the same cell line by the same labo-
ratory but using two different array platforms were selected. Nine
such experimental pairs, all by UCSD using HeLa cells, were pre-
sent in the data set, and the correlation of the results of each pair
of experiments was calculated. Due to size limitations in the cur-

Figure 5. Relationship between the TRE and the known gene distributions in ENCODE regions. (A)
The distributions of TREs and known genes in ENCODE regions; 150-kb genomic subregions were
used. (B) The correlation between the numbers of TREs and known genes in each 150-kb subregion
compared with its null distribution, N(0.14, 0.062). (C) The counts of actual TREs within a 1-kb window
of gene TSSs, TESs, and TMSs, compared with their corresponding null distributions. All three null
distributions are Gaussian-like and almost identical to N(20, 52), which is shown in the plot. (D)
Comparison of the actual counts with their corresponding random background, which is depicted as
the mean and �1 SD of each null distribution.
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rent data set, data reproducibility on different microarray plat-
forms could only be assessed between the NimbleGen high-
density tiling array and the traditional PCR array. The result (Fig.
8B) shows that different array platforms gave rather similar re-
sults for histone modifications such as H3ac, H3K4me2, and
H3K4me3 and gave slightly less similar results for POLR2A and
STAT1. It is worth noticing that, on average, the correlation of
TREs shows that ChIP–chip data sets generated by the same labo-
ratory on different array platforms agree with each other better
than ones generated by different laboratories on the same plat-
form.

Discussion

TRE distribution and clustering in the ENCODE regions

The first comprehensive survey of the regulatory elements en-
ables an assay of the distribution of TREs on a large genomic
scale. Such a study could provide insight into the organization of
functional elements in the human genome. However, it is not
immediately clear what is the most sensible way to carry out this

assessment, as three pertinent questions
need especially careful consideration.
One must decide what is a suitable sta-
tistical test for this problem, what
subregion size should be used if the
ENCODE regions are to be discretized,
and how the sequence repeats should be
dealt with.

Both the Kolmogorov-Smirnov test
and the �2 goodness-of-fit test can be
used to compare two distributions.
Given the actual and the randomized
genomic locations of TREs, the K-S two-
sample test may be used to test whether
these two location profiles come from
the same distribution. However, because
the ENCODE regions are fundamentally
discrete entities and a simple concatena-
tion of them makes little biological
sense, the K-S test can be applied to each
individual ENCODE region separately
but not to all the regions combined. By
contrast, the �2 test does not have such
limitation and is thus used for this
study.

TFs and their TREs can be studied
on various genomic levels. Unlike and
complementary to the promoter assay
on the “micro-genomic” scale and the
chromosome analysis on the “macro-
genomic” scale, our TRE distribution
analysis surveys different TFs and their
TREs on an intermediate, “meso-
genomic” scale , which involves
100∼200 kb of DNA encompassing sev-
eral genes on average. Based on 150-kb
genomic partitions, the �2 test of good-
ness of fit rejects random distribution of
TREs in ENCODE regions. Similar obser-
vations were made using genomic parti-
tions of different bin sizes (130∼170 kb);

thus, the conclusion that TREs are not randomly distributed in
ENCODE region (and therefore in the human genome) is not
specific to a particular subregion size used in the analysis but is
general and truly reflects the underlying TRE distribution.

In the hypothesis test presented above, the alternative to the
rejected null hypothesis is that the TREs in the ENCODE regions
are not distributed in a random, uniform fashion—i.e., they form
clusters in the genome. As Figure 2 reveals, substantial TRE
deserts are mainly found in ENCODE regions with low gene den-
sity and low nonexonic conservation. Conversely, most of the
TRE islands are located in the gene-rich regions in the genome.
Indeed, a highly significant association between the regulatory
elements and the gene locations has been observed by the com-
parison of the genomic distribution of TREs with that of known
genes in ENCODE regions.

A closer examination of the distribution of TREs around
TSSs, TESs, and TMSs of known genes revealed a substantial en-
richment of TREs at TSSs and TESs. However, a much weaker
enrichment of TREs at TMSs was detected. This observation sup-
ports the general belief that the density of TFBSs is much lower in
the middle of genes and thus validates the widespread practice of

Figure 6. Interrelationship of ChIP–chip experiments and transcription factors with genomic bins. (A)
Biplot of 105 original ChIP–chip experiments with 5996 5-kb nonoverlapping genomic bins. Lines
represent ChIP–chip experiments, and points indicate genomic bins. (B) Biplot of 18 transcription
factors with the same set of genomic bins as in A. Lines represent transcription factors, and points
indicate genomic bins. The TREs of each of these 18 transcription factors were merged from the 64
non-Affy ChIP–chip experimental results on a factor basis by taking the union of all TRE lists of each
factor. (C) Details of the point-dense region of B inside the box with dashed border. The signs of both
coordinates of a point (or the end point of a line) in a biplot are somewhat arbitrary because the data
matrix is column-normalized prior to the construction of the plot. Since the scale only reflects the
magnitude of the original data, it is not significant in terms of interpreting a biplot either.
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using so-called “deep introns” as negative training samples for
machine learning algorithms to predict certain TREs in genomic
sequences.

It is an intriguing observation that the enrichment of TREs
near TESs is comparable to—in fact slightly higher than—that of
TREs near TSSs. This result seems unlikely to be a methodological
artifact as it was confirmed independently with a different count-
ing procedure and several composite TRE lists from different ori-
gins (D. Zheng, pers. comm.). Binding of TFs to the 3� untrans-
lated region of genes has previously been observed. In a recent
study of unbiasedly mapped TFBS regions of SP1, MYC, and TP53
along human chromosomes 21 and 22, Cawley et al. (2004) dis-
covered that while only 22% of the identified TFBS regions are
located at the 5� termini of well-characterized protein-coding
genes, 36% of them lie within or immediately 3� to such genes.
Based on the observation that the TFBS regions located at 3� end
of well-characterized genes are significantly correlated with non-
coding RNAs, they argued such TFBS regions function as distal
regulatory elements or promoters for noncoding transcripts.

Multivariate analysis of TREs in the ENCODE regions

Multivariate analysis of the coassociation of TFs enables many
novel biological observations. Two distinct groups emerged from

both biplot clustering and hierarchical clustering of the 18 TFs
under consideration. They are clusters of sequence-specific and
sequence-nonspecific TFs. In Figure 6B, however, group assign-
ments of several TFs are particularly interesting and thus merit
further consideration. MYC is commonly viewed as a sequence-
specific TF since its function is mediated by binding to a particu-
lar DNA consensus sequence (the E-box) for transcriptional acti-
vation (Blackwell et al. 1990, 1993) and through certain distinct
DNA elements for transcriptional inhibition (Facchini and Penn
1998; Claassen and Hann 1999). Early experimental results, how-
ever, suggest that MYC may modulate transcription via histone
acetylation (Cole and McMahon 1999; Grandori et al. 2000;
Amati et al. 2001; Frank et al. 2001), a discovery that is corrobo-
rated by its close association with H3ac and H4ac shown in Fig-
ure 6B. These findings together suggest that MYC may behave, at
least under certain circumstances, more like a sequence-
nonspecific TF.

Mediated by a Polycomb group (PcG) protein complex com-
posed of EED, EZH2, and SUZ12, trimethylation of histone H3 on
lysine 27 (H3K27me3) is integral in the process of differentiation,
stem cell self-renewal, and tumorigenesis and has been impli-
cated in transcriptional silencing (Cao et al. 2002; Czermin et al.

Figure 8. Data quality measured by the correlation of two ChIP–chip
experiment results. (A) Data reproducibility between two different labo-
ratories. Each bar gives the correlation coefficient between the results of
two ChIP–chip experiments performed by two laboratories that assayed
the same transcription factor in the same cell line on the same array
platform. The pairs of laboratories in all six comparisons are not neces-
sarily the same. (B) Data reproducibility between PCR and NimbleGen
tiling microarrays. Each bar gives the correlation coefficient between the
results of two ChIP–chip experiments performed by the same laboratory
that assayed the same transcription factor in the same cell line on both
PCR and NimbleGen tiling microarray platforms.

Figure 7. Interrelationship of transcription factors. (A) Consensus cor-
relation dendrogram of the same 18 transcription factors as shown in
Figure 6B. Bootstrap values are shown at the branching points. Notice the
very similar relationship among these 18 transcription factors revealed by
these two different methods. (B) Hierarchical clustering of the same
18 transcription factors as in A, but with only TREs >2 kb away from
GENCODE-annotated transcription start sites. BAF155 and BAF170 cur-
rently known as SMARCC1 and SMARCC2, respectively.
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2002; Muller et al. 2002; Cao and Zhang 2004; Kuzmichev et al.
2004; Pasini et al. 2004). This close functional association be-
tween H3K27me3 and SUZ12 is reflected (and thus affirmed) by
their high correlation shown in Figures 6B and 7A. Moreover,
since H3K27me3 was clustered with sequence-specific TFs, it has
small correlation with other types of histone methylation, such
as H3K4me1, H3K4me2, and H3K4me3. H3K27me3 has been as-
sumed to function like these sequence-nonspecific histone modi-
fications. Our result, however, suggests otherwise: Instead of
serving as a constitutive part of the basal transcriptional machin-
ery, H3K27me3 functions in a transcriptional regulatory process
in a rather sequence-specific manner.

The high correlations between POLR2A, TAF1, H3ac, H4ac,
H3K4me1, H3K4me2, and H3K4me3 in the first cluster indicate
that the regulation of these types of histone modification is
tightly linked to POLR2A activity in human. A recent study
showed that H3ac, H4ac, H3K4 methylation, and transcriptional
activity across the majority of yeast genes are all correlated (Pok-
holok et al. 2005). A similar phenomena have been observed in
fly, mouse, and human cells as well (Schubeler et al. 2004; Bern-
stein et al. 2005).

Systematic variation in the ENCODE ChIP–chip data sets

There is significant systematic variation in current ENCODE
ChIP–chip data sets, as they were generated by different labora-
tories using different cell lines and array platforms. It is not im-
mediately clear whether there are any discernible biological sig-
nals in such noisy data. However, with experimental variations
carefully controlled, we find that ChIP–chip experiments are gen-
erally reproducible between different laboratories and microarray
platforms, as there is significant (but not perfect) agreement be-
tween ChIP–chip experimental results produced by different
laboratories or on different microarray platforms. The validity of
the data is also demonstrated by the corroboration between some
of our findings and observations made in other studies using
different data. We also observe that the data sets containing more
genomic locations tend to be more reproducible than data sets
that contain fewer genomic locations.

The ChIP–chip data sets generated by the ENCODE consor-
tium fall into two categories: histone modifications and DNA
binding of TFs. Histone modifications tend to occur in many
more genomic locations than the binding sites of most TFs. Some
TFs also tend to have more binding sites than others. Specifically,
data sets of the same histone modification assayed by different
laboratories or on different platforms have higher global corre-
lations than data sets for DNA binding of the same TF, reflecting
higher signal-to-noise ratio of histone modification experiments.
Similarly, the data sets from TFs with more binding sites such as
E2F4 and MYC studied by different laboratories or on different
platforms also have higher global correlations than those of TFs
with fewer binding sites (e.g., STAT1), even after the global cor-
relation is corrected for the number of genomic regions.

Currently, the ChIP–chip experiment is the most widely
used high-throughput method for in vivo identification of TREs.
It has been applied successfully in numerous studies of TFs. Since
it is an in vivo technique, a biologically relevant cell line should
be used. At present, an investigator can use either traditional PCR
arrays or high-density tiling arrays. The current trend is to mi-
grate from PCR arrays to tiling arrays for a much higher resolu-
tion and a comprehensive genomic coverage. Data reproducibil-
ity of the ChIP–chip experiment has been accessed (Euskirchen et

al. 2007) and is currently under further investigation by several
laboratories as part of the effort to standardize the experimental
protocols for the next phase of the ENCODE Project. Our study
shows that by using appropriate statistical methods it is possible
to control data noise to a certain degree to aid biological discov-
eries. We also need to point out that many of the data sets on
different platforms and/or by laboratories have been validated by
quantitative PCRs, and we believe it is crucial to carry out mul-
tiple technical replications for each ChIP–chip experiment and
result validation following ChIP–chip experiments as an internal
data quality assessment.

Conclusion

The initial analysis of TREs identified in the ENCODE regions
affords new insights into and raises new questions about the
genomic distribution of these functional elements, the relation-
ship among TFs assayed, and the nature of the underlying ChIP–
chip experiments that generated the data sets analyzed here.

By forming locally enriched and depleted regions in the ge-
nome, TREs are distributed in the ENCODE regions in a highly
nonrandom fashion. One striking example is the TRE island at
the HOXA locus on chromosome 7. Moreover, TREs have a simi-
lar genomic distribution as known genes and are enriched in the
vicinity of both transcription start and end sites. The nature of
TREs at the 3� end of genes and how they regulate gene transcrip-
tion await further experimental investigation. Moreover, by us-
ing biplot, a multivariate analysis technique, we were able to
clearly separate the TFs into sequence-specific and sequence-
nonspecific clusters. This analysis reveals many unusual associa-
tions among TFs. For example, one striking observation is the
close association of SUZ12 and H3K27me3 in the sequence-
specific cluster, which also suggests an unusual histone modifi-
cation role for H3K27me3.

Methods

Data sets used in this study
The data set analyzed in this study is 105 lists of TREs in the
ENCODE regions. It was released on December 13, 2005, by the
Transcriptional Regulation Group. TRE lists made available after
this data freeze were not included in this study. A total of 29 TFs
(SMARCC1, SMARCC2, SMARCA4, CEBPE, CTCF, E2F1, E2F4,
H3ac, H4ac, H3K27me3, H3K27me3, H3K4me1, H3K4me2,
H3K4me3, H3K9K14me2, HisH4, JUN, MYC, P300 [EP300], P63
[TP73L], POLR2A, PU.1 [SPI1], RARecA, SIRT1, SP1, SP3, STAT1,
SUZ12, and TAF1) were assayed by seven laboratories (Affy-
metrix, Sanger, Stanford, UCD, UCSD, UT, Yale) using ChIP–chip
experiments on three different microarray platforms (Affymetrix
tiling array, NimbleGen tiling array, and traditional PCR array) in
nine cell lines (HL-60, HeLa, GM06990, K562, IMR90, HCT116,
THP1, Jurkat, and fibroblasts) or at two different experimental
time points (P0, before the gamma-interferon was added to the
cell culture; P30, 30 min after the gamma-interferon was added).
The raw data from these 105 ChIP–chip experiments were uni-
formly processed using a method based on the false discovery
rate (Efron 2004). Three sets of TRE lists were generated at 1%, 5%,
and 10% false discovery rate, respectively, and the list generated
at the lowest (1%) false discovery rate was used in this study.

TRE distribution analysis
Several TFs were assayed at different time points or in different
cell lines. To prevent inflated counting of TREs of each TF, a
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composite list of TREs was used. To assess the distribution of TREs
in ENCODE regions, 44 ENCODE regions were partitioned into
227 150-kb subregions, and the number of TREs in each of them
was counted. The null model of the distribution was generated by
randomly dispersing TREs in the nonrepetitive sequences of the
ENCODE regions. Similar partitioning and counting followed.
The random TRE distribution was derived from 10 combined
randomization procedures. To study how the number of subre-
gions affects the difference between the actual TRE distribution
and the null model, a series of different subregion sizes were
examined.

The nonredundant factor-specific TRE lists were mapped
onto the ENCODE regions. Uninterrupted genomic regions that
are covered by one or more TREs were identified as TRE groups.
Neighboring groups that are <1 kb apart are collected into TRE
clusters. Unclustered groups that are covered by more than three
TREs were promoted into clusters.

The list of composite genomic elements and a list of nonre-
dundant known genes in the ENCODE regions were used to
study the relationship between their genomic distributions.
Forty-four ENCODE regions were again partitioned into 227
150-kb subregions, and the numbers of TREs and known genes in
these subregions were counted and correlated. To generate the
null distributions of the correlation coefficient, TREs were first
randomly dispersed in the nonrepetitive sequences in the
ENCODE regions while the locations of known genes were kept
unchanged. Then the numbers of randomized TREs and known
genes in these 150-kb subregions were correlated. This random-
ization-and-correlation procedure was repeated 1000 times.

For the study of the enrichment of TREs in the vicinities of
the TSSs, the TSEs, and the TMSs, we used the integrated com-
posite TRE list to minimize data redundancy as before. We first
counted the total numbers of different TREs in 1-kb windows
around TSSs, TSEs, TMSs of 701 genes from the UCSC genome
browser known gene collection, and then generated correspond-
ing (null) distributions of such counts with TREs randomly dis-
persed in the nonrepetitive ENCODE sequences. This procedure
was performed on each ENCODE region separately and also on
44 regions combined.

Whole track correlation
To calculate the correlation between two lists (tracks) of TREs
from two ChIP–chip experiments, a binary ∼30,000,000 � 105
data matrix A was first generated. Its rows correspond to ge-
nomic locations (observations) in the encode regions, and
its columns correspond to ChIP–chip experiments (variables).
Matrix element aij = 1 if genomic location i is in a TRE on track j,
and aij = 0 otherwise. Pearson’s correlation coefficient r,
calculated from two column binary vectors of A, is used to
quantify the correlation between two corresponding TRE tracks.
This method treats each genomic location as an independent
entity and thus disregards the spatial distribution of TREs. To
incorporate TRE information at neighboring genomic locations,
a 3-kb sliding window with 1.5-kb overlap was used, and the
number of nucleotides that are covered by TREs in each window
is counted. The data matrix Ā generated by this sliding-window
counting procedure is a 19,982 � 105 contingency table, whose
element āij is the count of genomic locations covered by TREs in
sliding window i on track j. The correlation between two TRE
tracks can be calculated from Ā in a similar fashion as before.
By drastically reducing the size of the data matrix, the slid-
ing-window procedure also enables some of the downstream
analyses.

Correspondence analysis
To study how TFs bind to different ENCODE subregions, a biplot
was used to show the joint interrelationships between TF and
ENCODE subregions by graphing the former as lines and the
latter as points together within a common space (Gabriel 1971).
First the 5996 � k count matrix Ã was prepared from the binary
data matrix A (see above) using a 10-kb sliding window with 5-kb
overlap. Here k = 105 if the original 105 ChIP–chip experimental
results were considered, and k = 18 if the merged 64 non-Affy
ChIP–chip experimental results were used. Ã was then column-
centered and standardized. To obtain the coordinates for ChIP–
chip experiments (or TFs) and genomic bins within the common
space used for the biplot, the singular value decomposition was
used to factorize Ã into three component matrices,
Ã = USVT = (US1/2)(VS1/2)T, in which US1/2 and VS1/2 give the
coordinates for genomic bins and ChIP–chip experiments (or
TFs) in the same space respectively.

Hierarchical clustering of TRE lists was generated from the
correlation distance matrix using the neighbor joining algo-
rithm. The consensus dendrogram with bootstrap values at
branching points was used to assess the robustness of the topol-
ogy of the dendrogram. To do so, we first randomly sampled with
replacement the count matrix Ã to produce 1000 new count
matrices Ã(1), . . . , Ã(1000), and then generated one dendrogram
from each Ã(i) using “neighbor” of the PHYLIP software package.
These 1000 dendrograms were then combined to produce a con-
sensus tree with bootstrap values using “consensus” of PHYLIP.

To study how TFs relate to each other by their TREs includ-
ing or excluding TSSs, each TRE track was first filtered for regions
within 2 kb of or at least 2 kb away from TSSs.

The TRE islands and deserts identified in this study are avail-
able in the Database for Active Regions with Tools (DART) at
http://dart.gersteinlab.org/ENCODE/TR/.
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