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ChIP-chip studies have revealed that many in vivo binding sites have a weak match to the consensus sequence for the
transcription factor being analyzed. Possible explanations for these observations include (1) the in vitro-derived
consensus site does not represent the in vivo binding site and/or (2) the factor is recruited to a weak binding site via
interaction with another protein. To address these possibilities, we developed an approach (ChIPMotifs) that
incorporates a bootstrap resampling method to statistically infer the optimal cutoff threshold for a position weight
matrix (PWM) of a motif identified from ChIP-chip data by ab initio motif discovery programs. Using OCT4
ChIP-chip data and the ChIPMotifs approach, we first developed a refined OCT4 PWM. We then used the refined
PWM and a ChIPModules approach to identify transcription factors colocalizing with OCT4 in Ntera2 testicular
embryonal carcinoma cells. We found that the consensus binding site for SRY, a transcription factor critical for testis
development, colocalizes with the OCT4 PWM. To further characterize the relationship between OCT4 and SRY, we
performed ChIP-chip experiments with human promoter microarrays, and found that 49% of the top ∼1000 OCT4
target promoters were also bound by SRY. This analysis represents the first identification of SRY target promoters.
Interestingly, we determined that promoters bound by OCT4 and SRY, but not those bound by SRY alone, were
also bound by the transcriptional repressor KAP1. Our studies not only validate the ChIPMotifs and ChIPModules
combinatorial approach but also identify a possible new regulatory partner of OCT4.

[Supplemental material is available online at www.genome.org. The OCT4, SRY, and KAP1 ChIP-chip data has been
deposited in GSE6409.]

During the past decade, several computational approaches have
been developed to study large and complex data sets generated
from high-throughput technologies such as mRNA expression
profiling (Schena et al. 1995; Lockhart et al. 1996), ChIP-chip
(Ren et al. 2000; Iyer et al. 2001), DamID (van Steensel and Heni-
koff 2000), DNase-chip (Crawford et al. 2006), and ChIP-PET
(Loh et al. 2006). Many approaches (such as ModuleSearcher,
ModuleScanner, CRÈME, CONFAC, ROVER, and oPOSSUM) have
been applied to problems such as identifying binding sites and
putative cis-regulatory modules in the promoters of coexpressed
genes (Wasserman and Fickett 1998; Krivan and Wasserman
2001; Aerts et al. 2003; Sharan et al. 2003; Haverty et al. 2004;
Karanam and Moreno 2004; Ho-Sui et al. 2005). Other ap-
proaches (Zhou and Wong 2004; Gupta and Liu 2005; Hong et al.
2005a; Smith et al. 2005; Wang et al. 2005; Cheng et al. 2006; Jin
et al. 2006; Li et al. 2006) have been used to identify motifs
derived from ChIP-chip data. The computational algorithms be-
hind the approaches listed above include (1) statistically driven
ab initio motif discovery methods such as hidden Markov models
(Pedersen and Moult 1996), Gibbs sampling (Lawrence et al.
1993), greedy alignment algorithms (CONSENSUS) (Hertz and

Stormo 1999), expectation-maximization (MEME) (Bailey and El-
kan 1995), probabilistic mixture modeling (NestedMica) (Down
and Hubbard 2005), exhaustive enumeration (Weeder) (Pavesi et
al. 2004), and words enumeration with a positional weight ma-
trix updating (Liu et al. 2002); and (2) prior-compiled PWMs
library-based motifs detection methods such as MATCH (Kel et
al. 2003) combined with the TRANSFAC database (Wingender et
al. 2000) and MSCAN (Alkema et al. 2004) combined with the
JASPAR database (Sandelin et al. 2004a).

All of the abovementioned methods have proven to be use-
ful in detecting novel motifs and deciphering the logics of tran-
scription regulatory networks. However, there are still several
major challenges facing these de novo methods. First, because a
transcription factor binding site (TFBS) is a short (10–20 base
pairs [bp]) and degenerate sequence, it is difficult to detect
among the noise of much longer background sequences. Second,
the issue of binding-site variability for each given transcription
factor is not well understood, making it difficult to accurately
predict sites using only computational approaches. Third, the
consensus sites used by many of the programs have been derived
from a small number of in vitro interactions. Some of these chal-
lenges in identifying motifs can be minimized by using ChIP-
chip data to derive a consensus binding site to which a factor is
bound in vivo. Also, some of the issues concerned with back-
ground (control) sequences can be eliminated using a bootstrap
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resampling of the data. Bootstrap resampling is a methodology
that creates many repeated data sets from a single set of experi-
mental data and makes inference statistically from those samples
without knowing the theoretical distribution of the data samples
(see Efron 1979; Felsenstein 1985).

In this study, we have incorporated a modified bootstrap
resampling into our de novo motif discovery approach (named
ChIPMotifs) to statistically infer the optimal cutoff threshold for
the PWM of an OCT4 motif initially identified from ChIP-chip
data using ab initio motif discovery programs. We then used the
refined OCT4 PWM (OCT4H_PWM) and a set of high-confidence
data obtained from ChIP-chip experiments to identify five cis-
regulatory modules (using a previously described ChIPModules
approach). Finally, we experimentally validated one of the com-
putationally identified modules (see Fig. 1B for an overview of
our approach). Our results suggest that SRY is a potential new
regulatory partner of OCT4.

Results

De novo OCT4-binding-site motif discovery

We have previously reported the identification of a set of OCT4-
binding sites identified by ChIP-chip analysis using Ntera2 tes-
ticular embryonal carcinoma cells (O’Geen et al. 2006). These
binding sites were identified using ENCODE arrays, which are
high-density oligonucleotide arrays on which 44 regions of the
human genome (The ENCODE Project Consortium 2004) are
tiled at a density of one 50 mer every 38 bp. There are a total of
∼380,000 probes on the array, representing the nonrepetitive
portion of ∼30 Mb (1%) of the human genome. The OCT4-
binding sites (defined as Data set 1; see Methods) that serve as the
basis for the analyses in this study represent a very high confi-
dence set of binding sites for three reasons. First, the set of 154
binding sites was identified using the L1 criteria of the Tamalpais

Figure 1. (A) A diagram of the integrated ChIPMotifs approach. Beginning with a set of k high-confidence level ChIP-chip sequences, ab initio motifs
discovery programs such as Weeder and MEME are used to identify i candidate motifs. Then, a bootstrap resampling approach is used to determine
cutoffs for the motifs and to screen against nonenriched sequences to obtain m final statistically significant candidate motifs. Finally, the motifs are
screened against TRANSFAC to retrieve n known and novel motifs. (B) A strategy diagram showing how our ChIPMotifs and ChIPModules approaches
work in concert to efficiently mine OCT4 ChIP-chip data, to allow the development of de novo OCT4 motifs, to identify new cis-regulatory modules of
OCT4 and SRY, and finally to develop an experimentally confirmed set of OCT4 and SRY targets.
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peak calling program (Bieda et al. 2006; see also http://
chipanalysis.genomecenter.ucdavis.edu/cgi-bin/tamalpais.cgi),
which is defined as peaks in the top 2% of the array data that
have a P-value <0.0001. Second, these sites were identified in
both data sets from two different biologically independent ex-
periments (i.e., the cells were grown and cross-linked on separate
days). Third, for hybridization to the arrays, we used pooled ChIP
samples (10 ChIPs were pooled for each experiment) and thus
eliminated any potential artifacts that might arise during ampli-
fication of a ChIP sample. However, although these sites are
high-confidence OCT4-binding sites, further characterization in-
dicates that only 13.6% (21) of them contain the conventional
OCT4 consensus motif, ATGC(A/T)AAT (Pesce and Scholer 2001).

Because the OCT4 motif was originally defined using in
vitro studies, it was possible that OCT4 might bind to a different
consensus under physiologically normal conditions in a chroma-
tin environment. Therefore, as our first step in the characteriza-
tion of OCT4-binding sites, we developed a de novo motif-
finding approach (termed ChIPMotifs) as shown in Figure 1A,
which uses the ab initio motif-finding programs such as Weeder
(Pavesi et al. 2004) and MEME (Bailey and Gribskov 1997), fol-
lowed by a modified bootstrap resampling statistical inference
method to identify significantly overrepresented motifs from
ChIP-chip data.

The ChIPMotifs approach (Fig. 1A) began with inputting a
set of 154 in vivo OCT4-binding sequences into the Weeder and
MEME programs. Using these programs, we identified 10 candi-
date motifs, each having a length of 8–12 bp. We then con-
structed 10 positional weight matrices (PWMs) for each candi-
date motif. We randomized the sequences of each of the 154
OCT4-binding sites 100 times to generate a set of 15,400 ran-
domized sequences. These randomized sequences no longer cor-
respond to binding sites, but have the same nucleotide frequen-
cies as the original binding sites and are therefore used as a nega-

tive control set for motif finding. We then scanned these
randomized sequences for each candidate motif (using the PWMs
derived from Weeder and MEME) starting at a minimal core score
of 0.5 and a minimal PWM score of 0.5. Then, we retrieved core
scores and PWM scores at the top 0.1% percentile (one-tailed
P-value is <0.001), the top 0.5% percentile (one-tailed P-value is
<0.005), and the top 1% percentile (one-tailed P-value is <0.01),
respectively. Using these scores, we tested the 154 OCT4-binding
regions (Data set 1) and 499 regions that were not bound by
OCT4 (defined as Data set 2; see Methods). A Fisher test was
applied, and the P-value was used to define the significant cutoff
for these scores. Only those motifs that were found in the OCT4-
binding sites, but not in the control Data set 2, were considered
to be overrepresented motifs; these motifs have a confidence
level at the top 0.1% percentile and a Fisher test P-value <0.001.
Thus, a P-value of 0.00026 for the OCT4H_PWM at the top 0.1%
percentile with a core score of 0.88 and PWM score of 0.85 is
considered to be significant. As such, the motif NATG
CAAANN, which resembles the OCT4 consensus site of ATG
CAAAT (Fig. 2A), was identified.

Importantly, our ChIPMotifs analysis provided not only a
consensus site, but also a position weight matrix (OCT4H_PWM)
for in vivo OCT4 binding (Fig. 2B). We then used the OCT4-
binding regions (Data set 1) and the control regions (Data set 2)
to determine cutoff thresholds for this newly constructed
OCT4H_PWM (Fig. 3). Allowing too many changes from the con-
sensus motif results in the identification of OCT4-binding sites in
the great majority of both data sets, whereas requiring a complete
match to the consensus eliminates the majority of the true bind-
ing sites. We found that a 0.88 match to the core sequences (Sc)
and a 0.85 match to the PWM (Sp) clearly distinguish the OCT4
data set from the control set (with a P-value at 0.00026) and
demonstrate high specificity (eliminating 60% of the fragments
in the negative control set) and high sensitivity (capturing ∼70%
of the binding sites). However, when using 0.88 (Sc) and 0.85 (Sp)
criteria, 28.6% of the experimentally determined Oct4-binding
regions still lack a match to the OCT4H_PWM.

OCT4-binding sites are predominantly found
within transcribed sequences

We were curious as to whether the ∼70% of the OCT4-binding
regions that contained good matches to the OCT4H_PWM (hav-
ing a core score �0.88 and a PWM score �0.85) had different
characteristics from the ∼30% of the sites that had only low

Figure 2. Refinement of the OCT4 consensus binding site. (A) A se-
quence log of the OCT4 consensus site that was derived from OCT4
ChIP-chip data from Ntera2 cells. (B) The positional weight matrix
(OCT4H_PWM) built by the ChIPMotifs approach, with a core score com-
puted from position 2 to 6 (6 bases) (bold) and a PWM score from 1 to
10 (10 bases).

Figure 3. A histogram plot showing the prediction rate (R) of OCT4
target promoters versus non-OCT4 target promoters at several combina-
tions of the match to the core sequences (Sc_h) and to the PWMs (Sp_h).
The values of 0.88 for Sc_h, 0.85 for Sc_p were chosen as cutoff thresholds
for further analyses; these scores had a P-value of 0.00026.
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matches. One characteristic that we analyzed was the location of
the OCT4-binding site relative to the start site of transcription.
We annotated the 154 human OCT4-binding sequences based on
the GENCODE Database (Harrow et al. 2006). First, we defined an
OCT4-binding region that is >100 kb upstream of or downstream
from a transcription start site as being in a gene desert. Interest-
ingly, 13 (8.4%) of the OCT4-binding sites are 100 kb away from
any known gene and thus in the gene desert category (Supple-
mental Fig. 3B). We then categorized the remaining binding sites
into groups based on two different classification schemes: gene
structure and distance relative to the transcription start site. For
the gene structure classification, we defined the regions as up-
stream of a gene (between �100 kb and +1), overlapping with
the transcription start site, within a transcribed region (without
distinguishing between exons and introns), and within 100 kb
downstream from the 3�-UTR (Supplemental Fig. 3A). If a site fell
in between two genes (but is not in a gene desert), it was assigned
to the gene for which the transcription start site is closest to the
binding site. Of the 141 binding sites that were not in gene
deserts, 40 (28.4%) were located within the upstream promoter/
enhancer region, nine (5.8%) were overlapping with a known
transcription start site, 70 (49.6%) mapped within transcribed
regions, and 22 (15.6%) were within 100 kb downstream from a
gene (Supplemental Fig. 3B). For the second classification
scheme, distance relative to a transcription start site, we defined
the following categories: overlapping with a transcription start
site and 0–2 kb, 2–10 kb, or 10–100 kb either upstream of or
downstream from the start site. As shown in Figure 4, ∼19% of
the OCT4-binding sites that are not in gene deserts are located in
a proximal region upstream of the start site. Interestingly, >25%
of the sites are located in a proximal region downstream from the
start of transcription.

Having determined the location of all the OCT4-binding
sites, we then examined whether those sites having a close match
to the consensus showed a different localization from those sites
having no match to the consensus (Fig. 5). We found that the
OCT4-binding sites located within the transcribed region of a
gene mostly represent the sites that contain a good match (but

not the actual consensus sequence) to the OCT4H_PWM. Inter-
estingly, the consensus site is very rarely represented at this lo-
cation. The other locations (upstream of, overlapping the start
site, and downstream from the gene) have very similar percent-
ages of consensus, match to the PWM, and no match sites. In
particular, the sites located upstream of the start site are not more
enriched for consensus sites or close matches to the PWM than
those sites located downstream from the transcribed region. Our
findings regarding the location analysis of OCT4 are similar to
those previously reported for sites discovered in mouse embry-
onic stem cells using ChIP-PET, a non-array-based method of
identifying the location of binding sites (Loh et al. 2006). We
identified 154–318 OCT4-binding sites (depending on the strin-
gency selected), using arrays that contain only 1% of the ge-
nome. This suggests that there may be as many as 15,000–30,000
OCT4-binding sites in the entire human genome. Although the
ENCODE regions may not be completely representative of the
entire genome, these numbers are far larger than the 1083 Oct4
targets in mouse embryonic stem cells reported in Loh et al.
(2006) and the 628 OCT4 targets in human embryonic stem cells
reported in Boyer et al. (2005). This suggests that there are likely
many OCT4-binding sites that have not yet been identified.

Identifying cis-regulatory modules in OCT4 target promoters

Because only 13.6% of the OCT4-binding sites contained con-
sensus motifs, it seemed likely that other transcription factors
could be cooperating with OCT4 to stabilize its binding to low-
affinity sites (i.e., sites that were fairly good matches to the PWM
but were not consensus sites). Others have reported that SOX2
and NANOG bind to a large percentage of the OCT4 target pro-
moters in embryonic stem cells (Boyer et al. 2005; Loh et al.
2006). We did not identify the SOX2 or NANOG motifs in the
ENCODE OCT4 data sets using our de novo ChIPMotifs ap-
proach. However, when we used the PWMs of Sox2 and Nanog
derived in mouse from a previous study (Loh et al. 2006), we
found that 60 (39%) and 19 (12%) of the 154 OCT4 sequences
did have SOX2- and NANOG-binding sites, respectively, within a
distance of 270 bp of an OCT4-binding site. This suggested that

Figure 4. Distribution of OCT4-binding sites on the basis of distance
relative to a start site. Shown is the percentage of OCT4-binding sites in
the different regions. The categories include from 10 to 100 kb upstream
of a start site, from 2 to 10 kb upstream of a start site, from 10 bp to 2
kb upstream of a start site, overlapping a start site, between 10 bp and 2
kb downstream from a start site, between 2 and 10 kb downstream from
a start site, between 10 and 100 kb downstream from a start site, and
those sites that are not within 100 kb upstream or downstream of a start
site. The OCT4-binding regions were defined as peaks detected on
duplicate ENCODE arrays using a peak calling program developed for
ChIP-chip experiments (Bieda et al. 2006); the gene list was based on
GENCODE Genes (Harrow et al. 2006).

Figure 5. A comparison of the distribution of binding sites that (1)
contain a conventional OCT consensus (ATGC[A/T]AAT); (2) lack the con-
sensus but contain a match to the OCT PWM identified by the ChIPMotifs
approach with 1.0 > Sc_h � 0.88 and 0.95 > Sp_h � 0.85 (the consensus
sites would have also been identified by the OCT PWM but have not been
included in this set for comparison purposes); and (3) contain no match
to the OCT PWM above Sc_h 0.88, Sp_h 0.85. The OCT4-binding regions
were defined as peaks detected on duplicate ENCODE arrays using a peak
calling program developed for ChIP-chip experiments (Bieda et al. 2006);
the gene list was based on GENCODE Genes (Harrow et al. 2006).
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perhaps other motifs may colocalize with the OCT4 motif to
enhance binding at the other sites. Our next series of experi-
ments was then focused on the application of several different
bioinformatics approaches for the identification of other tran-
scription factors that colocalize with OCT4.

The first method that we used to identify cis-regulatory
modules was the ChIPModules approach (Jin et al. 2006). In
brief, our ChIPModules approach begins with a set of experimen-
tally identified binding sites for a given factor of interest. Then,
PWMs and evolutionary conservation are used to refine the set of
binding sites. Finally, binding sites for other factors are identified
that occur within a short distance of the first factor. The pre-
dicted ChIPModules are then confirmed experimentally using
ChIP-chip assays and arrays that contain tens of thousands of
human promoters. Two important aspects of the ChIPModules
approach are (1) the human target promoters are compared to
the homologous promoters in mouse so that only those modules
that occur in both species are identified; and (2) experimental
confirmation of the identified modules is performed using fol-
low-up ChIP-chip experiments with promoter arrays (see Fig. 1B).

To obtain a larger number of OCT4-binding sites to use in
our search for colocalizing factors, we performed duplicate OCT4
ChIP-chip analyses using arrays that contain ∼24,000 human
promoters, with the region from �1300 to +200 of the promoter
being represented by 15 different oligonucleotides. We chose 187
promoters that were in the top 500 ranked OCT4-binding sites
on both of the arrays and that had homologous mouse counter-
parts in the OMGProm database to begin our ChIPModules ap-
proach (Data set 3; see Methods and Supplemental Methods for
more details) as a training data set. As a negative set of promoters,
we chose 94 promoters that were not bound by OCT4 but were
bound by POLR2A in Ntera2 cells and that had homologous
mouse counterparts in the OMGProm database (Data set 4; see
Methods). We chose to use promoters bound by POLR2A, but not
by OCT4, as the negative control set for several reasons. Many re-
gions on promoter arrays are misidentified and do not actually cor-
respond to promoters. Such regions may have a different overall
nucleotide frequency than promoter regions (which tend to be GC
rich). However, because the regions in our negative set are bound by
POLR2A in Ntera2 cells, they have been confirmed to be bona fide
promoters. Second, these promoters were identified in ChIP experi-
ments (using an antibody to POLR2A instead of to OCT4). There-
fore, if there are characteristics of certain promoters that allow them
to be easily immunoprecipitated or easily identified on arrays, this
negative set would contain those same characteristics.

After identifying a conserved (human and mouse) set of
positive and negative control promoters, the ChIPModules ap-
proach next requires that a set of cutoff scores for the PWM be
defined that discriminate the positive 187 OCT4 targets (Data set

3) from the negative 94 promoters (Data set 4) that were not
bound by OCT4 (Jin et al. 2006). After testing a number of cutoff
scores (data not shown), we selected cutoff thresholds of 0.88 for
the core score and of 0.85 for the refined PWM score for the
human promoters and cutoff thresholds of 0.80 for the core score
and 0.70 for the refined PWM score for the mouse promoters. Of
the 187 OCT4 target promoters, 154 (82%) have an OCT4 motif
above the cutoff thresholds, whereas only 49 (52%) of the 94
promoters in the negative control set have an OCT4 motif above
the cutoff thresholds, which means 45 (48%) of them have no
OCT4 Motifs (Table 1). The 154 OCT4 targets and 49 non-OCT4
targets that had matches to the refined OCT4 motif were mod-
eled by the CART method (Breiman et al. 1984) to identify colo-
calizing motifs (see Jin et al. 2006). For the PWMs of other tran-
scription factors, we used default thresholds defined in
“minFN_good83.prf” profile (profile of cutoff values with mini-
mum number of false-negative predictions) from the TRANSFAC
database, and 60% identity was used as a conservation cutoff
value for ClustalW-aligned human and mouse orthologous pairs.
We identified 43 motifs within a distance of 270 bp of the OCT4-
binding site (270 bp was chosen on the basis of our previous
study) (Jin et al. 2006), and 17 of the 43 motifs had a P-value
<0.005. However, only five of the 17 motifs (SRY, P53, TST1, E2F,
and PAX2) were identified as significant classifiers with a sensi-
tivity (Sn) of 81% (125 of the 154 OCT4 target promoters con-
tained one of the five motifs) and a specificity (Sp) of 94% (46 of
the 49 nontargets lacked the motifs). Thus, as indicated in Table
1, the identified ChIPModules captured 67% (125 of 187) of the
OCT4 targets and excluded 97% (91 of 94) of the promoters not
bound by OCT4 (including those promoters that both contained
and lacked a conserved match to the refined OCT4 PWM). Spe-
cifically, 75 (49%) of the OCT4 targets contained an SRY mo-
tif, 18 (12%) contained a P53 motif, 14 (9%) contained a TST1
motif, 12 (8%) contained an E2F motif, and four (3%) contained
a PAX2 motif. For comparison, we performed the same analyses
using the original OCT_PWM (Supplemental Fig. 2) from the
TRANSFAC database (with cutoff thresholds of human core score
0.95, human PWM score 0.90, mouse core score 0.8, and mouse
PWM score 0.7). Four motifs—NCX, SRY, CRX, and HFN1—were
identified as significant transcription factor partners using the
TRANSFAC OCT_PWM (Table 2).

We next applied other bioinformatics approaches to our
data sets to compare their performances to our ChIPModules
approach. The Web-based programs oPOSSUM (Ho-Sui et al.
2005) and CONFAC (Karanam and Moreno 2004) were chosen
since both programs apply comparative genomics, using human
and mouse homologous conservation information, to identify
overrepresented binding sites. A detailed comparison of the re-
sults obtained using all of the different approaches is shown in
Table 2. Different sets of motifs were identified using the differ-
ent approaches, most likely due to the different statistical meth-
ods used in identifying overrepresented motifs and to the differ-
ent background sequences chosen for control data sets. Also, our
ChIPModules approach uses an advanced CART model in addi-
tion to the traditional statistical test and narrows down the num-
ber of motifs to only those within a short distance (270 bp) of an
OCT4-binding site.

Experimental validation for the ChIPModule of OCT4 and SRY

Although the different bioinformatics approaches identified dif-
ferent sets of colocalizing motifs, the SRY motif was identified in

Table 1. Classification estimates of Sn and Sp rates for OCT4
target promoters in Ntera2 cells

Matrices Total genes PWM
ChIP-

Modules

OCT4H_PWMa Positive data 187 154 125b Sn = 67%
Negative data 94 49 91c Sp = 97%

aThe OCT4H_PWM was built from our ChIPMotifs approach using an
optimal cutoff threshold of 0.88 for Sc_h and 0.85 for Sp_h to identify the
OCT4-binding sites.
bThe number of promoters that contained one of the five identified modules.
cThe number of promoters that lacked one of the five identified modules.
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three of the four analyses. SRY is a transcription factor that shows
very restricted expression patterns; it is expressed at high levels
mainly in the testis. Because Ntera2 cells are derived from a tes-
ticular germ cell tumor, they express SRY. Therefore, we chose to
test whether SRY did, in fact, bind to promoters within 270 bp of
the OCT4-binding sites in Ntera2 cells. For these experiments, we
performed ChIP-chip experiments with antibodies to OCT4 and
SRY; each immunoprecipitation was performed in duplicate us-
ing two independent cultures of Ntera2 cells. Amplicons pre-
pared from each of the four samples were then analyzed in ChIP-
chip experiments. We used arrays that correspond to �1300 to
+200 of ∼24,100 different regions that correspond to ∼18,000
annotated human genes. Using the peakCalling program devel-
oped in our previous study (Jin et al. 2006), we identified a set of
1104 OCT4 targets and a set of 1344 SRY targets (each target was
identified by the particular antibody in both of the ChIP-chip
experiments). We note that a relatively small number of OCT4
target promoters is detected using the 1.5-kb arrays; only 1000–
3000 targets were identified, which is much less than the 15,400
predicted from analysis of 1% of the genome on ENCODE arrays.
This is due to the fact that ∼16% of OCT4 targets bind in proxi-
mal upstream promoter regions (see Fig. 4). Extrapolation of the
promoter array data again suggests there could be as many as
15,000 OCT4-binding sites in the entire human genome. When
the OCT4 and SRY targets were compared, we found that 538
(49%) of the 1104 OCT4 target promoters were also bound by
SRY. A Monte Carlo simulation revealed that only 54 common
targets were found using randomly generated data sets obtained
from the OCT4 and SRY ChIP-chip data (P < 10�6). A list of OCT4
and SRY targets as well as the commonly bound targets is shown
in Supplemental Table S1; the entire data set for the four ChIP-
chip experiments including the enrichment values for all 24,000
promoters is shown in Supplemental Table S2. We also compared
our list of OCT4 targets with the list reported by Boyer et al.

(2005). We first determined that 290 of the 603 binding sites
identified in the previous study are represented on the Nimble-
Gen 1.5-kb promoter arrays. Of these 290 promoters, 97 (33%)
are also in our list of OCT4 targets (see Supplemental Table S3).
This low overlap may be due to the fact that Boyer et al. (2005)
used embryonic stem cells, whereas the cell line used in this
study was a testicular embryonal carcinoma.

To confirm the array data, we randomly chose a set of 29
promoters identified by the arrays as being OCT4 and SRY target
genes and performed PCR reactions using amplicons prepared
from OCT4 and SRY ChIP samples that were distinct from the
samples used in the duplicate array experiments; a region of the
DHFR gene was used as a negative control. The results of the PCR
assays are shown in Table 3. Because these are the first identified
SRY target genes, we felt that it was critical that care be taken to
ensure that the target promoters identified by our ChIP-chip ex-
periments were, in fact, bound by SRY. Therefore, for the confir-
mation experiments, we performed SRY ChIP assays using both
the same SRY antibody as was used for the ChIP-chip experi-
ments as well as an SRY antibody distinct from the one used for
the array experiments (a goat polyclonal antibody was used for
the ChIP-chip experiments, and a mouse monoclonal antibody
was used for the confirmation ChIP experiments). As can be seen
in Table 3, promoters identified by ChIP-chip using the goat
polyclonal SRY antibody were confirmed to be bound by SRY
in independent ChIP assays using both the goat polyclonal and
the mouse monoclonal SRY antibodies. Also, of the 1344 SRY
targets identified by our ChIP-chip assays, 84% have a match to
the SRY_PWM from TRANSFAC, with a core score >1.0 and a
PWM score >0.95. (Note: these scores are recommended by the
TRANSFAC database.)

To better understand the biological functions for these iden-
tified OCT4 and SRY target genes, we applied the FatiGO program
(Al-Shahrour et al. 2005), which is publicly available online at

Table 2. A comparison of over-represented motifs in OCT4 target promoters using different bioinformatics approaches

Approaches
Number of
promotersa Matrices library Statistical method

Top 10
significant TF BS

Significant
TF partners

oPOSSUM 87 JASPAR Fisher test
(p < 10�5)

E4BP4, cEBP
HLF, MEF2
SOX9, HFH

HNF3�, SRY
ARNT, S8

Not specified

CONFAC 117 TRANSFAC Mann-Whitney U-test
(p < 2 � 10�14)

NKX25, HNF3�
HFH3, BARBIE
GATA1, AP1

S8, HFH8
RFX1, POU1F1

Not specified

ChIPModulesb 187 Our own OCT4_PWM
and other motifs from
TRANSFAC

Fisher test and CART
model
(p < 0.005)

FAC1, PAX2
SRY, TST1
HELIOSA
CDX, P53
E2F, NCX
HMGIY

SRY, P53, PAX2, TST1,
and E2F

ChIPModules 187 All motifs from
TRANSFAC

Fisher test and CART
model
(p < 0.005)

HMGIY, NCX
AP4, TST1
STAT4, ZF5
SRY, PAX8
CRX, HFN1

NCX, SRY, CRX, and
HFN1

aFor the ChIPModules approach, we identified 187 pairs of human and mouse homologous genes for analysis. However, only 87 and 117 pairs were
identified by oPOSSUM and CONFAC, and thus a smaller set of promoters was used for these analyses.
bSimilar to our previous studies of E2F1 and AP-2� (currently known as TFAP2A) (Jin et al. 2006), we tested various distances from 0 bp to 500 bp
between the OCT4 and SRY motifs. We found the optimal distance between OCT4 and SRY is <270 bp based on a 10-fold cross-validation test using
the CART model. Therefore, all of the SRY and OCT4 motifs identified in the ChIPModules approach of Table 2 are within 270 bp of each other.
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http://fatigo.bioinfo.cipf.es/, to characterize the promoters that
are bound by both OCT4 and SRY versus a group of promoters
bound only by OCT4 or only by SRY (Fig. 6). The FatiGO program
is designed to compare (according to GO annotations) two sets of
genes identified from large-scale experiments and to identify cat-
egories of genes that are significantly overrepresented in one set
versus the other set. Using the FatiGO program, we found that
277 of the 538 common targets of OCT4 and SRY, 229 of 566
OCT4-only targets, and 415 of the 806 SRY-only targets have GO
annotations. We first compared the OCT4 + SRY target set to the
set of promoters bound by OCT4 but not by SRY. As shown in
Figure 6A, genes in the categories of DNA metabolism, chroma-
tin, and transcriptional activity are significantly overrepresented
in the common targets group than they are in OCT4-only targets.
We next compared the OCT4 + SRY set to the SRY-only set. We
found that genes with nucleobase, nucleoside, nucleotide, and
DNA binding are more significant in the common targets com-
pared to SRY-only targets (Fig. 6B).

Target genes bound by OCT4 and SRY are also bound
by the transcriptional repressor KAP1

There is very little known about the mechanisms by which SRY
may regulate transcription. However, two proteins implicated in
nuclear import function, calmodulin and importin beta, have
been identified as interacting with SRY (Sweitzer and Hanover

1996; Forwood et al. 2001). Also, previous studies (Poulat et al.
1997; Oh et al. 2005) have used human or mouse SRY as bait in
yeast two-hybrid screens to identify SRY-interacting protein (SIP-
1) and KRAB only (KRAB-O). KRAB-O is encoded by an alterna-
tively spliced transcript of ZNF208, a zinc-finger-containing gene
(Oh and Lau 2005; Oh et al. 2005). However, the KRAB-O tran-
script does not contain the zinc fingers normally found in
ZNF208, suggesting that recruitment of the KRAB-O protein to
the DNA may require interaction with a site-specific DNA-
binding protein (such as SRY). KRAB-O encodes a protein that
contains a KRAB domain, a highly conserved protein domain
found in about one-third of Kruppel-type (C2H2) zinc-finger do-
main proteins. The KRAB domain binds the KRAB-associating
protein KAP1 (Friedman et al. 1996; Kim and Shapiro 1996; Loo-
man et al. 2002). KAP1 is thought to act as a scaffolding protein
to recruit chromatin-modifying enzymes and the transcriptional
repressor HP1. It has been hypothesized that SRY functions as a
transcriptional repressor via interaction with KRAB-O and KAP1.
However, it is also possible that SRY can, in some cases, function
as a transcriptional activator. The mechanism(s) by which SRY
regulates transcription have not been elucidated due to the lack
of known target genes. Having identified a large set of SRY target
genes, we could test various models of SRY function. In particu-
lar, we were interested in determining (1) if SRY target genes are
bound by KAP1; and (2) if the set of target promoters bound by
both SRY and OCT4 has different characteristics from the set of
promoters bound only by SRY.

To determine if SRY target promoters are also bound by
KAP1, we used an antibody to KAP1 and performed two inde-
pendent ChIP-chip assays using NimbleGen 1.5-kb human pro-
moter arrays. We compared the overlap of the top KAP1 targets
with the top SRY targets in each of the two experiments and
found that, in both cases, 48% of the target genes were the same.
Thus, our experiments confirm the immunofluorescence colocal-
ization studies of SRY and KAP1 (Oh et al. 2005). We then sepa-
rated the SRY target promoters into those also bound by OCT4
versus those bound only by SRY. Examining the KAP1 target list,
we found that 75% of the SRY targets also bound by OCT4 were
bound by KAP1, whereas only 15% of the SRY targets not bound
by OCT4 were bound by KAP1. This analysis suggests that SRY

Figure 6. (A) The comparison of GO annotations for the 538 common
targets of OCT4 and SRY (black bars) versus 566 OCT4 targets only (white
bars). (B) The comparison of GO annotations for the 538 common targets of
OCT4 and SRY (black bars) versus 806 SRY (white bars) targets only.

Table 3. PCR confirmations of OCT4 and SRY target genes

OCTa
SRY

monoclonal Aba
SRY

polyclonal Aba

PRDX1 1.4 4.0 2.7
HIST2H2BE 2.8 3.9 2.9
ADAMTS5 4.1 3.7 3.0
RNASE4 1.6 3.6 2.5
MEIS1 3.0 3.2 2.5
GTPBP3 1.9 2.5 2.0
GRIN2B 2.0 2.4 2.0
HIST2H4A 3.1 2.4 2.4
EVX1 4.2 2.2 2.1
SOX2 4.9 2.2 2.4
SLC3A2 2.9 2.1 1.9
EN1 2.9 2.1 2.2
ISL2 2.2 1.9 1.8
SGCE 2.4 1.9 1.8
HOXA13 1.7 1.8 1.7
PAX3 2.8 1.8 1.7
PHOX2B 2.0 1.8 1.8
TAL1 2.5 1.7 1.8
ZIC1 3.0 1.7 1.9
HIST2H2AB 2.6 1.7 2.0
C12orf57 4.0 1.7 2.2
NANOG 2.7 1.4 1.4
BCL9 3.9 1.4 1.7
MRPL1 2.7 1.3 1.6
HOXA4 2.0 1.3 1.4
REST 1.7 1.2 1.5
IREB2 8.9 0.7 1.4
DHFR 1.0 1.0 1.0

Two different antibodies were used to prepare SRY ChIP samples for
confirmation PCR assays; the targets in this list were identified originally
by ChIP-chip using the SRY polyclonal antibody.
aThe values in the table represent the fold enrichment, which was com-
pared to the enrichment of the total input and normalized to the negative
control. The signals were within the linear range of the assay, providing
a semiquantitative analysis. For each of these experiments, IgG ChIP
samples were performed; the promoters did not show enrichment in the
IgG samples.
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might function in two different ways, as a transcriptional repres-
sor in a complex containing OCT4 and KAP1, and in a complex
that lacks both OCT4 and KAP1.

Discussion

OCT4 is a key regulator in maintaining the pluripotency and
self-renewal of human embryonic stem cells, germ cells, and tu-
mor cells. Recent studies have identified a set of target genes for
OCT4 in different human or mouse embryonic stem cells (Boyer
et al. 2005; Loh et al. 2006; Player et al. 2006; Squazzo et al.
2006). Based on this previous work, several factors have been
identified that regulate a common set of genes as does OCT4. For
example, SOX2 and NANOG have been implicated as positive
coregulatory factors with OCT4 (Boyer et al. 2005; Loh et al.
2006) in embryonic stem cells. This study, using an integration of
high-throughput experimental techniques and computational
approaches, suggests that OCT4 may also cooperate with SRY to
regulate a set of genes in Ntera2 cells.

Integration of experimental data and computational analy-
ses is becoming increasingly important as more and more data
sets are generated from high-throughput technologies. As dis-
cussed in a recent review (Elnitski et al. 2006), the analysis of
ChIP-chip data using various computational approaches is pro-
viding new opportunities to understand transcription networks.
Several recent studies have used ChIP-chip data to systematically
identify colocalizing transcription factors (Blanchette et al. 2006;
Das et al. 2006; Jin et al. 2006). Although these approaches have
proven to be quite useful in identifying cis-regulatory modules,
the PWMs used in the previous studies have come either from the
TRANSFAC database (Jin et al. 2006) or from a few binding sites
from previously known target promoters (Cheng et al. 2006).
Having available a collection of PWMs derived from in vivo bind-
ing sites would be very useful for understanding transcription
networks. Toward this goal, a few previous studies (Liu et al.
2002; Harbison et al. 2004; Carroll et al. 2005; Johnson et al.
2006) have derived motifs from sets of in vivo binding sites. In
this present study, we have independently developed a de novo
motif discovery approach (ChIPMotifs) that can derive in vivo
PWMs using ChIP-chip data obtained from arrays that represent
1% of the human genome (The ENCODE Project Consortium
2004). ChIPMotifs (Fig. 1) first detects motifs using ab initio mo-
tif programs such as Weeder or MEME and then selects the best
motifs using cutoff thresholds defined by a robust, unbiased non-
parametric bootstrap resampling method. Most ab initio motif
programs identify motifs using only one set of background se-
quences. When compared to other discriminative motifs ap-
proaches (Robison et al. 1998; Workman and Stormo 2000; Beni-
tez-Bellon et al. 2002; Djordjevic et al. 2003; Sinha 2003; Harbi-
son et al. 2004; MacIsaac et al. 2006), the major difference in our
approach is that a modified bootstrap resampling strategy is in-
corporated into our approach so that we can statistically determine
the level of stringency of identified motifs using both positive (en-
riched) and negative (nonenriched) ChIP-chip data sets.

We applied our ChIPMotifs approach to a set of 154 OCT4
target promoters identified by ChIP-chip using ENCODE arrays.
We were able to recover an OCT4-binding site motif, NATG
CAAANN (p = 0.00026), which has 7-bp matching with the con-
ventional canonical OCT4 motif. We then used the new OCT4
PWM derived from the ChIPMotifs approach to identify regula-
tory modules using our previously described ChIPModules pro-
tocol (Jin et al. 2006), identifying five motifs that colocalize with

the OCT4H_PWM (SRY, E2F, P53, TST1, and PAX2). SRY was also
identified as one of the top 10 motifs when we applied the pro-
gram oPOSSUM to our OCT4 ChIP-chip data. Therefore, we
chose the OCT4 + SRY regulatory module for further validation,
performing ChIP-chip experiments using antibodies to both
OCT4 and SRY. We found that the overlap of the top ranked
OCT4 and SRY targets (49%) is similar to the 50% overlap of
OCT4 and SOX2 targets in human H9 ES cells (Boyer et al. 2005)
and the 45% overlap of Oct4 and Nanog targets in E14 mouse ES
cells (Loh et al. 2006). Interestingly, both SRY and SOX2 belong
to the Sox family (Sry-type high-mobility group [HMG] box) of
transcription factors, suggesting that OCT4 may interact with a
variety of HMG-box proteins.

SRY is a key regulator of the development of the male go-
nads and is critical for normal male sex determination (Koopman
et al. 2001; Nikolova and Vilain 2006). However, no direct targets
of SRY had been identified before this study. The expression of
several genes has been shown to be influenced by SRY activity,
such as Sox9 (Harley et al. 2003) and Wilm’s Tumor suppressor
(Hossain and Saunders 2001). However, direct binding of SRY to
the promoter regions of these genes has not been demonstrated.
Thus, the ∼1000 SRY target genes that we have identified repre-
sent a major advance in the field of testis differentiation and will
aid in future studies aimed at dissecting the function of SRY in
male sex determination. Using our ChIP-chip analyses, we also
tested a previously proposed model for SRY function by demon-
strating that a large percentage of SRY target genes are also bound
by the KAP1 transcriptional repressor. Interestingly, if we divide
the SRY target promoters into subsets that are bound versus not
bound by OCT4, we found that the three proteins (OCT4, SRY,
and KAP1) often colocalize (see Fig. 7). This suggests that the
SRY + OCT4 cis-module that we describe in this study helps to
identify a specific set of promoters that may be repressed by SRY.
A preliminary analysis, using Illumina Sentrix Beadchips, of the
expression levels of the set of genes whose promoters are bound
by OCT4 and SRY plus KAP1 indicates that the majority of the
genes have very low expression levels in Ntera2 cells (Krig et al.
2007).

In summary, the computational identification and experi-
mental confirmation of a common set of OCT4 and SRY targets
demonstrate that our ChIPMotifs and ChIPModules approaches

Figure 7. OCT4, SRY, and KAP1 bind to a common set of target pro-
moters. Using OCT4 and SRY ChIP-chip experiments from the same set of
cross-linked Ntera2 cells, 880 of the SRY targets were classified as SRY+
and OCT4+ because of their presence in the top 2000 ranked promoters
from both lists. To identify the SRY+ and OCT4� promoters, the top
2000 SRY targets were ranked according to their OCT4 enrichment val-
ues, and the bottom 389 promoters were chosen. Then, these two sets of
promoters (SRY+ OCT4+ and SRY+ OCT4�) were compared to the top
1000 KAP1 targets.
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can work in concert to efficiently mine ChIP-chip data, allowing
the development of de novo motifs and the identification of new
cis-regulatory modules. Importantly, these approaches allow inves-
tigators to develop a PWM for a given factor and search for colo-
calizing motifs using experimentally identified in vivo binding sites
from a specific cell type. This will greatly enable investigations into
possible cell-type specificity in the set of target genes and interac-
tion partners for various mammalian transcription factors.

Methods

ChIP-chip data used for modeling

Data set 1—ENCODE regions bound by OCT4
A set of 154 human OCT4 enrichment binding sequences in
Ntera2 cells was identified from human ENCODE arrays at the L1
level (p < 0.001) from three biological replicates and used for
finding the de novo motifs.

Data set 2—ENCODE regions not bound by OCT4
A set of 499 sequences from the ENCODE regions, each having an
average length of 500 bp, that were not bound by OCT4 in
Ntera2 cells was selected; each selected sequence was within 10
kb of a promoter region of a known gene.

Data set 3—core promoters bound by OCT4
A set of 293 human OCT4 target promoters in Ntera2 cells was
identified from human minipromoter arrays at a rank of the top
500 overlapped targets based on median values from two biologi-
cal replicate ChIP-chip experiments (see the Supplemental Ma-
terial for the design of the minipromoter array and processing
the data set). Of these 293 targets, 187 have human and mouse
orthologous pairs and were further considered to be a positive
data set of OCT4 target promoters for training by our ChIPMod-
ules approach.

Data set 4—core promoters not bound by OCT4
A set of 3323 human promoters not bound by OCT4 in Ntera2
cells was retrieved from human minipromoter arrays at a rank of
bottom 5000 overlapped targets based on median values from
two biological replicates. Of these 3323 promoters, 200 show
intensities >1.0 in both replicates of the POLR2A ChIP sample
and were therefore used as a negative control set. Of these 200
promoters, 94 have human and mouse orthologous pairs and
were considered to be a negative data set of non-OCT4 target
promoters.

Promoter sequence retrieval
Orthologous promoter sequences, corresponding attributes, and
annotation data were retrieved from an integrated information
resource (Palaniswamy et al. 2005; http://bioinformatics.med.
ohio-state.edu/OMGProm). For the regions identified from the
ENCODE arrays, flanking sequences of 1 kb upstream of to 1 kb
downstream from each binding region were analyzed. For the
target genes identified from the promoter arrays, sequences from
1.3 kb upstream of to 200 bp downstream from each target were
analyzed. The sequences were then aligned to mouse ortholo-
gous promoter sequences, examining from 10 kb upstream to 10
kb downstream of the transcriptional start site for the ortholo-
gous mouse gene using the program ClustalW (Thompson et al.
1994).

Bootstrap resampling strategy

The bootstrap resampling approach is used as a statistical method
to determine the optimal cutoffs for the PWM of its motif. Let us
consider a set of PWM scores Y = (y1, y2, . . . , yn) predicted from
a set of training sequences S = (s1, s2, . . . , sn) for a given tran-
scription factor, TF; F(Y) is the distribution of Y. B is the number
of independent random data sets to be generated from the train-
ing data set S1*, S2*, . . . , SB*, where S* = (s1*, s2*, . . . , sn*), and
each random set has a new set of PWM scores: Y1*, Y2*, . . . , YB*,
where Y* = (y1*, y2*, . . . , yn*). Since the F(Y) is an unknown
distribution for our PWM scores, therefore we first form the em-
pirical distribution function (EDF) Fn(.| Y). p* is a statistical pa-
rameter for F(Y*). The details of the bootstrap resampling process
are: Given a set of training sequences S = (s1, s2, . . . , sn) for a
given transcription factor TF, generate a set of PWM scores
Y = (y1, y2, . . . , yn) from S. For i = 1 to B, for j = 1 to n, first
generate sij and then predict yij from sij. Next j. Form the EDF
Fn(.|Yi*). Next i. Calculate p(Y*) for F(Y*).

Other approaches have also been used to identify motifs.
These approaches all start with a seed matrix (or several seed
matrices) identified by other ab initio motif programs such as
MDScan, Weeder, MEME, and AlignACE from ChIP-chip data or
use known binding profiles (such as from the TRANSFAC data-
base), then further incorporate some statistical methods or
machine learning algorithms to discriminate the positive set
from the negative set. As described above, our approach uses a
modified bootstrap resampling procedure and the Fisher test;
DMOTIFs (Sinha 2003) uses a probabilistic analysis with a com-
puted P-value or score; MotifBooster (Hong et al. 2005b) uses a
modified confidence-rated boosting (CRB); and THEME (Mac-
Isaac et al. 2006) uses a support vector machine (SVM). We be-
lieve that each of these approaches works well on its specific test
data sets and is very suitable for a particular array platform. How-
ever, besides discriminating the positive data from negative data,
our ChIPMotifs approach determines PWM cutoffs, which can be
further used to train other ChIP-chip data sets and to identify
cis-regulatory modules (see next section).

Identification of cis-regulatory modules

The OCT4 PWM discovered from our ChIPMotifs approach was
used for identifying the best OCT4-binding site in each target
region. A sliding-window method similar to the method used in
Sandelin et al. (2004b) was then used to measure the degree of
conservation of a located OCT4-binding site in a pair of ortholo-
gous sequences. A site (M) is considered to be conserved if there
is at least one site for a given factor in the orthologous sequences
within a given window size (e) and the scores are greater than a
threshold (T), where T is a user-defined parameter. Binding sites
for other transcription factors were identified by the MATCH (Kel
et al. 2003) program using the PWMs from the TRANSFAC data-
base (Wingender et al. 2000). For each pair of human and mouse
orthologous promoters, we searched for ∼500 PWMs correspond-
ing to ∼300 known human transcription factors using the
“minFN_good83.prf” profile (profile of cutoff values with mini-
mum number of false-negative predictions) of MATCH. Each pre-
dicted binding site was determined by four parameters: (1) the
human core score (Sc_h); (2) the human PWM score (Sp_h); (3) the
mouse core score (Sc_m); and (4) the mouse PWM core score
(Sp_m). The core and PWM scores, ranging from 0 (worst) to 1
(best), reflect the similarity of predicted sites to the core of the
consensus and to the full consensus sequence. The conservation
of other binding sites was determined by the percentage of iden-
tical base pairs from the ClustalW-aligned sequences.
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Calculation of Sn and Sp

A true positive rate termed as sensitivity (Sn), and a true negative
rate termed as specificity (Sp) were calculated by the following
formulas:

Sn =
TP

TP + FN

and

Sp =
TN

FP + TN

where both TP (a true positive) and TN (a true negative) are cor-
rect classifications, and both FP (a false positive) and FN (a false
negative) are incorrect classifications.

ChIP-chip assays
Ntera2 cells were grown in Dulbecco’s Modified Eagle’s Medium
supplemented with 2 mM glutamine, 100 units/mL penicillin
and streptomycin, and 10% fetal bovine serum. All cells were
incubated at 37°C in a humidified 5% CO2 incubator. ChIP as-
says (1 � 107 cells/assay) were performed following the protocol
provided at http://genomics.ucdavis.edu/farnham/ and http://
genomecenter.ucdavis.edu/expression_analysis/. Amplicons
were prepared using the whole-genome amplification method
(see O’Geen et al. 2006; http://www.genomecenter.ucdavis.edu/
farnham/protocol.html; and the Supplemental Material). The
OCT4 antibody used in this study was purchased from Santa Cruz
Biotechnology (cat# sc-8628X). Two different SRY antibodies
were used in this study: ChIP samples that were hybridized on
the arrays were obtained using an antibody from Santa Cruz Bio-
technology (cat# sc-8232X), while ChIP samples used for PCR
validation of the target genes were obtained using both the origi-
nal antibody and an antibody purchased from Abcam (cat#
ab22166). Amplicons were hybridized by the NimbleGen Array
Service onto 1.5-kb human promoter arrays created by Nimble-
Gen Systems. For details concerning the generation of amplicons
from ChIP samples, see http://genomics.ucdavis.edu/farnham/.
For PCR analysis of the ChIP samples prior to amplicon genera-
tion, QIA quick-purified immunoprecipitates were dissolved in
50 µL of water, except for input samples, which were dissolved in
100 µL. Standard PCR reactions using 2 µL of the immunopre-
cipitated DNA were performed. PCR products were separated by
electrophoresis through 1.5% agarose gels and visualized using
ethidium bromide.
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