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Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as
regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within
the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary
sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have
used three recently introduced programs based on either phylogenetic–stochastic context-free grammar (EvoFold) or
energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to
∼2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich
regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods.
Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly
increased density in 3�-UTRs. While we estimate a significant false discovery rate of ∼50%–70% many of the
predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold,
and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five
hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the
sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by
oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and
expression could be verified in 43 cases (24.6%).

[The sequenced fragments of verified ncRNA predictions and TEC were deposited to GenBank under accession
nos. EF212232–EF212281 and EF212282–EF212289, respectively.]

The goal of The ENCODE Project Consortium (Encyclopedia of
DNA Elements [ENCODE]) is the comprehensive analysis of func-
tional elements in the human genome. One of its main goals is
the thorough annotation of transcripts in terms of structure and

function. Both genome-wide studies (Bertone et al. 2004; Car-
ninci et al. 2005; Cheng et al. 2005) and the far more detailed
studies targeted to the ENCODE regions (The ENCODE Project
Consortium 2007) show a much more extensive and complex
transcriptional map than previously anticipated, comprising a
mosaic of overlapping transcription, antisense transcripts, abun-
dant alternative splicing, and a plethora of novel transcribed el-
ements. Using a series of sensitive methods, it was demonstrated
that 93% of the ENCODE regions exist in primary nuclear tran-
scripts in at least one of the tested tissues.
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An as-yet not satisfactorily resolved question is whether
novel transcripts lacking protein-coding capacity (noncoding
transcripts) have biological function as such, or whether they
rather represent “biological noise” (i.e., selectively neutral tran-
scription). Analogous to the analysis of protein-coding genes, a
combination of both experimental and computational tech-
niques seems necessary to address this question.

On the experimental side, we can draw upon the evidence
from large-scale oligonucleotide tiling array studies performed on
the ENCODE regions as well as a small set of verification experi-
ments (The ENCODE Project Consortium 2007). Unfortunately,
there is at present no general way to predict noncoding tran-
scripts in eukaryotic genomes. A few methods exploit weak sta-
tistical signals like mutational strand bias, strand-specific selec-
tion against polyadenylation signals, or exclusion of repeat ele-
ments to predict transcribed regions in the genome (Semon and
Duret 2004; Glusman et al. 2006). Such approaches are limited to
very large transcripts and cannot define functional elements
within a transcript, for example, as do protein gene finders by
predicting coding exons. A subclass of noncoding transcripts,
however, appears to function in the context of ribonucleoprotein
complexes that require specific RNA secondary structures. This is
the case, in particular, for many of the “classical” noncoding
RNAs (ncRNAs), including snoRNAs, snRNAs, or the signal recog-
nition particle RNA. Other sources of structural constraints may
derive from particular processing pathways, such as the hairpin-
shaped precursors of microRNAs, specific steric requirements as in
the case of tRNAs, or from structural requirements for the cata-
lytic function of the RNA itself, as in the case of rRNAs, RNaseP
RNA, and group I and II introns (Bompfünewerer et al. 2005).

RNA secondary structures are known to play an important
functional role not only in noncoding transcripts, but also in the
context of protein-coding mRNAs. Structural motifs serve regu-
latory functions in untranslated regions (Mignone et al. 2002),
lead to genetic reprogramming of coding regions (Hubert et al.
1996; Namy et al. 2004), and can influence splicing of pre-
mRNAs (Buratti and Baralle 2004).

The comprehensive knowledge of encoded secondary struc-
tures in the genome is important to determine at which level
DNA is actually functional, and without it, an “encyclopedia” of
functional elements would be incomplete.

In this study, we use different comparative approaches to
predict functional RNA secondary structures and provide a de-
tailed comparison with the results of other ENCODE subprojects;
in particular, experimental data from oligonucleotide tiling array
studies. The computational approach is based on predicting con-
sensus structures and the observation that structural constraints
imply specific mutational patterns visible at the sequence level.
EvoFold (Pedersen et al. 2006) analyzes substitution patterns and
models RNA structures directly in the framework of a phyloge-
netic–stochastic context-free grammar (phylo-SCFG) (Knudsen
and Hein 1999, 2003), while RNAz (Washietl et al. 2005b) and
AlifoldZ (Washietl and Hofacker 2004) consider structural con-
servation and stability of the putative structures in terms of pre-
dicted folding energies (Hofacker et al. 2002). Both EvoFold and
RNAz have been used in genome-wide computational screens for
structured RNAs (Washietl et al. 2005a; Pedersen et al. 2006),
limited, however, on a preselected set of sequence-constrained
elements (Siepel et al. 2005), and also based on a much smaller
number of genomes. In the ENCODE regions, we not only have
access to alignments of up to 28 species, which greatly enhances
the power of such comparative approaches, but more impor-

tantly, there is also a dense set of additional data to which we can
compare our data.

Results

Three approaches

Almost all RNA molecules form secondary structures. The chal-
lenge is thus to recognize those sections of the genome in which
the structure is more conserved than one would expect from
primary sequence conservation alone. We employ here three
fairly different methods that are designed to recognize evolution-
arily conserved secondary structures. All three are based on given
multiple-sequence alignments and attempt to (1) predict a con-
sensus secondary structure for aligned sequences, and then (2)
apply a test of whether or not the consensus structure found is
unusual.

Consensus structures can be inferred either by means of en-
ergy-directed folding or using a phylo-SCFG model. The RNAali-
fold algorithm computes the most stable secondary structure that
is compatible with the input alignment (Hofacker et al. 2002).
Pfold uses a phylo-SCFG to predict the most likely common sec-
ondary structure based on a model of secondary structure forma-
tion combined with a phylogenetic analysis of the observed sub-
stitution pattern (Knudsen and Hein 1999, 2003). Both ap-
proaches yield comparable accuracies for consensus secondary
structure prediction (Gardner and Giegerich 2004). Recently,
these algorithms have been used for ncRNA prediction by aug-
menting them with significance measures.

AlifoldZ uses a random shuffle approach to estimate the
expected background distribution (Washietl and Hofacker 2004).
It expresses the significance of a hit in terms of a normalized
Z-score. Negative Z-scores indicate that an observed fold is more
stable and conserved than expected by chance. AlifoldZ is rela-
tively slow and nondeterministic, and fairly sensitive to align-
ment errors since it depends on a strictly conserved fold.

These limitations are overcome by RNAz (Washietl et al.
2005b), which uses a different approach to evaluate the RNAali-
fold prediction. Structure conservation is measured here directly
as the ratio of the unconstrained folding energies relative to the
folding energies under the constraint that all aligned sequences
are forced to fold into a common structure. If no common struc-
ture can be found, this results in a low conservation score. Ther-
modynamic stability is measured independently for each se-
quence and then averaged over the alignment. Both measures are
interpreted by a support vector machine (SVM) classification al-
gorithm. Since the thermodynamic component is completely in-
dependent of the alignment, this method is relatively robust
against alignment errors. In its current implementation, it is,
however, limited to six sequences.

EvoFold is based on two competing phylo-SCFG models of
RNA sequence evolution: a structural model, similar to the Pfold
model, and a nonstructural model (Pedersen et al. 2006).15 Struc-
ture is only predicted when a segment of the alignment is better
described by the structural model than the nonstructural model.
The two models describe alignments with identical properties,
except that the nonstructural model assumes a higher substitu-
tion rate and does not include correlated base-pair changes, as

15This approach is also similar in spirit to QRNA, a program that detects con-
served RNA structures in pairwise alignments by comparing an SCFG-based
RNA model to a background model (Rivas and Eddy 2001).
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found in RNA helices. Each structure prediction is assigned a
score based on the relative likelihood of the alignment under the
combined structural/nonstructural model and a purely nonstruc-
tural model. For the purpose of this study, the structure predic-
tions are ranked according to their scores.

Screening multispecies alignments of the ENCODE regions

We used TBA/MultiZ (Blanchette et al. 2004) multiple sequence
alignments with up to 28 species as prepared by the ENCODE

alignment group (Margulies et al. 2007). The nonrepeat regions
were scanned using the three algorithms as described in detail in
Methods. We predict local secondary structures, performing the
analysis in overlapping windows of size 120 and slide 40.

For AlifoldZ, we used a sample of a maximum of 10 se-
quences from the alignments. The consensus minimum free
energy (MFE) quantifying the stability of the consensus fold
predicted by RNAalifold of all scanned windows is shown in
Figure 1. This shows that some sort of consensus fold can be
found in almost all alignments. It is not possible to discriminate

Figure 1. Score distribution of AlifoldZ, RNAz, and EvoFold computed for all input alignments. (A) Minimum free energies of the consensus structures
as computed by RNAalifold. Note that more negative scores correspond to more stable/conserved consensus structures. (B) The significance of the
consensus MFEs are estimated by AlifoldZ for all consensus structures with MFE < �15 resulting in normalized Z-scores. Also here negative values mean
more stable and conserved structures. The two significance cutoffs used throughout this work are indicated. (C) RNAz classifies alignments using a
support vector machine. The distribution of SVM decision variables is shown as well as the two significance cutoffs, which are expressed as “classification
probabilities,” P. (D) Enlarged tail of C. (E) Raw EvoFold scores on the original input alignments. (F) EvoFold scores after extracting the predicted
substructure, filtering weak structures (see Methods), and rescoring. The histogram shows all predictions of which the top-scoring 50% were chosen
as the high significance prediction set.
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on the basis of this score; therefore, the Z-score is calculated to
assess its significance. We only considered Z-scores for align-
ments with consensus MFE <�15, since Z-scores can be unstable
for low levels of consensus MFE. This filter is the most stringent
one and leaves us with 660 and 348 hits, respectively, for the two
significance cutoffs Z < �3.5 and Z < �4, which have been used
by Washietl and Hofacker (2004).

In the case of the RNAz screen, we selected up to six se-
quences; if there were more than 10 sequences in the alignment,
we selected three different samples of six. These were classified
using the SVM. The SVM score distributions can be seen in Figure
1. For convenience, the SVM scores are converted to “RNA class
probabilities,” and we used two cutoffs, 0.5 and 0.9, as intro-
duced by Washietl et al. (2005b). This results in 7093 and 3707
predictions, respectively.

All sequences of the alignments were used for EvoFold. First
the regions were screened in fixed-size windows, then the pre-
dicted substructures were rescored and filtered for spurious pre-
dictions (short predictions with <10 base pairs [bp] were dis-
carded). Based on the EvoFold score, we defined two sets: one
with all predicted structures and one with the top 50% high-
scoring structures, consisting of 9953 and 4986 predictions, re-
spectively.

From the score distributions in Figure 1 and the results in
Table 1, one can see that all three methods apply a relatively
stringent filter on the data: On the high-significance level, RNAz
and EvoFold predict 1.4% and 1.3% of the ENCODE regions to
form structural RNAs, which is in both cases <5% of the scored
input alignments. Note that the input varies between RNAz and
EvoFold because specific schemes were used to filter the raw
alignments (for details, see Methods).

Estimating background signal

An important issue in any genome-wide screen, be it experimen-
tal or computational, is the estimation of the false discovery rate.
To this end, we repeated the analysis with randomly shuffled
alignments (see Methods). This procedure is designed to remove
correlations arising from secondary structures while leaving
other characteristics of the aligned sequences untouched. Score
distributions for the randomized data are shown in Figure 1, and
the results of the randomized screens are summarized in Table 1.

An important aspect in the context of randomizing RNA
secondary structures is dinucleotide content (Workman and

Krogh 1999). Since energy-directed folding is based on stacking
interactions of neighboring base pairs, dinucleotide content can
affect stability scores considerably. RNAz uses a mononucleotide
shuffling model to compute the energy Z-scores, which are used
as stability measures for the single sequences in the alignment.
Indeed, we observe that the randomized alignments on average
lead to slightly negative Z-scores rather than being centered
around zero. This signal disappears when using dinucleotide
shuffling. It is interesting to ask why the natural dinucleotide
content of the genome results in more stable secondary struc-
tures and whether this has a biological meaning given that a large
fraction of the genome is transcribed. However, conservatively,
we have to consider this effect as a bias. Randomization proce-
dures for entire alignments that respect dinucleotide content do
not seem feasible; hence we cannot correct for the dinucleotide
frequency effect in the case of AlifoldZ. For RNAz, however, the
energy Z-score is independent of the alignment. We can com-
pensate for the dinucleotide bias in the random control by shift-
ing all Z-scores by the observed background Z-score of 0.5 and
reevaluating the adjusted values by the SVM. EvoFold is not di-
rectly affected by dinucleotide content since the SCFG does not
explicitly model stacking base pairs.

We observe a relatively high false discovery rate for both
RNAz and EvoFold (Table 2). On the highly significant set, the
false discovery rate (after dinucleotide correction) is 50.0% for
RNAz and 70.9% for EvoFold, respectively. Since the shuffling
approach comes with uncertainties (Washietl and Hofacker 2004;
Washietl et al. 2005a; Pedersen et al. 2006), the real false positive
rate could conceivably be even higher.

Comparison of different predictions

Figure 2 shows the overlap between different methods. Of the
AlifoldZ hits, 70.9% overlap with the RNAz predictions. Since

Table 1. Statistics of predictions

Input regions Low significance levela High significance levelb

MB
%

ENCODE
Number
of hits MB

%
Input

%
ENCODE

Number
of hits MB

%
Input

%
ENCODE

AlifoldZ Native 9.76 32.6 660 0.070 0.7 0.2 348 0.036 0.3 0.1
Random 9.36 31.3 148 0.015 0.2 0.0 69 0.007 0.1 0.0

RNAz Native 9.76 32.6 7093 0.748 7.7 2.5 3707 0.413 4.2 1.4
Random 9.36 31.3 1349 0.117 1.25 0.4 536 0.0466 0.50 0.2
Randomc 9.36 31.3 4018 1852

EvoFold Native 14.44 48.14 9953 0.800 5.5 2.7 4986 0.378 2.5 1.3
Random 14.44 48.14 7390 0.603 4.4 2.0 3535 0.274 1.9 0.9

aAlifoldZ: Z < �3.5; RNAz: P > 0.5; EvoFold: all predictions.
bAlifoldZ: Z < �4; RNAz: P > 0.9; EvoFold: top 50% predictions.
cZ-scores corrected to compensate for the genomic background signal.

Table 2. False discovery rates estimated on shuffled
alignments

Method
Low significance

level (%)
High significance

level (%)

AlifoldZ 22.4 19.8
RNAz 19.0 14.5
RNAz (corrected) 56.6 50.0
EvoFold 74.2 70.9
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false positives are estimated to be at least 20% in AlifoldZ and
false positives for RNAz and AlifoldZ arise for different reasons,
this overlap is what can be expected. The 247 overlapping hits
thus can be regarded as predictions with very high confidence.
On the other hand, due to the very restrictive consensus MFE and
Z-score cutoff used for AlifoldZ, many true RNAz hits will not
yield an AlifoldZ signal.

The overlap between RNAz and EvoFold is extremely low.
Only 7.2% of the RNAz hits overlap with EvoFold predictions.
While this constitutes a 1.6-fold enrichment over the randomly
expected overlap, and although the high estimated false discov-
ery rates limit the best possible overlap to about one-third, this
small overlap was unexpected. Close inspection of the data, how-
ever, revealed the interesting fact that RNAz and EvoFold essen-
tially detect complementary RNA structures: While RNAz is sen-
sitive to alignments with moderate and high GC content and
relatively low sequence similarity, EvoFold has its peak sensitivi-
ties for low GC content and high sequence similarity (Fig. 3).
Both methods were trained on structurally diverse subsets of the
Rfam database with average GC contents of ∼50%. However, the
parametrization of EvoFold’s nonstructural submodel creates a
bias in its structural predictions toward AT-rich regions. The hu-
man genome has an overall GC content of ∼42%. Many of the
known structured RNAs, such as microRNAs and H/ACA box
snoRNAs, have an average GC content close to 50%; however,

some have a relatively low GC content,
such as tRNAs, which have an average
GC content of 34%.

The second clear difference is that a
large fraction of EvoFold predictions are
within highly conserved alignments,
while RNAz predictions essentially fol-
low the conservation distribution found
in the input regions. EvoFold, as op-
posed to RNAz, explicitly models the
rate of substitution and was trained to
detect slowly evolving RNA structures.
Since many known ncRNAs are highly
conserved not only in structure but also

in sequence, this part of the conservation spectrum is of particu-
lar interest. However, due to the lack of sequence variation in
these alignments, discriminating between true- and false-positive
predictions is difficult. EvoFold is more sensitive for highly con-
served alignments than RNAz, at the expense of a higher rate of
false positives.

Detection of known ncRNAs
The ENCODE regions are surprisingly poor in annotated ncRNAs.
Of 74 loci with sequence similarity to ncRNAs in the Rfam data-
base (Griffiths-Jones et al. 2005), 60 are repeat masked and hence
excluded from this study, and seven are annotated as “ncRNA
related” (i.e., putative pseudogenes). Thus, there are only eight
well-characterized ncRNAs within the ENCODE regions: three
H/ACA snoRNAs; four microRNAs; and H19, an imprinted, de-
velopmentally regulated mRNA-like noncoding transcript in hu-
man and mouse that is not contained in Rfam (Gabory et al.
2006; see Table 3). There is, for example, not a single tRNA or
C/D-box snoRNA in any of the ENCODE-selected regions. The
eight well-characterized examples are generally detectable by all
three methods with high significance (AlifoldZ, Z < �4.7; RNAz,
P > 0.95; and EvoFold, top 25%). For the few examples missed,
the reason is always because the ncRNA is not represented in the
input alignment and simple manual editing of the alignment
would have resulted in positive predictions. This shows the im-

portance of the underlying genomic
alignments.

An interesting example is H19,
which shows that long spliced tran-
scripts can have structural “domains”
and that structural ncRNAs are not nec-
essarily small RNAs with a global struc-
ture as seen for tRNAs or snoRNAs. In
addition to these well-described ex-
amples, we found seven overlapping
EvoFold/RNAz hits with significant se-
quence similarity (BLAST E < 10�6) to
the set of putative ncRNAs from the
mouse Fantom2 project (Okazaki et al.
2002), supporting the role of these tran-
scripts as functional ncRNAs.

Comparison with other ENCODE data

Sites of transcription can be empirically
determined using oligonucleotide tiling-
array techniques resulting in maps of
transcriptionally active regions (TARs)

Figure 2. Overlap of predictions from different methods (high significance level). The sets are drawn
to scale for overlap in terms of nucleotides, and numbers indicate overlapping predictions. In addition,
we give the total number of items outside the respective sets. (Left) All predictions; (right) predictions
without coding exons and UTRs according to GENCODE annotation.

Figure 3. Densities of EvoFold and RNAz predictions (high significance level) as a function of GC
content and sequence conservation measured by the phastCons program (Siepel et al. 2005). While
most RNAz predictions have elevated GC content and moderate sequence conservation, EvoFold is
most sensitive at low GC contents and high sequence conservation.
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(Bertone et al. 2004) or transcribed fragments (Transfrags)
(Cheng et al. 2005). We compared predicted RNA structures with
a union of TARs/Transfrags generated in the course of the EN-
CODE project using 11 human tissues (Fig. 4; The ENCODE
Project Consortium 2007). One has to keep in mind that these
maps were derived from RNA fractions longer than 200 nucleo-
tides (nt), and therefore a large fraction of small structured
ncRNAs should be missed. However, many ncRNAs like miRNAs
and snoRNAs are processed from longer precursor transcripts and
are very well detectable by these methods (see below).

Of the high-significance RNAz hits, 22.3% overlap with ex-
perimentally detected sites of transcription. This includes UTR
elements and the predictions in coding regions (see below).
Without these regions (i.e., counting only intergenic and in-
tronic), 15.7% of the RNAz hits overlap with TARs/Transfrags.
This corresponds to a significant enrichment of approximately
twofold. However, this must be interpreted with caution since
TARs/Transfrags are very GC rich (unannotated Transfrags: 56%).
It is unclear to what extent this bias has biological reasons or is
the result of the hybridization technique, and consequently, it is
difficult to interpret the significance of these enriched overlaps.
GC content seems to be an important issue since we do not see
any enrichment but, in fact, a small negative correlation of Evo-
Fold hits and TARs/Transfrags (only 5.8% of the intergenic and
intronic EvoFold hits overlap TARs/Transfrags). The sensitivity of
tiling arrays on AU-rich sequences may be lower than for GC-rich
sequences.

Another important issue in this context is that it is unclear
how secondary structure affects detection performance on tiling
arrays. Similar to previous studies (Clote et al. 2005), which re-
ported that functional RNAs are more stable than other se-

quences, we systematically compared Z-scores of folding stability
of single sequences while taking dinucleotide content into ac-
count. We compared different annotation groups (introns, inter-
genic, CDS, UTRs, TARs/no TARs) to see if there are any general
trends. Somewhat surprisingly, we found only one single statis-
tically significant signal, which we interpret to be a technical
rather than a biological effect: Regions detected by TARs/
Transfrags are on average less stable than regions not detected by
TARs (Wilcox, P = 2.5 � 10�7). In addition, we previously ob-
served several examples in which highly stable ncRNAs (both
predicted ones and known microRNAs) result in a negative signal
(“holes”) in tiling-array data (Cheng et al. 2005). These results
suggest that tiling arrays have a reduced sensitivity for strongly
structured ncRNAs.

While much of the ENCODE region is alignable at least with
the genomic DNA of closely related species, and hence used as
input in the computational screens detailed above, only a subset
of these sequences is under stabilizing selection at the sequence
level. We therefore compared the structured RNA candidates
with the multiple species analysis for sequence-constrained ele-
ments. We used the “moderate” set of constrained elements,
which comprises regions detected by at least two of three con-
servation programs in at least two of three alignments prepared
by different methods (Margulies et al. 2007). These conserved
elements cover 4.9% of the ENCODE regions.

Eight hundred forty-one RNAz hits (22.69%) overlap with
conserved regions, 570 (17.2%) without hits in UTRs and coding
regions. For EvoFold predictions the overlap is much higher,
3579 (71.78%) including exons and 2130 (60.41%) without ex-
ons, in line with the program’s general tendency to predict struc-
tures in highly conserved regions. The fact that a large fraction of
predicted conserved RNA structures does not correlate with high
sequence conservation does not come as a surprise. Indeed, To-
rarinsson and colleagues reported expressed noncoding RNAs in
regions that are not alignable between human and mouse and
nevertheless have conserved secondary structures (Torarinsson et
al. 2006). It is interesting, furthermore, that structured RNA ac-
counts for <10% of the sequence-constrained parts of the human
genome (based on RNAz, which is relatively unbiased with re-
spect to sequence conservation).

It seems noteworthy that all but one16 of the few known
ncRNAs in the ENCODE regions overlap with constrained ele-
ments and TARs/Transfrags. This might be special for this set of
snoRNAs and miRNAs, which are presumably abundantly ex-

16MIRN483 does not overlap with TARs/Transfrags. It might be specific in fetal
liver tissue, which is not among the 11 tissues tested.

Table 3. Known ncRNAs in ENCODE regions

RNAz P

AlifoldZ
EvoFold
rank (%) CommentMFE Z-score

U70 0.96 �27.1 �4.7 88
SNORA36 (0.99) (�20.5) (�6.6) 98 Not in RNAz input set (repeat-masked in rodents)
SNORA56 0.95 �17.0 �4.9 84
MIRN192 0.97 �36.5 �5.4 81
MIRN194-2 (1.00) (�46.9) (�6.9) 97 Not in RNAz input set (RNA split in two TBA blocks)
MIRN196 0.99 �24.2 �7.3 98
MIRN483 1.00 �27.7 �5.6 (75) Not in EvoFold input set
H19 1.00 �51.8 �7.1 90 Three and eight independent hits with RNAz and EvoFold, respectively; one overlapping

Scores for RNAs that have been missed in this screen owing to problems in the input alignments or the prescreening process are shown in parentheses.

Figure 4. Overlap of predicted structured RNAs (high significance
level) with the union of TARs/Transfrags and the “moderate” set of se-
quence-constrained elements. Hits in coding exons and UTRs are ex-
cluded.
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pressed as kind of “housekeeping ncRNAs” and have well known
reasons for sequence constraints.

The 114 and 142 intergenic/intronic RNAz and EvoFold hits,
respectively, that overlap both conserved elements and TARs/
Transfrags are of special interest. Twenty-one of these are de-
tected by both EvoFold and RNAz, while 12 of these have an
AlifoldZ Z-score <�3.5. These numbers demonstrate that there is
only a relatively small, but nonnegligible, number of structured
ncRNAs that are similar to the “classical” ncRNA families in
terms of high sequence conservation, highly stabilized and well-
conserved secondary structures, and high expression levels.

Overlap with GENCODE annotations
The goal of the GENCODE project (Harrow et al. 2006) is the
delineation of one complete mRNA sequence for at least one
splice isoform of each protein-coding gene in the ENCODE re-
gions, and often, but not systematically, the inference of a num-
ber of additional alternative splice forms of these genes. We
mapped the predicted structured RNAs in comparison to all
scored input regions to this set of annotations (Fig. 5). Extrapo-
lating from our knowledge of described functional RNAs, we
have to expect signals in all fractions (intergenic, introns, UTRs,
coding sequences), and for RNAz, we can observe only moderate
trends of relative enrichment. We see the strongest enrichment
for RNAz in 3�-UTRs. This is remarkable given that 3�-UTRs are
generally very AU rich (GC content only 44%) and that RNAz has
limited sensitivity in AU-rich regions. In contrast, there is no
enrichment in the 5�-UTR, which is again interesting given that
5�-UTRs are the fraction with the highest GC content (60%). This
result is consistent not only with the EvoFold predictions, which
have higher enrichment in 3�-UTRs than 5�-UTRs, but also with
previous results from Siepel et al. (2005), who found that highly
conserved regions in 3�-UTRs of vertebrates have a significantly
increased propensity to form secondary structures, while in 5�-
UTRs, this effect is not that pronounced.

RNAz predictions are depleted in coding regions despite the
high GC content (53%). This is in keeping with the expectation
that functional ncRNAs in coding regions should be rare. How-
ever, functional RNA structures do occur within coding regions,
and thus these predictions are also of interest. As mentioned
above, there are a few well-known functions assigned to hairpin
structures within coding regions. In addition, there is recent evi-
dence that secondary structures are much more widespread in
coding regions of both prokaryotes (Katz and Burge 2003) and
eukaryotes (Chamary and Hurst 2005; Meyer and Miklós 2005)
than previously thought. EvoFold predictions are highly en-
riched in coding regions. However, the method has previously
been shown to have above average rates of false positives in cod-
ing regions (Pedersen et al. 2006), presumably because of the
high level of sequence conservation. The interpretation of these
coding predictions is thus challenging and often requires addi-
tional evidence, such as conservation of synonymous codon po-
sitions (Pedersen et al. 2004a,b) or overlapping predictions from
several methods. There are 41 overlapping RNAz/EvoFold hits
from the high-significance sets in coding exons, 18 of which are
particularly stable with AlifoldZ scores Z < �3.5.

In general, we do not see any trend of noncoding structures
favoring intronic over intergenic fractions. For RNAz, however,
one can observe that “proximal” intergenic and intronic frac-
tions are slightly enriched while distal fractions are depleted, i.e.,
we see more structures near genes and exons. For EvoFold, both
intergenic and intronic fractions are depleted in favor of the
more conserved UTR and coding regions.

An interesting result of the GENCODE annotation project is
the transcriptional complexity of protein-coding gene loci. For
the 487 loci in the ENCODE regions, 2608 different transcripts
were identified, 1511 of them noncoding. Two hundred twenty-
nine and 940 RNAz and EvoFold hits, respectively, overlap with
a noncoding GENCODE transcript. Some of these transcripts are
extensively structured (Fig. 7F,G, see below).

Experimental verification of selected
predictions

The high false discovery rates clearly
show the limitations of the methods
used here, indicating that reliable and
fully automatic annotation is still out of
reach. However, to demonstrate that se-
lection of high-scoring predictions aided
by visual inspection (see Methods) can
result in high-quality predictions, we
have performed verification experi-
ments on selected candidates. We per-
formed 245 RT-PCR experiments on to-
tal RNA of six tissues (175 ncRNA predic-
tions, 16 positive controls, 38 negative
controls, and 16 nonspliced ESTs clus-
ters) (Harrow et al. 2006). The latter were
named “to be experimentally con-
firmed” (TEC) by the GENCODE anno-
tation. They have poly(A) features and
are potentially protein coding (Harrow
et al. 2006). Only one (U70) of the eight
known ncRNAs (12%) (Fig. 6) but five of
the TECs (31%) were recovered by RT-
PCR, indicating that this protocol (see

Figure 5. Genomic location of predicted RNAs (high significance level) relative to the GENCODE
protein gene annotation. For comparison, the annotation of the input alignments is shown for both
RNAz and EvoFold (they differ slightly because of the different filtering steps used for each program;
see Methods). “Distal” and “Proximal” refer to a distance boundary of 5 kb away from the next gene
(intergenic fraction) or coding exon (intronic fraction). Some hits fall within more than one annotation
category, thus the sums of the fractions are slightly >100%.
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Methods) is probably not optimal for small, highly structured
RNAs. Overall, we recovered 43 of the 175 predictions (25%).
Thus the fraction of verified ncRNA predictions exceeds the am-
plification rate of randomly selected sequences by a factor of 2–3.
Furthermore, we find that predictions that are supported by TARs
or Transfrags are more likely to yield positive RT-PCR results
(29% compared to 19% without support from tiling arrays). The
sequenced fragments of verified ncRNA predictions and TEC
were deposited to GenBank under accessions numbers
EF212232–EF212281 and EF212282–EF212289, respectively.

Examples of selected predictions

Figure 7 shows some examples of predicted RNAs in different
genomic contexts. A series of criteria supports the prediction of
these regions as functional RNA: (1) several independent RNAz
and/or EvoFold hits in close vicinity; (2) overlapping hits of Evo-
Fold/RNAz; (3) additional support from AlifoldZ; (4) support
from compensatory/consistent mutations in the predicted struc-
tures; (5) overlap with predictions of sequence constrained ele-
ments. Evidence for transcription of these regions comes from
TARs/Transfrags, ESTs, or GENCODE transcripts (Harrow et al.
2006). In addition, we have performed 5�-RACE/microarray ex-
periments (see Methods).

Examples A, B, and C (in Fig. 7A–C) are located within in-
tergenic regions, all of them >50 kb away from any GENCODE
annotation. There are also no “putative” or “pseudogene” GEN-
CODE annotations or any predicted protein-coding genes close
by. Nevertheless, we observe sequence-constrained elements. In
all cases, the sequences are conserved across eutherian mammals,
B is also conserved in chicken, and in C there is a sequence from
opossum. We observe several RNAz and EvoFold hits in these
regions. In A, for example, we have two independent RNAz hits,
one overlapping with an EvoFold hit. This example illustrates the
different “sweet spots” of the two programs. The significant
RNAz hit is in the region of moderate conservation, while the
overlapping hit with EvoFold within the highly conserved region
is only of borderline significance. In all three examples there is

additional support from AlifoldZ, which
is particularly impressive for B and C
with Z-scores of �9.5 and �7.0. We
want to recall that this Z-score means
standard deviations from the expected
random background score for a given
alignment. The transcription of these
RNAs was confirmed by 5�-RACE/array
analysis.

Examples D and E (in Fig. 7D,E)
show two sequence-constrained “is-
lands” in introns of well-known protein-
coding genes. They do not overlap with
any predicted coding exons, but show
clear signs of conserved RNA structures
detected by both RNAz and EvoFold
with additional support of AlifoldZ. The
structure models show a series of consis-
tent/compensatory mutations, and the
RNA was detected by the RACE experi-
ments. In the case of example D, further
support for the intronic region to be part
of a stable ncRNA comes from TARs/
Transfrags as well as a short EST map-

ping nearby and overlapping with two additional RNAz and
EvoFold hits.

Examples F and G (in Fig. 7F,G) show alternative splicing
products of two protein loci detected and confirmed by the GEN-
CODE annotation project. In F, we observe an internal transcrip-
tion start (further supported by a CpG island), which gives rise to
a transcript without clear coding potential but that is highly
structured: There are five independent RNAz hits, two of which
overlap with EvoFold hits and two with significant AlifoldZ
scores (�5.0 and �6.4). A similar situation can be observed in G,
where high densities of RNAz hits and overlapping EvoFold hits
coincide with noncoding transcripts that arise from an alterna-
tively spliced protein–gene locus.

Discussion
RNA secondary structures can provide important clues that a
given locus is probably transcribed and that this transcript is
functional at the RNA level. Here we attempted to comprehen-
sively detect functional structures. Due to the lack of generic
sequence signals that would imply RNA function, at present the
only way toward this goal (apart from functional studies of in-
dividual transcripts) is comparative analysis. As the ENCODE re-
gions are deeply sequenced, they provide an ideal proving
ground for such an endeavor.

In contrast to previous genome-wide screens for structured
RNA, which were restricted to very well-conserved regions of the
genome, here we screened all alignable sequences. Indeed, high
sequence conservation is not necessarily needed for function
(Bentwich et al. 2005; Pang et al. 2006). In fact, most known
ncRNAs that were missed in the previous RNAz screen of the hu-
man genome (Washietl et al. 2005a) were not detectable be-
cause they were not present in the highly conserved input set. Here
we want to extend the spectrum and screen medium conserved as
well as highly conserved regions. There is even a nonnegligible part
of ncRNAs that are not alignable at all. For such cases, other meth-
ods (Hull Havgaard et al. 2005; Torarinsson et al. 2006; Uzilov et al.
2006) would be necessary that we do not cover here.

Figure 6. RT-PCR verification of ncRNA predictions. Positive controls include the known small
ncRNAs listed in Table 3 as well as eight randomly chosen mRNAs of GENCODE protein-coding genes.
Negative controls are randomly selected intergenic and intronic regions. Sets of RNAz and EvoFold
predictions were manually selected both overlapping (T+) and not overlapping (T�) with TARs/
transfrags. In addition, we selected a set of overlapping RNAz/EvoFold predictions (see Methods).
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Using our highest threshold level and considering our esti-
mates of false positives on shuffled alignments, we estimate
∼1800 and 1500 local RNA secondary structure elements using
RNAz and EvoFold, respectively, in the ENCODE regions. We
observed a fairly small overlap of predicted structures between
RNAz and EvoFold. While surprising and at first sight discourag-
ing, this discrepancy is explained by the fact that both methods
are sensitive to dramatically different GC contents and levels of
sequence conservation. Since known functional RNAs exist and
are detected in the sensitivity ranges of both programs, the meth-
ods, in fact, yield complementary results, indicating that the
number of structured RNAs is larger than predicted by any one of
the programs alone. Furthermore, one should keep in mind that
comparative approaches are by construction limited to evolu-
tionarily relatively old sequences: They are bound to miss recent
lineage-specific innovations as there is no conserved sequence
with which to compare. It is thus likely that the number of func-
tional RNAs in the human genome is even higher than the esti-
mates arising from EvoFold and RNAz.

Despite the rich comparative sequence data in the ENCODE
regions, both RNAz and EvoFold exhibit fairly high false discov-
ery rates of 50%–70% as estimated from randomized input data
and correction for dinucleotide frequencies. Also, this high noise
level reduces the observed overlap. The overlap for previous
screens restricted to phastCons conserved regions, for example,
resulted in a twofold higher overlap. Substantial noise levels,
however, also plague the experimental approaches. For example,
tiling arrays, CAGE, and PET diTags techniques show excellent
recovery rates and overlap on annotated coding transcripts, but
elsewhere result in large numbers of other signals with moderate
overlap and of uncertain relevance. The same is true for protein-
coding gene prediction, which yields excellent results on known
protein-coding exons but also predict thousands of additional
exons incorrectly (Guigo et al. 2006). Despite such limitations
inherent to all high-throughput methods, the output of such
methods can be of high value if sensibly interpreted.

About 25% of a manual selection of ncRNA candidates were
verified by means of RT-PCR, indicating that our computational

Figure 7. (Continued on next page)
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approach detects a significant number of verifiable transcripts.
Small and highly structured known ncRNAs are poorly recovered,
indicating that the RT-PCR data most likely underestimate the
true extent of transcription. In line with the observation from the
ENCODE Pilot Project (The ENCODE Project Consortium 2007),
we furthermore expect that most noncoding transcripts have a

specific spatiotemporal expression pattern; our screen of six tis-
sues is thus a priori expected to have only limited sensitivity.

One can consider various modes of function for noncoding
transcripts like transcriptional interference (Martens et al. 2004)
or antisense interactions (Katayama et al. 2005). Since we suc-
cessfully predict ncRNA transcripts based on evolutionary con-

Figure 7. Selected high scoring examples. (Left) UCSC Genome Browser screenshots featuring conserved RNA predictions and additional ENCODE
analysis tracks are shown. The significance levels of RNAz and EvoFold hits are color coded (see legend). (*) Significant AlifoldZ hits; the Z-score is shown.
In addition, the results of the RACE/microarray experiments, TARs/Transfrags, constrained elements, phastCons scores, and GENCODE annotations are
shown. For details on these tracks, refer to Methods. (Right) Consensus structure models generated by RNAalifold are shown for selected hits (marked
by gray, dashed boxes; in example G, the first three hits and the sixth hit are shown). In the consensus structures, variable positions are circled indicating
compensatory and consistent mutations supporting the structure. The color indicates the number of different nucleotide combinations forming one base
pair. Inconsistent mutations lead to pale colors. Examples A–C show predicted structures in intergenic regions. Examples D and E are located in introns
of protein-coding regions. Examples F and G show structures associated with alternative spliced transcripts of protein-coding loci detected by the
GENCODE project. For further information, refer to the text.
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servation of RNA secondary structure in the presence of sequence
variation, our data strongly suggest that a large number of non-
coding RNAs require specific well-defined secondary structure or
structured regions for their biological function. Current methods
are not capable of distinguishing whether or not these structures
are required for autonomous actions of the RNAs or whether or not
they are part of binding motifs for specific interaction partners.

We found evidence for functional RNA structures in all re-
gions of the genome. A fraction of these signals is likely to cor-
respond to small ncRNAs in the classical sense, which are pro-
cessed from introns or transcribed from intergenic regions with
dedicated promoters, as is known for snoRNAs or miRNAs. We
also found many signals in UTRs (particularly enriched in 3�-
UTRs) of well-known protein-coding genes, suggesting regulatory
functions of these signals at the mRNA level.

Our computational data, as well as the results from high-
throughput experiments and the evidence from individual ex-
perimental results, strongly suggest that the functional spectrum
of ncRNAs is much broader than previously expected. For ex-
ample, we have convincing evidence for functional RNA struc-
tures in a few dozen coding exons. These might have regulatory
roles for the mRNA, but it is also conceivable that they serve a
double role as mRNA and ncRNA. Indeed, there is one example
with such a dual role described in the literature, the steroid re-
ceptor activator (SRA) (Lanz et al. 2002; Chooniedass-Kothari et
al. 2004). We also observed that alternative transcripts derived
from protein loci give rise to transcripts with compelling evi-
dence for functional RNA structures but little coding potential.
This further blurs the difference of coding and noncoding genes.
There is also a recent example of an enhancer element, which is
transcribed and forms a spliced and polyadenylated ncRNA (Evf-
2) that binds to the transcription factor as a coactivator that in
turn binds to the enhancer element (Feng et al. 2006). This shows
that functional RNAs can overlap with various other functional
elements. In general, the abundance of predicted functional RNA
structures associated with protein genes supports the notion of a
“hidden regulatory layer” that exists on the RNA level in com-
plex organisms (Mattick 2003, 2004).

Our data in combination with other ENCODE data and
aided by visualization methods (Kent et al. 2002) allow a new way
of seeing things and help in directing rationally devised experi-
ments. These data open a perspective on the genome, which
we hope will help to better understand the “modern RNA world.”

Methods

Multiple sequence alignments
We used 28-way TBA/MultiZ alignments with human (hg17) as
the reference sequence, which were provided by the ENCODE
alignment group (Margulies et al. 2007). We chose the TBA/
MultiZ method alignments mainly because all previous applica-
tions of the programs used were done on TBA/MultiZ alignments
or other alignments constructed from BLASTZ-based local com-
parisons. None of the three programs used for our analysis can
handle unprocessed genome-wide alignments as presented by
TBA/MultiZ. A series of preprocessing and filtering steps was nec-
essary. The analysis pipeline varies in detail to meet the specific
requirements of the three programs.

RNAz predictions
For the RNAz screen, alignments were sliced in overlapping win-
dows of size 120 and slide 40. Each series of windows was started

at the beginning of a TBA block. For windows reaching over the
end of a block, we tried to append the adjacent block to the
current one. Two blocks were only merged if all sequences were
exactly or almost consecutive (up to 10 bases were allowed to be
missing). Furthermore, sequences with >25% gaps with respect to
the human sequence were discarded. Only alignments with more
than four sequences, a minimum size of 50 columns, and at most
1% repeat-masked letters were considered. RNAz can only handle
alignments with up to six sequences. From alignments with more
than six sequences, we chose a subset of six: We used a greedy
algorithm and iteratively selected sequences optimizing the set
for a mean pairwise identity of ∼80%. In cases of alignments with
more than 10 sequences, we sampled three different from such
subsets. The windows were finally scored with RNAz version
0.1.1 in the forward and reverse complement directions. Over-
lapping hits with at least one sampled alignment with P > 0.5
were combined to a single genomic region (“cluster”). Clusters
were assigned two significance levels: “P > 0.5” means that there
is at least one window in the cluster with a mean P of at least 0.5.
“P > 0.9” means that there is at least one window in the cluster
with mean P of all samples >0.5 and at least one hit with P > 0.9.

AlifoldZ predictions
The preprocessing steps were the same as for RNAz. However, we
only scored one sample per window. If there were less than 10
sequences in the alignment, all sequences were used. If there
were more than 10 sequences, a sample of 10 sequences opti-
mized for a mean pairwise identity of 80% was chosen. It does
not seem reasonable to score alignments with too many se-
quences using AlifoldZ because the efficiency of alignment shuf-
fling and alignment errors becomes limiting. In fact, the larger
number of sequences per alignment may have contributed to the
low number of hits produced by AlifoldZ in comparison to RNAz.
We only scored alignments with an RNAalifold consensus MFE
better than �15, using the same version of AlifoldZ that was
originally published with the paper (Washietl and Hofacker
2004). A sample size of N = 100 was chosen to estimate the Z-
scores for both the forward and reverse complement directions.
Overlapping hits were clustered as described above for RNAz pre-
dictions and assigned two significance levels using Z < �3.5 and
Z < �4 as cutoffs.

EvoFold predictions
For the EvoFold analysis, sequences with >20% gaps relative to
human were first removed. Second, alignments with sequence
from less than six species were eliminated. Third, TBA alignment
blocks consecutive relative to human were concatenated. Fourth,
nonsyntenic sequences that include segments from disparate ge-
nomic regions (more than twice the length of the human refer-
ence sequence apart) were removed; however, if the resulting
alignment had less than six sequences, none were removed. Evo-
Fold 1.1 was then applied to the concatenated alignments, and
their reverse complements, in 120 long overlapping windows
each offset by 40. Weak predictions (<10 pairing bases or an
average stem length of less than 3) as well as predictions over-
lapping repeats or retrogenes (as defined by tracks of the UCSC
browser) were eliminated. Finally, the set was reduced to single
coverage by removing the lowest-scoring candidates if overlap oc-
curred, and ranked according to score. Two prediction sets were
defined based on the final score: all predictions and the top 50%.

Randomization of alignments
All three screens were repeated on randomized TBA alignments.
The alignments were shuffled as described previously (Washietl
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and Hofacker 2004), resulting in random alignments of the same
base composition, sequence conservation, and gap patterns. We
could not exactly preserve local conservation patterns since this
would have been limiting in the case of large alignments. How-
ever, the adapted shuffling method we used retains a coarse-
grained pattern of conservation (only columns with mean pair-
wise identity >0.5 and <0.5 were shuffled with each other, re-
spectively).

Comparison with other ENCODE data
We used the ENCODE data from December 2005 provided at the
Galaxy2ENCODE Web site (Blankenberg et al. 2007). This in-
cludes the GENCODE annotation (Harrow et al. 2006), the “mod-
erate” set of constrained elements (Margulies et al. 2007), and the
union of Yale and Affymetrix TARs/Transfrags signals from all
11 tissues and RNA extractions [Poly(A)+ and complete RNA]
(The ENCODE Project Consortium 2007). Overlap calculations,
partition into the different annotation types, and calculating
phastCons scores were accomplished using the tools of the
Galaxy2ENCODE system and the UCSC table browser (Kent et al.
2002).

Selection of candidates for RT-PCR verification
We manually selected 175 candidates for RT-PCR verification in
three sets: RNAz hits (60), EvoFold hits (57), and overlapping
RNAz/EvoFold hits (58). For the first two sets, we explicitly chose
half of the targets with overlap to TARs/Transfrags and the other
half without. The third set of overlapping RNAz/EvoFold hits was
chosen without regard to TAR/Transfrag overlap (35 of the 58
have overlap). RNA predictions shorter than 200 nt were ex-
tended to target regions of at least 200 nt length (limiting our
detection performance of small RNAs, e.g., we cannot detect ma-
ture miRNAs).

The criteria that were used for selecting candidates include
high RNAz/AlifoldZ and/or EvoFold scores, absence of any indi-
cation of alignment errors or other alignment artifacts, presence
of compensatory mutations, genomic location in either introns
of protein-coding transcripts, or unannotated intergenic regions.

We routinely generated structure annotated and colorized
alignments of all hits visualizing the predicted structure together
with the mutational pattern. Inspection of the alignments can
help to select more reasonable candidates mainly by weeding out
obvious false positives. For example, unusual gap patterns or low
complexity runs of single letters indicate an artifactual hit. Cur-
rently, the programs themselves cannot efficiently recognize
such artifacts, and there is still much room for improvement
(e.g., by using an explicit indel model in EvoFold).

Negative controls were obtained by randomizing the set of
ncRNA target regions using the “Random Intervals” tool of the
Galaxy2ENCODE system. From the resulting randomized loca-
tions, we chose 38 targets: 19 in intergenic regions (nine over-
lapping TARs/Transfrags) and 19 in intronic regions (nine over-
lapping TARs/Transfrags). As positive controls, we randomly
chose eight regions in exons of mRNAs of known protein-coding
genes and the eight ncRNAs from Table 3.

RT-PCR
Brain, heart, kidney, liver, lung, and testis total RNA (0.1 µg each)
was mixed and reversed-transcribed in 25 µL with AMV Reverse
Transcriptase XL in the presence of dNTP nucleotide analogs to
avoid amplification of genomic DNA contaminants; RNase In-
hibitor; and MgCl2 (mRNA Selective PCR kit; Takara). The reac-
tion was carried out in 1� Selective buffer II with 0.4 µM specific

primer (see below) following the manufacturer’s instructions,
that is, 30°C for 10 min, 42°C for 30 min, and 5°C for 5 min. The
PCR amplification was performed in 25 µL with one-fifth of the
RT-reaction and primers at a final concentration of 0.4 µM at
85°C for 1 min, 50°C for 1 min, and 72°C for 1 min for 30 cycles
following the manufacturer’s instructions (mRNA Selective PCR
kit; Takara). Amplimers were separated on a 1.8% agarose gel and
sequenced. The primers were selected with Primer3 (http://
frodo.wi.mit.edu/cgi-bin/primer3/primer3www.cgi) and default
parameters. For all predictions and controls, we tested the for-
ward and reverse strands. The reason for this is that the programs
cannot determine the correct reading direction in all cases
(strong RNA signals, i.e., base-pairing patterns, usually can be
also detected in the reverse complement).

5�-RACE/array analysis
5�-RACE reactions were performed on brain and testis cDNA pre-
pared from both poly(A)+ and total RNA and oligo(dT) and ran-
dom hexamers, respectively, as described by Denoeud et al.
(2007). The mapping of the RACE primers is given in Figure 7.
The RACE amplimers were hybridized to ENCODE tiling arrays
as described by Kapranov et al. (2005) and modified by Denoeud
et al. (2007).

Data availability
The predictions described in this paper are available as annota-
tion tracks in BED format suitable for use with the UCSC Genome
Browser and can be downloaded at http://www.tbi.univie.ac.at/
papers/SUPPLEMENTS/ENCODE/. Primer sequences and results
of the RT-PCR experiments can also be downloaded from this
Web site.
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