Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jul;69(7):4020–4028. doi: 10.1128/jvi.69.7.4020-4028.1995

Synthesis of novel products in vitro by an RNA-dependent RNA polymerase.

C Song 1, A E Simon 1
PMCID: PMC189135  PMID: 7539504

Abstract

RNA-dependent RNA polymerase from turnip crinkle virus-infected turnip transcribes both strands of a virus-associated satellite RNA, sat-RNA C (356 bases), in vitro. While both plus- and minus-strand sat-RNA C can direct the synthesis of full-length complementary-strand products, transcription of minus-strand RNA also generates two non-template-sized products, L-RNA and S-RNA (C. Song and A. E. Simon, Proc. Natl. Acad. Sci. USA 91:8792-8796, 1994). Here we report that synthesis of L-RNA and S-RNA results from terminal elongation of the 3' end of the template. L-RNA has a panhandle structure and is composed of minus-strand template covalently linked to newly synthesized RNA complementary to its 5' 190 bases. S-RNA is composed of template covalently linked to its full-length complementary strand. All minus-strand templates tested yielded S-RNA. However, synthesis of L-RNA was affected by deletion of the 3' end of the minus-strand template or several internal regions and base alterations near the 5' end or in an internal sequence immediately upstream from the template-product junction that could potentially form a heteroduplex with the 3' end. Furthermore, mutations that disrupted or restored a stem-loop involved in RNA recombination in vivo affected the level of L-RNA produced in vitro, suggesting that the mechanisms for intramolecular formation of panhandle RNAs and intermolecular RNA recombination involve similar features.

Full Text

The Full Text of this article is available as a PDF (513.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bausch J. N., Kramer F. R., Miele E. A., Dobkin C., Mills D. R. Terminal adenylation in the synthesis of RNA by Q beta replicase. J Biol Chem. 1983 Feb 10;258(3):1978–1984. [PubMed] [Google Scholar]
  2. Biebricher C. K., Luce R. In vitro recombination and terminal elongation of RNA by Q beta replicase. EMBO J. 1992 Dec;11(13):5129–5135. doi: 10.1002/j.1460-2075.1992.tb05620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumenthal T., Carmichael G. G. RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem. 1979;48:525–548. doi: 10.1146/annurev.bi.48.070179.002521. [DOI] [PubMed] [Google Scholar]
  4. Carpenter C. D., Cascone P. J., Simon A. E. Formation of multimers of linear satellite RNAs. Virology. 1991 Aug;183(2):586–594. doi: 10.1016/0042-6822(91)90987-m. [DOI] [PubMed] [Google Scholar]
  5. Carpenter C. D., Cascone P. J., Simon A. E. Mutations in a satellite RNA of turnip crinkle virus result in addition of poly(U) in vivo. Virology. 1991 Aug;183(2):595–601. doi: 10.1016/0042-6822(91)90988-n. [DOI] [PubMed] [Google Scholar]
  6. Carpenter C. D., Simon A. E. Recombination between plus and minus strands of turnip crinkle virus. Virology. 1994 Jun;201(2):419–423. doi: 10.1006/viro.1994.1312. [DOI] [PubMed] [Google Scholar]
  7. Carrington J. C., Heaton L. A., Zuidema D., Hillman B. I., Morris T. J. The genome structure of turnip crinkle virus. Virology. 1989 May;170(1):219–226. doi: 10.1016/0042-6822(89)90369-3. [DOI] [PubMed] [Google Scholar]
  8. Cascone P. J., Carpenter C. D., Li X. H., Simon A. E. Recombination between satellite RNAs of turnip crinkle virus. EMBO J. 1990 Jun;9(6):1709–1715. doi: 10.1002/j.1460-2075.1990.tb08294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cascone P. J., Haydar T. F., Simon A. E. Sequences and structures required for recombination between virus-associated RNAs. Science. 1993 May 7;260(5109):801–805. doi: 10.1126/science.8484119. [DOI] [PubMed] [Google Scholar]
  10. Collmer C. W., Hadidi A., Kaper J. M. Nucleotide sequence of the satellite of peanut stunt virus reveals structural homologies with viroids and certain nuclear and mitochondrial introns. Proc Natl Acad Sci U S A. 1985 May;82(10):3110–3114. doi: 10.1073/pnas.82.10.3110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. David C., Gargouri-Bouzid R., Haenni A. L. RNA replication of plant viruses containing an RNA genome. Prog Nucleic Acid Res Mol Biol. 1992;42:157–227. doi: 10.1016/s0079-6603(08)60576-0. [DOI] [PubMed] [Google Scholar]
  12. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hacker D. L., Petty I. T., Wei N., Morris T. J. Turnip crinkle virus genes required for RNA replication and virus movement. Virology. 1992 Jan;186(1):1–8. doi: 10.1016/0042-6822(92)90055-t. [DOI] [PubMed] [Google Scholar]
  14. Hayes R. J., Buck K. W. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell. 1990 Oct 19;63(2):363–368. doi: 10.1016/0092-8674(90)90169-f. [DOI] [PubMed] [Google Scholar]
  15. Hey T. D., Richards O. C., Ehrenfeld E. Host factor-induced template modification during synthesis of poliovirus RNA in vitro. J Virol. 1987 Mar;61(3):802–811. doi: 10.1128/jvi.61.3.802-811.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kearney C. M., Donson J., Jones G. E., Dawson W. O. Low level of genetic drift in foreign sequences replicating in an RNA virus in plants. Virology. 1993 Jan;192(1):11–17. doi: 10.1006/viro.1993.1002. [DOI] [PubMed] [Google Scholar]
  17. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li X. H., Simon A. E. In vivo accumulation of a turnip crinkle virus defective interfering RNA is affected by alterations in size and sequence. J Virol. 1991 Sep;65(9):4582–4590. doi: 10.1128/jvi.65.9.4582-4590.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li Y., Ball L. A. Nonhomologous RNA recombination during negative-strand synthesis of flock house virus RNA. J Virol. 1993 Jul;67(7):3854–3860. doi: 10.1128/jvi.67.7.3854-3860.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lubinski J. M., Kaplan G., Racaniello V. R., Dasgupta A. Mechanism of in vitro synthesis of covalently linked dimeric RNA molecules by the poliovirus replicase. J Virol. 1986 May;58(2):459–467. doi: 10.1128/jvi.58.2.459-467.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller R. H., Tran C. T., Robinson W. S. Hepatitis B virus particles of plasma and liver contain viral DNA-RNA hybrid molecules. Virology. 1984 Nov;139(1):53–63. doi: 10.1016/0042-6822(84)90329-5. [DOI] [PubMed] [Google Scholar]
  23. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagy P. D., Bujarski J. J. Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6390–6394. doi: 10.1073/pnas.90.14.6390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quadt R., Kao C. C., Browning K. S., Hershberger R. P., Ahlquist P. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1498–1502. doi: 10.1073/pnas.90.4.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Richards O. C., Hey T. D., Ehrenfeld E. Poliovirus snapback double-stranded RNA isolated from infected HeLa cells is deficient in poly(A). J Virol. 1987 Jul;61(7):2307–2310. doi: 10.1128/jvi.61.7.2307-2310.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sankar S., Porter A. G. Expression, purification, and properties of recombinant encephalomyocarditis virus RNA-dependent RNA polymerase. J Virol. 1991 Jun;65(6):2993–3000. doi: 10.1128/jvi.65.6.2993-3000.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saunders K., Kaesberg P. Template-dependent RNA polymerase from black beetle virus-infected Drosophila melanogaster cells. Virology. 1985 Dec;147(2):373–381. doi: 10.1016/0042-6822(85)90139-4. [DOI] [PubMed] [Google Scholar]
  29. Schiebel W., Haas B., Marinković S., Klanner A., Sänger H. L. RNA-directed RNA polymerase from tomato leaves. II. Catalytic in vitro properties. J Biol Chem. 1993 Jun 5;268(16):11858–11867. [PubMed] [Google Scholar]
  30. Simon A. E., Engel H., Johnson R. P., Howell S. H. Identification of regions affecting virulence, RNA processing and infectivity in the virulent satellite of turnip crinkle virus. EMBO J. 1988 Sep;7(9):2645–2651. doi: 10.1002/j.1460-2075.1988.tb03117.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simon A. E., Howell S. H. The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3' end of the helper virus genome. EMBO J. 1986 Dec 20;5(13):3423–3428. doi: 10.1002/j.1460-2075.1986.tb04664.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Song C., Simon A. E. RNA-dependent RNA polymerase from plants infected with turnip crinkle virus can transcribe (+)- and (-)-strands of virus-associated RNAs. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8792–8796. doi: 10.1073/pnas.91.19.8792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ward C. D., Stokes M. A., Flanegan J. B. Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol. 1988 Feb;62(2):558–562. doi: 10.1128/jvi.62.2.558-562.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wertz G. W., Whelan S., LeGrone A., Ball L. A. Extent of terminal complementarity modulates the balance between transcription and replication of vesicular stomatitis virus RNA. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8587–8591. doi: 10.1073/pnas.91.18.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wu S. X., Ahlquist P., Kaesberg P. Active complete in vitro replication of nodavirus RNA requires glycerophospholipid. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11136–11140. doi: 10.1073/pnas.89.23.11136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Young D. C., Tuschall D. M., Flanegan J. B. Poliovirus RNA-dependent RNA polymerase and host cell protein synthesize product RNA twice the size of poliovirion RNA in vitro. J Virol. 1985 May;54(2):256–264. doi: 10.1128/jvi.54.2.256-264.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang C. X., Cascone P. J., Simon A. E. Recombination between satellite and genomic RNAs of turnip crinkle virus. Virology. 1991 Oct;184(2):791–794. doi: 10.1016/0042-6822(91)90454-j. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES