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Abstract
Background: This work explores the quantitative characteristics of the local transcriptional
regulatory network based on the availability of time dependent gene expression data sets.

The dynamics of the gene expression level are fitted via a stochastic differential equation model,
yielding a set of specific regulators and their contribution.

Results: We show that a beta sigmoid function that keeps track of temporal parameters is a novel
prototype of a regulatory function, with the effect of improving the performance of the profile
prediction. The stochastic differential equation model follows well the dynamic of the gene
expression levels.

Conclusion: When adapted to biological hypotheses and combined with a promoter analysis, the
method proposed here leads to improved models of the transcriptional regulatory networks.

Background
The production of independent sets of time courses of
microarray data [1-3], obtained for the most studied
eukaryotic organism Saccharomyces cerevisiae, improved
the knowledge on the relationship between genes through
the transcriptional process in the cell. The mechanism of
the gene expression regulation is not entirely known, yet
progress has been made by combining in silico approaches
with the analysis of experimental data. In particular, con-
tributions from a qualitative analysis realized by the rec-
ognition of specific promoter sequences, binding sites,

and transcription factors are enhanced by quantitative
studies obtained from microarray gene expression data
[4,5]. The transcriptional regulatory network, built from
thousands of genes, has a dynamical nature: the transcrip-
tional program adapts itself to organismal development
through the cell cycle, or as a response to changes in envi-
ronment. In a systemic view the network architecture is
potentially established by a qualitative analysis while
quantitative methods address the main dynamical aspects
– the network switches and the level of its parameters.
This type of information may be obtained by processing
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gene expression data that keep track of the variations in
the experimental conditions and temporal modifications
suited for the understanding of a particular transcriptional
behavior.

A mathematical model for the processing of time depend-
ent gene expression data has been sought to describe the
dynamical aspects of regulation and to estimate the level
of contribution for each transcriptional regulator in a suc-
cession of events. In this work we strengthen the model
proposed in [6], by means of a novel pattern for the regu-
latory function. This model uses a SDE to describe the
dynamics of the target mRNA expression level that reflects
the actual knowledge about the stochasticity in gene
expression, in a biological framework [7]. The drift term
of the SDE depends on the regulatory rate of the target
gene. The noise term is modeled by a Brownian Motion
process which accounts for the superposition of small ran-
dom factors that arise dynamically. The regulation rate is
obtained as a linear combination of the regulatory func-
tions of specific elements of the network. We propose a
beta sigmoid function as the prototype of the regulatory
function, designed to keep track of the local temporal pat-
terns of the target gene regulators.

Our analysis shows that the utilization of the beta sigmoid
function enhances the results in [6] where sigmoid func-
tions were considered. The comparison was made by
applying the model to the same test data set as in [6],
given by gene expression measurements of the mRNA lev-
els of 6178 S. cerevisiae ORFs at 18 time points under the
α factor synchronization method [1]. A candidate pool of
potential regulators was constructed by joining transcrip-
tion factors, cell-cycle control factors and DNA-binding
transcriptional regulators as found in the literature [1,8].
We performed the same statistical analysis from [6] based
on the maximum likelihood principle for the estimation
of the model parameters. The AIC strategy was used for
the selection of the best fitting combination of the pool
regulators. With the addition of beta sigmoid pattern, the
SDE model renders good prediction results even in the
case of the previously worst fitted genes obtained by [6].
The procedure proposed herein may be well suited to
quantify transcriptional regulatory networks, provided it
is tailored to the characteristics of the input data set.

Results
The model was evaluated on the data set from [1] that pro-
vides gene expression measurements of the mRNA levels
of 6178 S. cerevisiae ORF s at 18 time points under the α
factor synchronization method. To compare our results
with those from [6], we used the data set of 216 potential
regulator listed at [9], constructed by joining transcription
factors, cell-cycle control factors and DNA-binding tran-
scriptional regulators described in the literature [1,8,10].

This set has been created with respect to the regulation of
the cell cycle process. There are about 800 genes identified
to be involved in the cell cycle of the budding yeast [1]
and we performed our analysis on the entire data set. This
fact did not carry any methodological artifact because the
target genes are processed independently. The advantage
is that good prediction results may imply new hypothesis
about the regulators of particular genes. The output of our
analysis is bipartite. For each gene we provide

1. the parameters of the goodness of fit: log likelihood
(log L), AIC and QE of the predicted mRNA levels with
respect to the observed values

2. the corresponding regulators with their regulatory effect
expressed by the local network weights; positive weights
correspond to activator genes and negative weights corre-
spond to repressor genes.

The full output of our analysis is presented in Additional
file 1. The beta sigmoid function was non-degenerate for
72% of the expression values. Tables 1 and 2 show that
the use of the beta sigmoid model for the regulatory func-
tion improves the fitting parameters for 15 of the 20 genes
depicted in [6] as worst fitted. The prediction of five genes
(YGR269W, FIT3, HSH49, ASH1 and ATS1) shows a sub-
stantial amelioration. Over the entire data set, the novel
model of regulatory function improved the prediction of
29% of the gene expression profiles. The distribution of
the improvement is presented in the histogram in Figure
1 computed for the difference between the quadratic error
of the predicted mRNA levels with the sigmoid model and
the quadratic error of the predicted mRNA levels with the
beta sigmoid model. We note that there is a non-negligi-
ble number of genes with their expression level better fit-
ted by the beta sigmoid regulatory pattern. The prediction
results for a selection of 10 genes in this category are
shown in Table 3 and Table 4. Figure 2, Figure 3, and Fig-
ure 4 show comparative plots of the expression profiles
for observed data and predictions from the stochastic dif-
ferential equation model, with beta sigmoid and sigmoid
prototypes of regulatory function. Two conclusions may
be immediately drawn:

• the SDE model can provide very good predictions of
mRNA expression levels;

• there exist genes for which the SDE model with beta sig-
moid regulatory function gives a better prediction than
the SDE model with sigmoid regulatory function.

A good quality of fitting of a particular gene allows the
consideration of the regulators associated by the model
for further investigation such as DNA-binding sites or pro-
moter architectures. The quadratic error of prediction with
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beta sigmoid regulatory function is less than 0.5 for 1885
genes from the entire data set (see Additional file 1).

Discussion and conclusions
The global view of the regulatory network is a cascade
model, with genes regulating genes regulating other genes
at their turn [11]. The SDE model [6] revisited here
addresses the network local connections, i.e. the strict
neighborhood of one target gene. The drift term of the sto-
chastic differential equation is given by the regulation rate
which quantifies the local network architecture by a linear
combination of regulatory functions of regulating genes.
The choice of the regulatory function pattern is a central
aspect of the model, since the fitting of the gene expres-
sion profiles is very sensitive with respect to the drift term
of the SDE. This model has the ability to extract from a
given set of potential regulators those that fit the target
gene expression profile.

The prototype of regulatory function introduced in [6] has
a sigmoid pattern, built on the statistical characteristics of
mRNA expression levels – see Equation (14). By keeping
track of the temporal pattern of regulation, we show that
the prediction of target gene expression profiles is
improved for 29% of genes tested. We propose a proto-
type of regulatory function supported by a beta sigmoid
model, built on temporal parameters extracted from the
expression profiles of the regulators – see Equation (13).
The SDE method relies on the assumption that the best fit
of the target expression profiles is informative for the

identification of the regulators and of their contribution.
Thus, for the study of a specific set of target genes, our pro-
totype of regulatory function may give more accurate
results and provides a switch for the model proposed in
[6]. Conceptually the beta sigmoid model has the advan-
tage to correspond to the biological process of regulation:
the temporal window of the peak defined by the shape of
the beta sigmoid function reflects features of the regula-
tion mechanism.

The regulation of gene expression in eukaryotes is a com-
plex phenomenon and various particularities from one
type of gene to another may occur. Hence the regulatory
pattern may vary from gene to gene [4]. This fact is
revealed in our result which shows that there are genes for
which we can choose the best model between the beta sig-
moid and the sigmoid pattern while for other genes nei-
ther of them fits the data. Before reaching this conclusion
one has to be aware about the limitation induced from the
selection of the set of potential regulators since incom-
plete information at this level may deteriorate the results.

Further research on more complex and explicit regulatory
functions are foreseen from the availability of data sets
and studies on various experimental condition for the
budding yeast (sporulation [3], diauxic shift, heat and
cold shock, treatment with DTT, pheromone and DNA-
damaging agents [12]). In this framework a challenging
task could be the study of the existence of possible rela-

Table 1: List of genes reported as worst fitted in [6] and their prediction results from the SDE beta sigmoid model

Target logL AIC QE Best Fit

YBR089W(NA) -3.13 10.27 16.56 YBR089W = -0.180 + 0.481 BAS1
YDR285W(ZIP1)* 1.25 5.48 2.17 YDR285W = 0.253 + -0.258 GAT1 + -0.511 GCN4 + -0.202 FKH1
YFR057W(NA)* 2.33 1.32 2.40 YFR057W = -0.057 + 0.405 GAL80 + -0.09129 IFH1
YAL018C(NA)* 5.29 -0.58 1.25 YAL018C = 0.256 + -1.985 GAL80 + -0.922 FKH2 + 1.983 IME1 + 0.624 HMS1
YOR264W(DSE3)* 4.65 -3.31 2.77 YOR264W = -0.265 + 0.205 CHA4 + 0.684 IME1
YOL116W(MSN1)* 3.29 -0.58 3.58 YOL116W = -0.045 + 0.229 HAL9 + -0.132 FZF1
YGR269W(NA)** 12.41 -14.83 0.48 YGR269W = 0.011 + -0.263 GZF3 + 0.313 CRZ1 + -0.383 DAL80 + 0.361 AZF1
YOR383C(FIT3)** 10.07 -9.73 0.81 YOR383C = 0.073 + -0.199 ARG81+ 0.325 GLN3 + -0.218IFH1
YOR319W(HSH49)** 11.52 -11.05 0.60 YOR319W = -0.033 + 0.337 CST6 + -0.170 CIN5 + 0.719 GAL80 + -0.191 IFH1 + -0.274 ACA1
YKL001C(MET14)* 2.26 -0.52 2.16 YKL001C = 0.05 + -0.141 MAC1
YDL117W(CYK3)* 8.73 -7.47 1.21 YDL117W = -0.463 + 0.577 AFT2 + 0.703 FKH2 + 0.177 HAP5 + 0.132 FAP7
YKL185W(ASH1)** 10.01 -10.02 0.52 YKL185W = 0.176 + -0.485 ASK10 + -0.241 DOT6 + 0.211 FAP7 + 0.163 HAP5
YBR158W(AMN1) -0.53 9.06 6.40 YBR158W = 0.066 + -0.191 IFH1 + 0.392 CHA4 + -0.313 ABF1
YBR108W(NA)* 9.23 -8.47 0.98 YBR108W = 0.082 + 0.723 HMS1 + -1.512 GAL80 + 1.58 IME1 + -0.639 FKH2
YAL020C(ATS1)** 9.84 -11.69 0.61 YAL020C = 0.011 + -0.267 HAC1 + 0.534 GAL4 + -0.521 INO4
YBR002C(RER2) 3.41 -0.83 3.46 YBR002C = -0.020 + 0.239 FKH1 + -0.229 ABF1
YCL040W(GLK1)* 6.78 -7.56 3.13 YCL040W = -0.118 + 0.261 CST6 + 0.300 HMS1
YNL018C(NA)* 5.15 -4.31 1.43 YNL018C = 0.028 + -0.259 KRE33 + 0.182 CAD1
YNL192W(CHS1) 1.64 2.71 3.45 YNL192W = -0.081 + 0.307 CHA4 + -0.182 ARG81
YBR230C(NA) 0.74 6.51 2.20 YBR230C = -0.025 + 0.625 MAC1 + -0.694 HAP2 + 0.462 HOG1

Fitting parameters obtained with the beta sigmoid model for the set of the 20 worst fitted genes with the sigmoid regulatory model; the asterisk * 
marks an improvement of the fitting with respect to the results from Table 2. The prediction of five genes (YGR269W, FIT3, HSH49, ASH1 and 
ATS1) shows a significant improvement.
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Table 4: Prediction results from the SDE sigmoid model corresponding to genes from Table 3

Target logL AIC QE Best Fit

YMR096W(SNZ1) 7.27 -8.54 6.16 YMR096W = -0.159 + 0.179 GCN4 + 0.174 HAA1
YNR025C(NA) 3.8 -1.61 5.42 YNR025C = 0.008 + -0.261 HMS1 + 0.278 ACA1
YPR200C(ARR2) 3.97 -3.94 5.28 YPR200C = 0.144 + -0.315 INO4
YGR234W(YHB1) 11.08 -18.17 5.28 YGR234W = 0.059 + -0.12 ARG81
YGR269W(NA) 2.4 -0.81 5.19 YGR269W = 0.097 + -0.194 HMS1
YGL150C(INO80) 4.25 -4.51 4.41 YGL150C = -0.082 + 0.168 GAT3
YDR193W(NA) 6.22 -0.44 4.45 YDR193W = -0.278 + 0.415 LEU3 + 0.166 GAL4 + -0.691 FAP7 + 0.293 CUP9 + 0.375 DAT1
YAL061W(NA) 8.07 -12.13 1.66 YAL061W = -0.087 + 0.191 CUP9
YKL150W(MCR1) 7.93 -9.86 3.84 YKL150W = 0.249 + -0.325 CBF1 + -0.175 HAA1
YDR515W(SLF1) 5.94 0.12 2 YDR515W = 0.246 + -0.562 CIN5 + -0.347 CBF1 + 0.256 HIR1 + 0.453 HAP4 + -0.304 IFH1

The fitting parameters from the sigmoid model of regulatory functions of the genes from Table 3.

Table 3: Prediction results from the SDE beta sigmoid model for selected genes

Target logL AIC QE Best Fit

YMR096W(SNZ1) 8.86 -11.72 0.8 YMR096W = -0.069 + 0.330 HAP3 + 0.115 CIN5
YNR025C(NA) 13.7 -13.4 0.11 YNR025C = 0.033 + -0.556 ARG81 + 0.487 HSF1+ 0.195 FAP7 + -0.120 FKH1 + -0.319 DAL81 + 

0.141 GCR2
YPR200C(ARR2) 13.04 -14.08 0.29 YPR200C = 0.00037 + -0.707 GAL4 + 0.369 INO4 + 0.364 HAP2 + -0.201 ABF1 + 0.129 FAP7
YGR234W(YHB1) 15.27 -24.53 0.46 YGR234W = -0.042 + -0.157 HIR1 + 0.139 ABF1
YGR269W(NA) 12.42 -14.84 0.48 YGR269W = 0.011 + -0.263 GZF3 + 0.313 CRZ1 + -0.383 DAL80 + 0.361 AZF1
YGL150C(INO80) 16.71 -21.43 0.21 YGL150C = -0.237 + 0.197 CST6 + 0.368 GAT3 + 0.169 KRE33 + 0.185 ABF1 + -0.122 CAD1
YDR193W(NA) 10.67 -13.35 0.48 YDR193W = 0.044 + 0.731 CST6 + -0.141 IFH1 + -0.185 DOT6
YAL061W(NA) 21.24 -28.47 0.02 YAL061W = -0.147 + -1.189 CST6 + 0.321 FKH1 + -.369 IXR1+1.521 BYE1+.125 GAT3 +.165 ACA1
YKL150W(MCR1) 12.29 -16.57 0.41 YKL150W = 0.048 + 0.515 ACA1 + -0.222 HIR1 + -0.205 GAL80
YDR515W(SLF1) 19.88 -29.76 0.09 YDR515W = 0.087 + 2.080 CST6 + -0.190 IFH1 + -2.660 GTS1 + 0.956 FHL1

Genes fitted by the SDE model with beta sigmoid as regulatory function.

Table 2: List of genes reported as worst fitted in [6] and their prediction results from the SDE sigmoid model

Target logL AIC QE Best Fit

YBR089W(NA) -1.68 7.36 3.2 YBR089W = -0.166 + 0.367 HAA1
YDR285W(ZIP1) 0.77 2.46 3.69 YDR285W = 0.191 + -0.368 INO2
YFR057W(NA) 1.13 1.74 4.31 YFR057W = 0.098 + -0.188 GCN4
YAL018C(NA) 1.52 2.96 1.79 YAL018C = 0.055 + -0.303 IME1 + 0.195 CRZ1
YOR264W(DSE3) 2.26 -0.52 5.56 YOR264W = -0.059 + 0.129 ARG80
YOL116W(MSN1) 2.3 -0.59 3.77 YOL116W = -0.092 + 0.193 HAL9
YGR269W(NA) 2.4 -0.81 5.19 YGR269W = 0.097 + -0.194 HMS1
YOR383C(FIT3) 1.82 6.37 2.64 YOR383C = 0.367 + -0.287 ARG81 + -0.464 ECM22 + 0.412 GLN3 + -0.335 MAC1
YOR319W(HSH49) 2.17 5.65 4.92 YOR319W = 0.83 + -1.13 CIN5 + -0.655 FHL1 + 0.354 DAL81 + -0.275 FKH1
YKL001C(MET14) 2.58 -1.16 4.34 YKL001C = 0.091 + -0.18 IME1
YDL117W(CYK3) 2.59 -1.18 4.35 YDL117W = -0.162 + 0.359 AFT2
YKL185W(ASH1) 2.64 2.73 2.37 YKL185W = -0.150 + 0.407 ACE2 + -0.421 GAT1 + 0.302 INO2
YBR158W(AMN1) 2.65 8.7 1.2 YBR158W = -0.139 + 0.926 KRE33 + -0.941 IME4 + 0.571 MAL13 + 0.264 GAT3 + -0.347 CBF1 + -

0.285 AZF1
YBR108W(NA) 2.66 -1.33 2.85 YBR108W = 0.112 + -0.205 HAC1
YAL020C(ATS1) 2.75 -1.51 4.15 YAL020C = -0.133 + 0.256 ASK10
YBR002C(RER2) 3.07 -2.14 2.26 YBR002C = 0.101 + -0.2 HAP5
YCL040W(GLK1) 3.09 -2.18 3.18 YCL040W = 0.095 + -0.199 HAL9
YNL018C(NA) 3.59 -3.18 2.19 YNL018C = 0.078 + -0.154 ARG81
YNL192W(CHS1) 3.21 1.57 2.13 YNL192W = -0.115 + 0.115 FZF1 + 0.306 DAL81 + -0.209 HMS2
YBR230C(NA) 3.32 3.37 2.2 YBR230C = -0.52 + 0.484 MAC1 + 0.467 GZF3 + 0.374 INO4 + -0.244 EDS1

The set of the worst fitted 20 genes by the sigmoid model, sorted in the increasing order of the log-likelihood.
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tionships between the type of regulation pattern and the
gene specificity.

This work provides a second implementation of the algo-
rithm based on the SDE model, enlarged with a new type
of regulatory pattern. The predictions from the algorithm
may be improved with better strategies for the selection of
the candidate pool of regulators. Moreover, the algorithm
is a potential tool for the investigation of the interactions
between the regulators of a target gene, modeled with a
drift term defined by a non linear combination of regula-
tory functions.

This study shows that the SDE framework constitutes a
reliable tool for the analysis of the transcriptional regula-
tory networks, provided it is completed with a validation
of the identified regulators by a promoter analysis.

Models and methods
SDE model of time-continuous gene expression data

Let T denote a discrete set that corresponds to the time
instants of the gene expression measurements. Consider
two stochastic processes defined for a given target gene,
(Nt)t∈T and (Xt)t∈T that model, respectively, the variation

in time of the target gene amount of mRNA and the vari-
ation in time of the expression level of mRNA. Let  be
the set of potential regulators for the target gene. Denote
by gt the function that models the transcription rate of the

target gene at time t

gt : ( ) → +  (1)

where ( ) is the set of all possible subsets of  and

+ is the set of real positive numbers. Denote the real,

positive mRNA degradation rate by λ.

The model proposed in [6] assumes that from time t to Δt
the transcription and degradation process are given by

where (Wt)t∈T is a Brownian Motion process that models
the random error and σ is a positive scaling parameter.
Consider infinitesimal time intervals, that is Δt → 0; from
this it follows that the relation in Equation (2) becomes a
stochastic differential equation

Since Nt is proportional with the signal intensity St, and Xt
= log(St - B) – where B is the background intensity –
assume without loss of generality that

Xt = log(Nt)  (4)
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Comparative plot between the observed and the predicted values of mRNA expression levels of gene YALO61WFigure 2
Comparative plot between the observed and the pre-
dicted values of mRNA expression levels of gene 
YALO61W. Example of good estimation of the expression 
profile with the beta sigmoid pattern of regulation: gene 
YAL061W.
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Distribution of the difference between the quadratic errors of predictionsFigure 1
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errors of predictions. The difference between the quad-
ratic error of the sigmoid model and the quadratic error of 
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Thus, the chain rule of the stochastic calculus applies (Itô
formula) and the SDE obtained for Xt yields

Local regulatory network
Consider an increasing sequence of temporal values

T = {t0 <t1 <...<tn}  (6)

Let m be the cardinality of the set  and let  be the

mRNA expression level of the i-th regulator from the set

, measured at time t ∈ T. Denote

The regulatory network is represented locally, in the
neighborhood of the target gene, as a superposition of reg-
ulatory elements pictured in Figure 5. The local network
relationship is modeled by the regulatory rate function,
built from the observable information, i.e. the regulators
mRNA expression levels, as:

where Fi denotes the regulatory functions of the potential

regulators from . The constants c0, c1,...,cm are the learn-

ing parameters of the network; they modulate the network
behavior and carry information about the local regulatory
process.

Beta sigmoid pattern of regulation
The regulatory function is a key element of the model and
fits the quantitative pattern with a specific regulator that
acts on the mRNA expression of the target gene.

Our work revealed a prototype of the regulatory function
based on the beta sigmoid function, given by
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Comparative plot between the observed and the predicted values of mRNA expression levels of gene YNR025CFigure 4
Comparative plot between the observed and the pre-
dicted values of mRNA expression levels of gene 
YNR025C. Example of good estimation of the expression 
profile with the beta sigmoid pattern of regulation: gene 
YNR025C.
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Comparative plot between the observed and the predicted values of mRNA expression levels of gene YDR515WFigure 3
Comparative plot between the observed and the pre-
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profile with the beta sigmoid pattern of regulation: gene 
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Figure 6 shows an example of beta sigmoid function

shape. The parameter  corresponds to the point where

the regulator expression level begins to increase. The max-
imal contribution of the regulator i is induced in the target

gene at time , when the mRNA expression level of the

regulator attends its maximum, corresponding to the bio-
logical hypotheses. The beta sigmoid function degener-

ates after time 2  -  and becomes non-informative.

For this reason we define the regulatory function as

where IA is the indicator function of the set A (IA(x) = 1 if
x ∈ A and IA(x) = 0 if x ∉ A) and

is the sigmoid function; μi and σi are the mean and devia-

tion of , the prototype of the regulatory function from

[6].

The learning in the local network is driven by the SDE

where 0 = c0 - λ - σ2/2. The network weights c1,...,cm carry

information in both their magnitude and sign: positive
values correspond to regulators with activation, and nega-
tive values correspond to repression.

Statistical analysis
For a given target gene, the aim of the statistical analysis is
to extract from the time course mRNA levels

1. the set of m regulators (model selection);
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Diagram of the local regulatory network model. The model of the dependencies for the transcriptional regulatory net-
work associated with a target gene.
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2. their corresponding parameters σ and the set { 0,

c1,...,cm} of parameters estimation;

with the best fit with respect to Equation (15). The beta
sigmoid as regulatory function adds supplementary

parameters ,  and xmax to the model. These parame-

ters are estimated from the corresponding time course
mRNA levels according to their definitions given in Equa-
tion (10) and employed in the computation of the estima-

tors of σ and :

For the evaluation of the impact of the beta sigmoid regu-
latory function model, the network weights are estimated
from gene expression data with the standard statistical
procedure described in detail in [6]. Equation (15) is con-
sidered in discrete form for each time interval [tj, tj+1], j =

{1, 2,...,n} that corresponds to time measurements. The

estimators of σ and { 0, c1,...,cm} are obtained maximiz-

ing the log-likelihood function log L (ML approach [13])
of the n-dimensional random vector with elements

The computation of log L uses basic properties of Brown-

ian Motion: the increments  are pairwise inde-

pendent and each increment is normally distributed, with

zero mean and standard deviation given by .

The criteria used for the selection of the regulators is AIC
[14]. Between any two combinations of regulators, the

best combination is that for which the AIC of the regula-
tors has the smallest value. The computation of AIC fol-
lows from

AIC = -2  + 2(m + 1)

where  is the estimator of log L and is obtained from

the functional invariance property of the maximum likeli-

hood estimators  and , i.e.,

 = log L( , ).

Let  denote the set formed by a candidate pool of reg-

ulators of the target gene; denote by | | the cardinality

of . Ideally, ML and AIC procedures shall be performed

on each combination of regulators from . Since the
number of all possible combinations of regulators is

, an enumeration algorithm for those sets will
explode quickly. The heuristic procedure used is the for-
ward selection strategy [15]. At first the regulator with the
biggest log-likelihood with respect to the target gene is
selected. A new regulator is added if it will increase the
AIC more than any other single regulator outside the cur-
rent combination. The actual implementation stops for a
combination of maximum 10 regulators, exactly as done
in [6]. Under these conditions the performance of the
algorithm we propose is expressed by an order of magni-
tude equal to O(nm2). In practice this is a slight enhance-
ment compared to the algorithm proposed in [6] for
which the order of magnitude equals O(n2m2) – since for
actual experimental data the number of time courses n is
quite small. The difference in the performance of the two
algorithms comes from the fact that the search of the max-
imum is less costly than the computation of the statistical
parameters for a data set.

List of abbreviations used
SDE: Stochastic Differential Equation

AIC: Akaike Information Criteria

ML: Maximum Likelihood

QE: Quadratic Error

Availability
The method was implemented in R 2.2.1 (R Development
Core Team, http://www.r-project.org/). The source code is
available upon request.
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