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Mutational robustness is defined as the constancy of a phenotype in the face of deleterious mutations. Whether
robustness can be directly favored by natural selection remains controversial. Theory and in silico experiments predict
that, at high mutation rates, slow-replicating genotypes can potentially outcompete faster counterparts if they benefit
from a higher robustness. Here, we experimentally validate this hypothesis, dubbed the ‘‘survival of the flattest,’’ using
two populations of the vesicular stomatitis RNA virus. Characterization of fitness distributions and genetic variability
indicated that one population showed a higher replication rate, whereas the other was more robust to mutation. The
faster replicator outgrew its robust counterpart in standard competition assays, but the outcome was reversed in the
presence of chemical mutagens. These results show that selection can directly favor mutational robustness and reveal
a novel viral resistance mechanism against treatment by lethal mutagenesis.
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Introduction

Lethal mutagenesis consists of overwhelming viral popula-
tions with an excessive number of deleterious mutations and
has been proposed as a candidate therapeutic strategy against
RNA viruses [1–4]. Several mutagens have been used to
artificially increase error rates in RNA viruses such as
vesicular stomatitis virus (VSV), poliovirus type 1, foot-and-
mouth disease virus, lymphocytic choriomeningitis virus,
hepatitis C virus, and the human immunodeficiency virus
type 1 [1]. These experiments show that while mutagens
efficiently reduce viral fitness, they also impose a strong
selective pressure for the evolution of resistance mechanisms.
One mechanism of resistance is increased replication fidelity,
which has been demonstrated in experimental populations of
poliovirus type 1 subjected to ribavirin treatment [5].
Resistance mechanisms involving changes in viral poly-
merases that specifically reduce the incorporation efficiency
of the mutagen have also been reported [6]. Another
potential mechanism of resistance is increased mutational
robustness, although the later remains unexplored exper-
imentally.

Robustness to mutation determines the phenotypic ex-
pression of genetic variation and thus should be central to
many evolutionary processes [7]. Insofar as it is heritable,
exhibits variability among individuals, and affects the
probability of survival, robustness is a potential target for
selection and evolutionary optimization. However, whether
robustness can be directly favored by natural selection
remains controversial [8–10]. Population genetics theory
predicts that robustness can only be efficiently selected for
if mutation is highly frequent [7,11,12] . Similarly, quasispe-
cies models predict that, in small replicons, robustness can
significantly influence the mean fitness of the population at
high mutation rates or low population sizes [13,14].

The conditions for the evolution of robustness have been

experimentally explored in silico [15–17]. Such experiments
have produced digital organisms with increased mutational
robustness, although they typically pay the cost of reduced
replication rates, an evolutionary trade-off that is expected
from both theoretical and molecular considerations [13,18].
Specifically, following Wright’s adaptive landscape model,
organisms with high robustness are located in a low and flat
peak, as opposed to faster but less robust replicators.
Although the flatter populations should be readily out-
competed by their faster counterparts at low mutation rates,
they can have a selective advantage at high mutation rates, a
phenomenon dubbed the ‘‘survival of the flattest’’ (Figure 1)
[17]. Recent experiments with viroids (plant pathogens
constituted of small noncoding RNA) have revealed that a
slow-replicating but highly variable species can improve its
fitness relative to a faster but less variable replicator in UVC-
irradiated plants, compatible with the survival of the flattest
hypothesis [19].
Due to their high spontaneous mutation rates [20], RNA

viruses are obvious candidates for studying the beneficial
effects of mutational robustness. However, this task has to
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date remained elusive. Early work with the RNA phage /6
showed that the evolution of different genotypes depended
on the topology of the neighboring adaptive landscape [21].
More recent experiments with /6 have provided some
indirect evidence that robustness is an evolvable character
[22]. However, direct proof of the survival of the flattest
requires at least the following conditions: (i) that the outcome
of competition experiments between genotypes should
depend on the mutation rate and, (ii) that average mutational
effects should be estimated for each competitor.

Herein, we provide evidence for the survival of the flattest
using experimental populations of VSV, a lytic negative-
stranded RNA virus of the Rhabdoviridae family. We charac-
terized two populations adapted to a common environment
but with different evolutionary histories. We studied the
genetic variability and the individual fitness distribution of
each population near the mutation-selection balance, and we
estimated mutation rates and selection coefficients for
deleterious mutations. This allowed us to conclude that one
population was replicating near a high fitness peak, but was
also less robust to mutation than the other. Whereas at
spontaneous mutation rates, the fitter population was the
best competitor, the addition of mutagens provided an
advantage to the more robust, flatter, population.

Results

Characterization of Two Populations with Different
Mutational Robustness

Two VSV populations with different evolutionary histories
were chosen to start the experiments. Population A came
from transfection of a full-length infectious cDNA into
standard baby hamster kidney cells (BHK21) [23]. This cDNA
was an artificial assemblage of different viral isolates and had
previously experienced no propagation in natural or labo-
ratory conditions. In contrast, population B had a complex
laboratory passage history, since it originally came from a

natural isolate of the Indiana serotype and, after a few
passages in BHK21 cells, it had been replicating in human
cervical cancer HeLa cells [24]. The consensus sequence of
these two populations differed at 54 nucleotide positions
spread throughout the genome.
A single clone from each of populations A and B was

picked and evolved separately by serial passages for approx-
imately 100 generations in the same, constant, environment,
after which the two evolved lineages were assayed for fitness
by standard growth assays. In accordance with previous
studies [25], population A readily adapted to the new
environment, showing a 53.9% fitness increase between
generations 5 and 100 (Mann-Whitney test, p , 0.001). In
contrast, population B showed a non-significant 7.0%
increase in fitness (p ¼ 0.075) during the same time interval.
Comparison of ancestral and evolved genomic consensus
sequences revealed a single fixed nucleotide substitution for
population A and no changes for population B. EMBL
accession numbers of the genomic consensus sequences for
A and B evolved populations can be found in the Accession
Numbers list of the Supporting Information section of this
paper. The two adapted populations were used for all
subsequent experiments. In both cases, a mutation-selection
balance had probably been reached at different local peaks of
the adaptive landscape, as suggested by the fact that evolution
for an additional 50 generations produced no changes in
mean fitness.
To gain some insights into the topology of each local

adaptive peak, we first measured the fitness of 12 randomly
chosen clones from both A and B. Although there were no
significant differences in average fitness (Mann-Whitney test,
p ¼ 0.143), it was striking that fitness variance among clones

Figure 1. Hypothetical Populations Located at Different Regions of

Sequence Space

In red, a population with high replication rate but low mutational
robustness. In blue, a ‘‘flat’’ population with lower replication rate but a
higher robustness.
Left panel: Dots depict individuals located on each peak at low and high
mutation rates. Right panel: Qualitatively expected distribution of
individual fitness values for the two populations. Individuals located at
the top of the high narrow peak benefit from the highest fitness,
although the other population shows lower variance in fitness due to its
higher mutational robustness. At low mutation rates, the fitter
population will always outcompete the flatter population, but the
situation can be reversed at high mutation rates.
doi:10.1371/journal.pgen.0030093.g001
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Author Summary

Understanding the conditions that favor the constancy of pheno-
types in the face of deleterious mutation pressure—mutational
robustness—is an outstanding question in evolutionary biology.
Theoretical and in silico studies utilizing digital organisms predict
that slow-replicating populations can outcompete those with higher
individual fitness if the former show greater robustness. This
‘‘survival of the flattest’’ hypothesis sits in contrast to most models
of natural selection based on individual fitness, and hence
challenges the ‘‘survival of the fittest’’ paradigm. In this work, the
authors use experimental populations of the rapidly evolving
vesicular stomatitis RNA virus to provide the first evidence of
natural selection for mutational robustness. Based on the analysis of
fitness distributions, genetic variability, and the ability to tolerate
mutation accumulation, two populations with different levels of
robustness were characterized. At artificially enhanced mutation
rates following the application of mutagens, the more robust viral
population outcompeted the other population despite having a
lower replication rate. This study has important implications for
lethal mutagenesis—an antiviral strategy that consists of increasing
viral mutation rates through the use of mutagenic drugs—since
selectively favored mutational robustness may allow RNA viruses to
evolve resistance to this form of treatment.



was 30 times higher for population A than for population B.
We therefore investigated each population more thoroughly.
Because of the large samples required, we used lysis plaque
size as a proxy to measure fitness rather than standard growth
assays. Preliminary experiments with 12 clones from each
population showed that fitness and log-plaque size were
highly correlated (Pearson r¼ 0.944 for A, r¼ 0.959 for B, p ,

0.001 in both cases). Estimation of fitness values of 1,000
random individual clones from each population showed that
population A contained the fittest variants but also a large
tail of unfit clones, whereas the fitness distribution of
population B fitness was more tightly clustered around
intermediate values (Figure 2). Reduced fitness variance in
population B could be due to either a lower mutation rate or
a higher mutational robustness.

We further characterized each population by studying their
genetic heterogeneity at two variable regions of the genome.
Region P covered half of the gene encoding the viral
phosphoprotein, a short intergenic region, and a small
fraction of the gene encoding the matrix protein, whereas
region G was entirely located within the viral envelope
glycoprotein gene. After obtaining cDNAs by reverse tran-
scription of purified RNAs, these regions were amplified by
PCR, cloned, and sequenced. In population A, six different
mutations were found in 87 clones, giving a mutation
frequency of 1.35 3 10�4, whereas in population B, this
frequency was elevated to 2.913 10�4 (Table 1). The
observation that population B was roughly twice as variable
as A can be explained by a higher mutation rate, but also by
increased robustness. Recalling that the characterization of
individual fitness distributions (Figure 2) indicated that
population B should have either a lower mutation rate or
increased robustness, that B has increased robustness seems
to be the only hypothesis compatible with the observations.

Competition Assays in the Presence or Absence of
Chemical Mutagenesis
If B was indeed more robust to mutation than A, we

expected that their relative fitness should depend on the
mutation rate. To test this prediction, we performed
competition experiments taking advantage of the fact that
the two populations were easily distinguishable by a mono-
clonal antibody resistance marker situated on genotype B.
Standard assays with a 1:1 input ratio indicated that
population A had an advantage over B (log relative fitness,
logWB/A ¼ �0.114 6 0.012, Mann-Whitney test: p ¼ 0.002),
confirming that A was located at a higher fitness peak. We
then carried out the same experiments in the presence of the
mutagen 5-fluorouracyl (5-FU). As expected, the outcome of
the competition steadily changed for increasing concentra-
tions of 5-FU (Spearman q¼0.933, p , 0.001) and B prevailed
beyond a dose of ;30 lg/mL (Figure 3). To assess whether this
pattern was drug specific, we repeated the competition assays
using 5-azacytidine (5-AzC) instead of 5-FU. Similarly, we
observed that B improved its performance relative to A as the
dose of 5-AzC increased (Spearman q ¼ 0.854, p , 0.001;
Figure 3).
If selection was insensitive to mutation and hence targeted

individual clones, we expected that the faster replicators of
population A would always outcompete those of population
B. A thousand simulations in which the empirical distribu-
tions of individual fitness values were used to predict the
outcome of the competition confirmed that, if selection acted
on individual clones, we should expect A to be the winner of
the competition. Whereas the results from real competition
experiments in the absence of mutagens were consistent with
this prediction, competitions with mutagens were the
opposite, suggesting that selection was favoring the popula-
tion with the higher average growth rate, even though it did
not harbor the fittest individuals. The most likely scenario is
thus that population B was located at a lower but flatter peak
of the fitness landscape, in which mutations would tend to be
less deleterious.
To exclude the possibility that the RNA polymerase

encoded by genotype B had an increased ability to selectively
purge base analogs from its active site, we obtained molecular
clone sequences of the P and G regions after three passages at

Figure 2. Observed Distribution of 1,000 Fitness Values for Populations A

and B Based on Plaque Sizes

Population A is shown in red and population B in blue. Mean log-fitness
was 0.386 for population A, with variance 2.054. For population B, mean
log-fitness was 0.498, with variance 0.225. Means were significantly
different according to a Mann-Whitney test (p , 0.001). A Kolmogorov-
Smirnov test also showed that the two distributions were significantly
different (p , 0.001).
doi:10.1371/journal.pgen.0030093.g002

Table 1. Genetic Variability of VSV Populations A and B

Regiona Population Clonesb Mutationsc Mutation Frequencyd

P A 48 2 0.82 3 10– 4

B 48 7 2.86 3 10– 4

G A 39 4 2.00 3 10– 4

B 46 7 2.96 3 10– 4

Total A 87 6 1.35 3 10– 4

B 94 14 2.91 3 10– 4

aThe P region spanned nucleotides 1,771 to 2,279 of the viral genome and included
approximately half of the P gene, the P-M intergenic region, and the first 30 bases of the
M gene. The G region spanned nucleotides 3,836 to 4,349, all belonging to the G gene.
bNumber of cDNAs cloned into E. coli.
cNumber of different mutations observed. Mutations that were observed in more than
one clone were counted only once and insertions/deletions of several consecutive bases
were counted as single mutations.
dMutations divided per the total number of sequenced nucleotides.
doi:10.1371/journal.pgen.0030093.t001
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80 lg/mL 5-FU. As expected, the presence of 5-FU altered
mutational patterns and increased mutation frequencies.
Whereas 44% of all spontaneous nucleotide substitutions
were transitions, after 5-FU mutagenesis, this percentage
increased to 90%. Mutation frequencies increased to 7.09 3

10�4 for population A and to 9.55 3 10�4 for population B
(Table 2). Compared to the spontaneous mutation rate (Table
1), the relative increase in mutation frequency was higher for
population A, whereas in absolute terms, it was higher for B.
However, population B remained more variable than A after
5-FU mutagenesis, demonstrating that even if there were
differences in the ability to exclude 5-FU, these could not
account for the observations. Similarly, it is in principle
possible that genotype B might have a better ability to
replicate in cells stressed by mutagenesis, although this
explanation is similarly unable to account for all observa-
tions.

The conclusion that B is more robust to mutation than A
relies on the assumption that no beneficial mutations were
sweeping through either population at the time of competi-
tion assays. Several precautions were taken to ensure that this
requisite was met. First, as mentioned above, experimental
evolution for additional 50 generations produced no changes
in mean fitness, suggesting that beneficial mutations were not
frequent. Second, competition assays were seeded with only
;100 plaque-forming units (pfu) of each population to
minimize the probability that a rare beneficial mutation
distorted the results. Using binomial probabilities, it can be
proven that high fitness variants were very unlikely to be
present in the inoculum of the competitions experiments and
at the same time, go unnoticed during the plaque size fitness
screening. Third, we repeated the above competition experi-
ments using individual clones instead of populations. To do
that, we randomly selected four clones from each population
and we did one-to-one competitions against each of four

clones drawn from the other population. We observed a
significant correlation between the 5-FU dose and the log-
fitness of B clones relative to A clones (Spearman q¼ 0.406, p
¼ 0.004), making it apparent that, on average, competitions
between single clones reproduced the same trend observed
with populations (Figure 4).

Mutation Accumulation under Genetic Drift
Serial passages were done at the lowest possible population

size to minimize the action of natural selection and hence
favor the fixation of deleterious mutations via genetic drift. If
it is true that genotype B is more robust than A, we expected
this passage regime to produce a lower fitness decline in the
former. For each population, starting from a single clone, we
seeded 24 independent lineages that were propagated plaque
to plaque for approximately 25 generations. We observed
that the average fitness of these lineages decreased and fitness
variance increased in both cases. However, as expected, the
fitness loss was more marked for genotype A (Figure 5; Mann-
Whitney test: p , 0.001). Similarly, the observed increase in
genetic variance was much more evident for genotype A
(DlogWA ¼ 0.876, DlogWB ¼ 0.169).
The expected change in average log fitness equals the

product of the deleterious mutation rate (Ud) and the average
selection coefficient against deleterious mutations (s) [26,27].
Therefore, mutational robustness can be achieved by
increasing the fraction of neutral mutations or by decreasing
deleterious mutational effects. Although distinguishing be-
tween these two alternatives is not straightforward, mutation
accumulation data can be used to estimate Ud and s
separately using the Bateman-Mukai method [26,27]. No
statistical differences were observed between the two Ud

estimates (Ud A¼ 0.062, Ud B¼ 0.112, bootstrap test p¼ 0.247),
whereas the s value was significantly higher for A (sA¼ 0.443,
sB ¼ 0.061, p ¼ 0.003), suggesting that B was more robust to
mutation than A because deleterious mutational effects were
lower on average. We also applied a maximum likelihood
method to estimate Ud and to characterize the distribution of
mutational effects [28], but this approach yielded non-
convergent estimates.

Table 2. Genetic Variability of the VSV Populations A and B in
the Presence of the Mutagenic Base Analog 5-FU

Regiona Population Clonesb Mutationsc Mutation Frequencyd

P A 48 15 6.14 3 10�4

B 44 26 11.61 3 10�4

G A 43 18 8.14 3 10�4

B 44 17 7.52 3 10�4

Total A 91 33 7.093 10�4

B 88 43 9.55 3 10�4

aThe P region spanned nucleotides 1,771 to 2,279 of the viral genome and included
approximately half of the P gene, the P-M intergenic region, and the first 30 bases of the
M gene. The G region spanned nucleotides 3,836 to 4,349, all belonging to the G gene.
bNumber of cDNAs cloned into E. coli.
cNumber of different mutations observed. Mutations that were observed in more than
one clone were counted only once and insertions/deletions of several consecutive bases
were counted as single mutations.
dMutations divided per the total number of sequenced nucleotides.
doi:10.1371/journal.pgen.0030093.t002

Figure 3. Competition Experiments at Varying 5-FU and 5-AzC Doses

Open circles and filled circles represent 5-FU and 5-AzC values,
respectively. The log-fitness of population B relative to population A,
log(WB/WA), is represented. Bars indicate 95% confidence intervals.
doi:10.1371/journal.pgen.0030093.g003
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Discussion

In evolutionary theory, adaptation is often assumed to be a
necessarily uphill path towards the highest-fitness genotype, a
paradigm known as the ‘‘survival of the fittest’’ [29]. However,
the fittest genotype cannot be always defined in terms of
individual fitness. Previous work with the RNA phage U6
showed that the long-term fitness of a genotype can be
determined by its mutational neighborhood [21]. Here, we
have characterized two VSV populations with different levels
of mutational robustness and shown that this difference has a
selective value at high mutation rates. Our conclusion that
one population is more robust than the other is supported by
the observation of three expected consequences of robust-
ness: reduced dispersion of the individual fitness distribution,
increased genetic heterogeneity, and reduced sensitivity to
mutation accumulation.

In contrast to the survival of the fittest, the survival of the
flattest hypothesis states that at high mutation rates, fast
replicators can be outcompeted by slower replicators
provided the latter benefit from increased mutational
robustness. The survival of the flattest takes place when the
average mutational effects influences the fitness of the
population, implying that the fitness of a given genotype is
determined by the occurrence of subsequent mutations or by
the influx of mutations regenerating the genotype from
neighbors in sequence space. These second-order effects, also
termed quasispecies effects [30], are negligible for low
mutation rates, but become increasingly important for higher
mutation rates. Similarly, these effects become more relevant
at low population sizes, because this regime favors the
accumulation of mutations in the population [13]. Quasispe-
cies effects are not fully accounted for in some classical
population genetics models, which, despite incorporating the
negative impact of mutation, assume that it is rare enough to
allow for the neglect of multiple and back mutations. A

classical formulation for asexual replicators is W�¼ W0e�Ud ,
where W� is the average fitness of the population andW0 is the
fitness of the fittest genotype [31]. As a consequence, the
success of a given genotype can be influenced by the rate of
deleterious mutation, but not by the average selection
coefficient against deleterious mutations. In our experiments,
W0A . W0B and UdA � UdB , but at artificially increased
mutation rates, W�A , W�B, which contradicts this model and
clarifies the need to consider mutational robustness to
predict the fitness of viral populations subjected to mutagen-
esis.
RNA viruses are highly sensitive to mutation when

compared to more complex microorganisms [32], a lack of
robustness that is generally expected in small, compact
genomes with little redundancy, no repair systems, and
strong pleiotropy [13]. These species typically exist as very
large populations, thus making selection efficient at purging
deleterious mutations and promoting the preservation of the
unmutated genotype. Genetic hypersensitivity seems to be
the rule among RNA viruses but, under some conditions, the
evolution of mutational robustness can be favored. Here, at
the highest tested doses, 5-FU reduced the maximum viral
titers by three orders of magnitude and produced more than
a 3-fold increase in mutation frequencies, which should
provide a favorable scenario for the evolution of robustness.
Similar scenarios are likely to apply in nature following
antiviral treatments [1], transmission bottlenecks [33], or
host-induced mutagenesis [34].
Lethal mutagenesis has been proposed as a therapeutic

strategy against RNA viruses [1–4]. For example, mutagenesis
is one of the mechanisms of action of ribavirin, a drug that is
currently used in combination with interferon to combat
hepatitis C [35]. However, RNA viruses are known to have a
remarkable potential for escaping antiviral strategies and
evolving resistances. Previous work has shown that poliovirus-
1 and foot-and-mouth disease virus can increase their
replication fidelity or substrate specificity in response to
ribavirin treatment [5,6]. By showing that robustness is a
selectable trait at high mutation rates, our results reveal a

Figure 4. Competition Experiments between Pairs of Clones at Varying

5-FU Doses

The log-fitness of clones from population B relative to those from A,
log(WB/WA), is represented. Dotted lines represent each of the four clone
pairs, circles the grand-log-fitness mean, and bars indicate standard
errors of grand means. An analysis of the variance revealed a significant
effect of both the clone pair (F3,43¼ 9.871, p , 0.001) and the 5-FU dose
(F1,43¼ 9.871, p¼ 0.001) on the observed mean log-fitness.
doi:10.1371/journal.pgen.0030093.g004

Figure 5. Change in Mean Log-Fitness in Mutation Accumulation Lines

Derived from Populations A and B

For A and B, each of the 24 lines is shown. Bars indicate 95% confidence
intervals. Horizontal lines indicate the grand mean change in log-fitness.
doi:10.1371/journal.pgen.0030093.g005
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novel resistance mechanism against lethal mutagenesis and
open several research avenues. For example, the genetic basis
of increased robustness in genotype B still needs to be
identified. Here, 53 substitutions separate the two genotypes,
but thermodynamic analyses predict that one or few changes
suffice to modify the robustness of a given protein [36].
Related to this issue, it remains unclear whether the transition
from a non-robust to a robust state can occur as a direct
consequence of the selective pressure exerted or, in contrast,
an episode of genetic drift is required to produce a jump in
the adaptive landscape. Finally, adaptation to mutagenesis
also has consequences for the evolvability of RNA viruses.
Whereas the evolution of increased replication fidelity has
been shown to restrict RNA virus evolvability [37], increased
robustness may favor the generation of inconspicuous genetic
variation and foster long-term evolvability [7,38].

Materials and Methods

Viruses and cells. BHK21 (American Type Culture Collection,
http://www.atcc.org) were cultivated at 37 8C, 5% CO2, in 100 cm2

plates under 12 mL of Dulbecco modified Eagle’s minimum essential
medium (DMEM) supplemented with 10% fetal calf serum, and
passaged upon confluence. The VSV infectious cDNA used to obtain
population A was kindly provided by G. T. W. Wertz, University of
Alabama, United States of America [23].

Viral titrations. A 100-lL volume of an appropriate dilution was
added to 60 mm culture plates and cells were topped with DMEM
medium containing 0.4% agarose. Monolayers were stained at 18–22
h post-inoculation (hpi) with a solution of 2% crystal violet (Sigma,
http://www.sigmaaldrich.com) in 10% formaldehyde (Panreac, http://
www.panreac.com/new/ing/menu.htm).

Viral adaptation to a constant environment. Approximately N0¼ 5
3 103 pfu were inoculated to C ¼ 106 BHK21 cells in 25 cm2 flasks,
incubated for 24 h, and the supernatant was used to seed a new
infection passage under the same conditions, up to 25 passages. Viral
population sizes at the end of each infection passages were
approximately Nf ¼ 5 3 109 pfu. The number of viral infectious
cycles (generations) per passage was estimated from N0, Nf, and C as
previously described [39], giving ;4 generations per passage.

Consensus sequencing. Viral RNA was extracted from the super-
natant of the infected cultures using the High Pure Viral Nucleic Acid
Kit following the manufacturer instructions (Roche, http://www.roche.
com). The anti-genomic VSV cDNA was synthesized using the reverse
transcriptase of the Moloney murine leukemia virus (Promega, http://
www.promega.com) plus a battery of random hexamers (Promega).
The genomic region containing the original mutations was amplified
by PCR using Taq polymerase (Amersham, http://www.gehealthcare.
com) and specific primers. Sequencing was carried out using ABI
PRISM BigDye Terminator v3.0 Ready Reaction Cycle Sequencing
KIT (Applied Biosystems, http://www.appliedbiosystems.com) on an
ABI 3700 automated sequencer. Sequences were visualized and edited
with the Staden software package (http://staden.sourceforge.net).

Molecular clone sequencing. RNA viral extraction, RT-PCRs,
sequencing, and editing of sequences were performed as described
above. A first round of PCR was carried out using Pfu polymerase
(Amersham) and specific primers [40]. Amplified DNA products of
each region were purified with High Pure PCR product Purification
Kit (Roche) and directly cloned into EcoRV-digested pBluescript II
SK (þ) phagemid (Stratagene, http://www.stratagene.com). A second
round of PCR was then carried out by adding a single transformed
bacterial colony in each PCR tube and using Taq polymerase. Vector-
based primers KS and SK (Stratagene) were used in this second round
of PCR, as well as for the subsequent sequencing. Before sequencing,
amplified DNA was purified using a PCR clean-up kit (Macherey-
Nagel, https://www.macherey-nagel.com). Plasmid DNA was purified
with High Pure Plasmid Isolation Kit (Roche) and clones were
sequenced using vector-based primers KS and SK (Stratagene). EMBL
accession numbers of the obtained sequences for nonmutagenized
populations and for 5-FU mutagenized populations are in the
Accession Numbers list in the Supporting Information section of
this paper.

Fitness assays. Following protocols established in previous work
[41–43], we used growth rate assays to estimate fitness. We seeded ;5

3 103 pfu of each population into ;105 BHK21 cells and incubated
the culture until the population grew up to a titer of ;107 pfu/mL
(i.e., 7–8 hpi). From final and initial titers, the growth rate (r) was
calculated as the slope of log-titer regression against time (hpi). We
defined fitness (W) as the number of descendants per individual per
hour, i.e., W ¼ er � 1. Fitness assays were done in triplicate.

Plaque size analysis. Viruses were plated as detailed above, paying
care to put less than 50 pfu per plate to avoid plaque overlapping. All
platings were done in a single block and the same overlay medium
batch was used for both populations and staining was done at 24 hpi.
Pictures of the plates were taken with a 5 megapixel Canon
PowerShot G5 digital camera (http://www.canon.com) and image
analysis was done with AnalySIS v.3.2 software (Soft Imaging System,
http://www.soft-imaging.net). The vast majority of plaques were
automatically identified, whereas the rest were manually delineated
in a zoomed image. After defining plaques as single objects, we
automatically obtained their surface area in pixels, S.

Estimation of fitness from plaque sizes. To calibrate the relation-
ship between plaque size and fitness, we selected 12 clones from each
population that widely varied in fitness and, for each, we determined
the average plaque size from four independent plates. Since we had
no evidence that fitness and plaque area were linearly related, we
performed a log–log regression to obtain a calibration line of the
form logW ¼ p þ mlogS. For population A, we obtained m ¼ 1.907 6
0.318 and p¼�13.785 6 2.246 (r¼ 0.884), whereas for population B,
we obtained m¼0.927 6 0.096 and p¼�5.874 6 0.678 (r¼0.950). The
calibration line was used to transform each observed plaque size into
a predicted fitness.

Although the calibrations described above seemed relatively
accurate, it is unavoidable that there was some degree of uncertainty
and consequently no guarantee that no bias was introduced. We
therefore carried out a second analysis that bypassed the calibration
step. To achieve this, we simply assumed that the number of lysed
cells was proportional to the number of viruses produced. First, we
estimated the number of lysed cells on a plaque, D, by dividing its
pixel surface area per the total pixel surface area of the 60 mm plate
and multiplying per the total number of cells on a plate, which was
obtained by counting cells in an hemocytometer (Neubauer). Second,
we estimated the average number of viruses produced per cell (K) by
titrating a fully lysed plate. This was done separately for populations
A and B, yielding K ¼ 2,204 6 32 and K ¼ 2,712 6 82 respectively.
Using these estimations, plaque sizes were transformed into
predicted fitness as Wpred ¼ (KD)1/24 � 1. The results obtained with
this latter fitness estimation method (unpublished data) were
consistent with those obtained using the calibration line (population
A showed higher maximum fitness and higher variance).

Competition assays. Standard growth rate assays were performed
as described above except that in competitions between populations
(Figure 3), only 100 pfu from each competitor were inoculated to
minimize the effect of rare beneficial mutations (see below). Viruses
from the two genotypes were inoculated into the same well. Genotype
B carried a monoclonal antibody resistance marker that allowed us to
estimate the titer of each population in the mixture by plating in
presence and absence of antibody. Samples were taken at 0, 7, 8, 9, 10,
11, 12, 15, 20, 25, and 30 hpi for competition with no mutagen. For
competitions in the presence of 5-FU or 5-AzC, cells had been
pretreated with the indicated 5-FU concentration 12 h prior
infection. Samples were taken at 0, 15, 20, 25, 30, 35, 39, and 49 hpi
for 20 and 40 lg/mL 5-FU and at 0, 20, 25, 30, 35, 39, and 49 hpi for 80
lg/mL 5-FU. Samples were taken at 0, 10, 12, 15, 24, 28, 32, 38, and 48
hpi for 5 and 10lg/mL 5-AzC, and at 0, 24, 28, 32, 38, and 48 hpi for 20
lg/mL 5-AzC. Growth rates for each population were calculated as
the slope of the log-titer against hpi during the exponential growth
phase. For competitions between populations, 12 replicates of the
competition assay were done for each different mutagen dose,
whereas for competitions between clones three replicates were done
for each dose and each of the four clone pairs.

Discarding rare beneficial mutations in the competition assays. We
reduced the initial inoculum to ;100 pfu of each population to
minimize the effect of rare beneficial mutations in the outcome of the
competition. Since 1,000 clones were sampled during the plaque size
fitness screening, the probability that beneficial mutations at a
frequency f in the population went unnoticed during this screening is
given by the binomial distribution function, Bi(0, 1,000, f). For each
competition assay, the probability that these beneficial mutations
were present in the inoculum is 1� Bi(0, 100, f). Therefore, for each
replicate of the competition assay, the joint probability that
beneficial mutations that had been missed in the plaque size
screening and were present in the competition assays is p ¼ Bi(0,
1,000, f) (1�Bi(0, 100, f)). For all values of f, p � 0.035 for each replica
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of the competition assay, thus making it very unlikely that rare
beneficial mutations had affected the results of the competition after
12 replicates.

Competition assay simulations. The expected outcome of a
competition between population A and B, based on plaque sizes,
was obtained as follows. First, to mimic the inoculum size of the real
competition assays, we randomly sampled a subset of 100 individuals
from each population and we got their expected progeny per hour,
which is equal to the predicted fitness. We then let the simulated
growth proceed until the total population size was similar to that
observed at the last time point of real competitions. The expected
winner of the competition was the one with the larger progeny
number at the final time point. The random sampling and the
simulation were repeated 1,000 times.

Mutation accumulation experiment. Two random clones from
populations A and B were picked from a 60 mm plate and stored at
�80 8C as ancestors. Twenty-four mutation accumulation lines were
founded from each ancestor by randomly picking 24 lysis plaques.
Following previous plaque-to-plaque experimental designs [44], for
each lineage, viruses were plated and at 24 hpi, a lysis plaque was
randomly sampled, resuspended inDMEMmedium, anddirectly plated
onto a fresh monolayer. This protocol was pursued on a daily basis
for12passages.Thenumberof generations elapsedduringeachplaque-
to-plaque passage was estimated to be approximately two. To obtain
enough viruses for fitness assays, the ancestors and the final derived
clones were given a single passage in a 96-well plate containing ;104

BHK21. Fitness assayswere performed as detailed above simultaneously
for the ancestors and the derived lines in three experimental blocks. In
each block, the 24 derived clones of eachpopulationwere assayedonce,
whereas the ancestors were assayed six times.

Bateman-Mukai method. The expected change in log-fitness after t
generations (t¼ 24) is DlogW¼ logWt� logW0¼ UdtE[log(1� s)]. The
expected genetic variance for log-fitness among lineages is rG

2(logWt)
’ UdtE[(log(1� s))2], and the total variance is rT

2(logW)¼rE
2(logW)þ

rG
2(logW) where sub-index E refers to environmental variance. Since

genetic variance is null for the ancestor and all fitness assays were
performed in the same environmental conditions, rE

2(logWt) ¼
rE

2(logW0) ¼ rT
2(logW0), and therefore rG

2(logWt) ¼ rT
2(logWt) �

rT
2(logW0) ¼ DrT

2(logW). It follows that

Dr2
r ðlogWÞ

DlogW
¼ E½ðlogð1� sÞÞ2�

E½logð1� sÞ� ¼ ð1þ h2ÞE½logð1� sÞ�

and that

D2ðlogWÞ
Dr2

r ðlogWÞ
¼ UdtE2½logð1� sÞ�

E½ðlogð1� sÞÞ2�
¼ Udt
ð1þ h2Þ

where h is the coefficient of variation (standard deviation to mean
ratio) of log W associated to single deleterious mutations. (1 þ
h2)E[log(1� s)] and Ud/(1þ h2) were directly estimated from the data.

For an exponential distribution (a simple and relatively accurate
model for describing fitness effects associated to single mutations), h
¼ 1. Nonetheless, the actual distribution of mutational effects might
have a heavier tail and thus a h . 1. A previous fitness dataset of 28
nonlethal random mutants of VSV [42] gave the empirical estimation
h¼ 1.598. Using this figure, we obtained estimates of Ud and E[log(1�
s)] and then, of s. For A, h¼ 1.598 should be an accurate estimation of
the true h-value, because it was obtained for the above-mentioned

full-length infectious cDNA clone. It is possible, however, that, due to
its higher mutational robustness, B showed a lower h-value. This
potential bias could account for the slightly higher Ud estimate in B,
but it could not account for the nearly one order of magnitude
difference in s-values (in the extreme case hB¼ 0, the true Ud B would
be 2.598 times lower than our estimate and the true sB 2.598 times
higher).

To address whether differences between Ud and s between A and B
were statistically significant, we generated 1,000 bootstrap pseudo-
replicates from both the 24 averaged fitness values of the derived
clones and the six averaged fitness values of the ancestors. After
obtaining the corresponding 1,000 pseudo-replicates of Ud, we
counted the number of times Ud was larger for A versus B, and the
same for s.

Parameters Ud and s were also estimated using the maximum
likelihood approach implemented in the program MLGENOMEU
(homepages.ed.ac.uk/eang33/mlgenomeu/mlginstructions.html), in
which a Gamma distribution of the form Ga(s) ¼ absb � 1e � as/C(b) is
used to describe the distribution of mutational effects (s ¼b/a) [28].
Following the author’s recommendations, we ran the program to
estimate Ud and a at fixed b-values varying from 99 to 0.01. The log
likelihood monotonically increased as b decreased, yielding increas-
ingly higher a-values (s ! ‘ and Ud ! 0).

Statistics. Statistics were done with MS Excel (http://www.microsoft.
com) and the SPSS 12.0 package (http://www.spss.com). Resamplings
and simulations were done using a Perl script.

Supporting Information
Accession numbers

The European Molecular Biology Laboratory (EMBL) (http://www.ebi.
ac.uk/cgi-bin/emblfetch) database accession numbers for the A and B
evolved populations are AM690336 and AM690337, respectively. For
nonmutagenized populations, accession numbers are AM689332–
AM689519 and for 5-FU mutagenized populations, accession num-
bers are AM689705–AM689876.
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