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Metallothionein (MT), a low-molecular weight pro-
tein with pleiotropic functions, is believed to play an
important role in tumorigenesis. The aim of this study
was to compare the expression of functional MT-1
and MT-2 mRNA isoforms in five breast cancer cell
lines ranging from noninvasive MCF7 breast cancer
cells to highly aggressive MDA-MB-231 breast cancer
cells together with breast myoepithelial cells in vitro
by conventional semiquantitative reverse transcrip-
tase-polymerase chain reaction (RT-PCR) and quanti-
tative real-time RT-PCR. The MT-2A isoform was ob-
served to be differentially upregulated in the invasive
phenotype. The MT-1E isoform was found to be
present in estrogen receptor-negative breast cancer
cell lines (MDA-MB-231 and Hs578T) but not detect-
able in the estrogen receptor-positive cell lines
(T47D, MCF7, and ZR75-1 cells). Only the myoepithe-
lial cells exhibited the presence of the MT-1G tran-
script. Direct sequencing of the RT-PCR products re-
vealed the occurrence of a variant MT-1H isoform
with changes in amino acid residues in the protein
sequence and notable differences in the predicted
secondary protein structure. The observations in this
study are relevant to the development of novel ap-
proaches to metastatic breast cancer disease, and may
herald the search for novel MT mutants and the elu-
cidation of their biological roles. (Am J Pathol 2003,
163:2009–2019)

Metallothioneins (MTs) are small molecular weight proteins
containing 61 to 68 amino acid residues, and are charac-
terized by a high cysteine content with a paucity of aromatic
amino acids.1,2 MTs are known to participate in fundamen-
tal cellular processes such as cell proliferation and apop-
tosis.3–5 Because MTs exhibit a selective binding to heavy
metals such as zinc, copper, and cadmium, they are in-
volved in heavy metal detoxification.6,7 MTs have also been
implicated in chemoresistance to anti-cancer drugs8,9 and
in free radical scavenging in cells.6,10,11 Since the first re-
port of MT expression in thyroid cancer tissues by Cherian
and co-workers in 1987,12 there has been extensive interest
in the role played by MTs in tumorigenesis.13–17

In humans, four subgroups of MT proteins, namely
MT-1, MT-2, MT-3, and MT-4 proteins, encoded by at
least 10 functional MT genes have been identified.18–21

All of the MT genes discovered thus far are located on
chromosome 16.18,19,22,23 Although the MT-2, MT-3, and
MT-4 proteins are encoded by a single gene, the MT-1
protein comprises many subtypes encoded by a set of
MT-1 genes. The known functional MT-1 and MT-2 iso-
forms are MT-1A, -1B, -1E, -1F, -1G, -1H, -1X, and -2A. As
early as 1988, Kägi and Schaffer1 proposed that different
MT genes in humans could possibly play different func-
tional roles during development or under various physio-
logical conditions. However, to this date, there is still a
scarcity of knowledge regarding the regulation and ex-
pression of the various MT isoforms.2,24–26

In light of the pleiotropic functions of MT, this study was
undertaken to analyze the expression of the functional
MT-1 and MT-2 isoforms in the following breast cancer
cell lines: non-invasive MCF7 cells and ZR75-1 cells; less
invasive T47D cells, moderately invasive Hs578T cells,
and highly metastatic MDA-MB-231 breast cancer
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cells.27–29 The MT isoform expression profile was also
evaluated in myoepithelial cells in vitro because only myo-
epithelial cells but not the glandular acinar cells express
MT in non-malignant breast tissues.30 MT isoform expres-
sion was examined in surgically resected breast cancer
and adjacent benign breast tissues as well. Given that
the commercially available E9 antibody (which is gener-
ated against a conserved epitope), recognizes but can-
not differentiate the MT-1 and MT-2 isoforms, analysis of
the various isoforms was performed by both semiquanti-
tative conventional reverse transcriptase-polymerase
chain reaction (RT-PCR) and quantitative real-time RT-
PCR. The specificity of the RT-PCR products was verified
by direct sequencing.

Materials and Methods

Cell Culture

Breast cancer cell lines MCF7, Hs578T, and MDA-MB-
231 (American Type Culture Collection, Rockville, MD)
were routinely maintained in Dulbecco’s modified Eagle’s
medium (DMEM; Sigma, St. Louis, MO) supplemented
with 5% fetal calf serum, 2 mmol/L glutamine, 100 U/ml
penicillin, and 100 �g/ml streptomycin. T47D and ZR75-1
breast cancer cells (American Type Culture Collection)
were maintained in RPMI 1640 (GibcoBRL) supple-
mented with 10% fetal calf serum (FCS), penicillin, and
streptomycin. Myoepithelial cells were selected using
Dynabeads M-450 coated with sheep anti-mouse IgG1
(Fc) (Dynal UK Ltd., Bromborough, UK) conjugated to
CALLA monoclonal antibody (common acute lympho-
blastic leukemia antigen, SS2/36, or CD10, obtained from
DAKO UK Ltd., Ely, UK), and luminal epithelial cells were
selected using Dynabeads coated with mouse monoclo-
nal antibody to EMA (epithelial membrane antigen, ob-
tained from DAKO UK Ltd.), according to a modification
of the method previously described.31,32 Myoepithelial
cells were maintained in 1:1 DMEM:Ham’s F12 supple-
mented with 10% FCS, 5 �g/ml insulin, 5 �g/ml hydro-
cortisone, 20 ng/ml epidermal growth factor, 100 IU/ml
penicillin, and 100 �g/ml streptomycin, (all from Sigma),
and luminal epithelial cells were maintained in DMEM
plus 10% FCS, penicillin, and streptomycin. The cell pop-
ulations were cultured for a maximum of 7 days, through
which time they maintain their native phenotype. After
characterization of cell phenotype, mRNA was then ex-
tracted for analysis of MT isoform expression. Repeats of
analysis were performed using mRNA from different
individuals.

Characterization of Myoepithelial Cells

Aliquots of selected myoepithelial and luminal epithelial
cells (which served as control cells) were transferred to
coverslips for characterization of phenotype. Immunohis-
tochemistry was performed as previously described for
the luminal cytokeratin CK18 and the basal/myoepithelial
cytokeratin CK14 (mouse monoclonal antibodies re-
ceived as a gift from Prof. EB Lane, University of Dundee,

Dundee, UK), for EMA and �4-integrin (Chemicon Inter-
national Inc., Temecula, CA).32 Briefly, cells were fixed in
acetone at 4°C for 10 minutes, nonspecific staining
blocked using 20% normal rabbit serum in phosphate-
buffered saline (PBS) and the cells incubated for 1 hour
at room temperature with primary antibody. After wash-
ing, the samples were incubated with fluorescein isothio-
cyanate-conjugated rabbit anti-mouse IgG for 1 hour at
room temperature in the dark. After washing, the cover-
slips were mounted using the anti-fade mountant Citifluor
(Agar Ltd., Essex, UK) and viewed using confocal laser-
scanning microscopy. The purity of the isolated cell pop-
ulations was established using RT-PCR using primers for
EMA, CALLA, the myoepithelial-desmosomal glycopro-
tein DSg3, and tenascin, which is expressed by myoep-
ithelial cells and fibroblasts but not by luminal epithelial
cells.32,33 Glyceraldehyde-3-phosphate dehydrogenase
(G3PDH) was used as a housekeeping gene, as previ-
ously described.32,33 Briefly, mRNA was extracted from
1 � 105 cells using oligo (dT)-labeled paramagnetic
beads (Dynal UK Ltd.). mRNA-linked Dynabeads were
resuspended in 20 ml of diethyl pyrocarbonate water and
used for RT-PCR as described previously. Thirty-five cy-
cles of amplification were performed at annealing tem-
peratures of 53°C for EMA and CALLA, 55°C for DSg3,
and 60°C for tenascin and G3PDH. Products were ana-
lyzed on a 2% agarose gel stained with ethidium bro-
mide.

Breast Tissues

Fresh tissue specimens comprising 20 surgically re-
sected primary invasive ductal breast cancer and adja-
cent benign breast tissues, were snap-frozen, stored in
liquid nitrogen, and subjected to RT-PCR and direct se-
quencing.

Estimation of Zinc Concentration in Culture
Media

The concentrations of zinc in the culture media were
determined by atomic absorption spectrometry.4

RT-PCR Protocol

Total RNAs from all cancer cell lines and breast tissues
were isolated using the RNeasy Mini kit (Qiagen, Hilden,
Germany) following the manufacturer’s protocol. RNA in-
tegrity was confirmed by denaturing formaldehyde aga-
rose gel electrophoresis. Total RNA was reverse-tran-
scribed using Superscript II RNase H� reverse
transcriptase (Invitrogen, Carlsbad, CA). Primers for am-
plification of the eight MT isoforms were adopted from
Mididoddi and co-workers,21 designed from the diver-
gent 5� and 3� untranslated regions of each MT isoform.
The housekeeping G3PDH gene was co-amplified using
the amplimers described by Abdel-Mageed and
Agrawal.34 The concentration of the primers was ad-
justed to 10 �mol/L for PCR usage. For each primer pair,
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a negative control (without template cDNA) was included
to ensure no crossover DNA contamination. For amplifi-
cation of MT-1A and MT-1H isoforms, cDNA equivalent to
�180 to 200 ng of total RNA from each sample was used.
For the amplification of other MT isoforms, cDNA equiv-
alent to �90 to 100 ng of total RNA was used. The cycling
profile was as follows: initial denaturation at 95°C for 1
minute for one cycle, denaturation at 95°C for 30 sec-
onds, annealing at 55°C for MT-1F, and 65°C for the other
isoforms for 30 seconds, extension at 72°C for 30 sec-
onds for 25 to 40 cycles, followed by a final extension at
72°C for 7 minutes. The number of amplification cycles
for each gene is shown in Table 2. The samples were
then electrophoresed in 1.6% agarose gels at 160 V
together with a 1-kb plus DNA ladder (Invitrogen). Gels
were photographed using a digital camera (electrophore-
sis documentation and analysis system 120; Kodak, New
Haven, CA), and analyzed by densitometry using the
Quantity One software (Bio-Rad Laboratories, Hercules,
CA). The relative gene expression levels of each MT
isoform with respect to G3PDH were determined.

Real-Time RT-PCR

Primers and cDNA were used for optimization and quan-
tification in real-time RT-PCR. To ensure that both gene of
interest and G3PDH were amplified at the same effi-
ciency by PCR, amplifications of several dilutions (1 ng, 5
ng, 10 ng) of cDNA were performed. Optimization was
performed similarly using different concentrations of
MgCl2 and primers. PCR was performed using a Light
Cycler (Roche Diagnostics GmbH, Germany) in a total
reaction mixture of 10 �l containing 5 ng of cDNA, 1�
Light Cycler Hotstart DNA Master SYBERGreen 1, 4
mmol/L MgCl2, and 1 �mol/L of each primer. After dena-
turation at 95°C for 10 minutes, 40 to 55 cycles were
performed at 95°C for 5 seconds, 65°C for 5 seconds,
and 72°C for 13 seconds. To verify the specificity of the
amplification reaction, melting curve analysis was per-
formed. Relative quantification was calculated using the
comparative threshold (CT) method where �CT equals
the difference between the CT values of the target gene
and G3PDH.35 The CT value is taken as the fractional
cycle number at which the emitted fluorescence of the
sample passes a fixed threshold above the baseline. For
each MT gene of interest, normal myoepithelial cells were
selected as the reference, and its �CT value subtracted
from the �CT values of the cancer lines to determine the
��CT value. Lower �CT values and ��CT values reflect a
relatively higher amount of MT transcript.

Verification of RT-PCR Products

RT-PCR products from gels were eluted with a Spin-X
0.45-�m centrifuge tube filter (Corning-Costar, Corning,
NY). RT-PCR product sizes of the MT isoforms and
G3PDH are shown in Table 1. The QIAquick Gel Extrac-
tion kit (Qiagen) was used to extract and purify DNA
fragments. Direct sequencing was performed at least
twice and in both directions on each detectable MT iso-

form of individual cell lines to authenticate the specificity
of the PCR products. Automated sequencing reactions
were performed with primer, PCR template, and ABI
PRISM BigDye Terminator Cycle Sequencing ready re-
action mix.

Computer Processing of cDNA and Amino Acid
Sequence Data

The BLAST software version 2.2.2 (http://www.ncbi.nlm.
nih.gov/blast) was used to search for homology between
the obtained sequence and the nonredundant nucleotide
database. The ClustalW version 1.8 (http://searchlauncher.
bcm.tmc.edu/multialign/multialign.html) was used to per-
form multiple sequence alignments between sequences.
The secondary structures of polypeptides were predicted
using the PROSIS Protein Analysis System software pro-
gram (Hitachi, Brisbane, CA).

Immunohistochemistry

After fixation in 4% paraformaldehyde for 8 minutes, the
cells were permeabilized with 0.2% Triton X-100 in PBS
for 10 minutes. Cells were then incubated in 2% normal
horse serum for 1 hour at room temperature before the
addition of a 1:200 dilution of primary antibody E9 (DAKO
Corp., Carpinteria, CA) for 2 hours at room temperature.
Visualization was achieved by the avidin-biotin-complex
technique (ABC kit; Vector Laboratories, Burlingame,
CA), using diaminobenzidine as the chromogen sub-
strate. The cells were then counterstained with methyl
green.

Statistical Analysis

The Graphpad Prism software package and SPSS 11.0
statistical package were used for statistical analysis.
One-way analysis of variance with Bonferroni’s multiple
comparison test was performed to compare sample
means in which a P value of �0.05 was considered as
significant.

Results

Confirmation of Myoepithelial Cell Phenotype

The CALLA-selected cell population exhibited strong ho-
mogeneous staining for CK14 and lacked expression of

Table 1. RT-PCR Product Size of MT Isoforms

Gene Product size

MT-1A 219 bp
MT-1B 287 bp
MT-1E 284 bp
MT1F 232 bp
MT-1G 309 bp
MT-1H 315 bp
MT-1X 151 bp
MT-2A 259 bp
G3PDH 160 bp
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CK18 and EMA (Figure 1; A to C). The cells displayed
punctate reactivity for �4-integrin, in keeping with local-
ization to hemidesmosomes (Figure 1D). In contrast, con-
trol EMA-selected luminal cells lacked CK14 but exhib-
ited cytoplasmic staining for CK18 (Figure 1, E and F).
The luminal cells showed membrane staining for EMA but
�4-integrin was undetectable (Figure 1, G and H). RT-
PCR demonstrated expression of CALLA, DSg3, and te-
nascin by the CALLA-isolated cell population, with no
detection of EMA, while the EMA-isolated cells produced
an amplicon only for EMA, lacking expression of CALLA,
DSg3, and tenascin (Figure 2). A product was obtained in
all reactions from mRNA isolated from normal breast that
also acts as a control for all genes. This expression profile
confirms the isolated cells as myoepithelial and luminal
epithelial cells, respectively.

Zinc Concentration in Culture Media

As zinc is a major inducer of MT, the zinc concentrations
of the culture media used in the study were determined
and found to be present in trace quantities and similar in
amounts. The zinc concentrations of DMEM with 5% FCS,
RPMI 1640 with 10% FCS, and 1:1 Ham’s F12:DMEM with
10% FCS were 0.36 ppm, 0.34 ppm, and 0.33 ppm,
respectively.

MT mRNA Expression by Conventional RT-PCR

The expression ratios of the seven functional MT-1 and
the MT-2A mRNA isoforms in the breast cancer and
breast myoepithelial cell lines as evaluated by conven-
tional RT-PCR methodology are shown in Table 2 and
Figure 3. All of the cell lines exhibited the expression of
MT-1A, MT-1F, MT-1H, MT-1X, and MT-2A genes. The
MT-2A isoform was the most highly expressed MT iso-
form mRNA. It must be noted that the number of PCR
cycles required for amplification of MT-2A and MT-1E
mRNA was lower than that of the other isoforms. In con-
trast, expression levels of the MT-1A and MT-1H isoforms
were comparatively very low, necessitating double the
amount of template for conventional RT-PCR detection.
The expected 287-bp RT-PCR fragment of the MT-1B

Figure 1. Characterization of isolated breast myoepithelial cells and control
luminal epithelial cells. The left column shows the reactivity pattern of
CALLA-isolated cells and the right column demonstrates control EMA-
isolated cells. The CALLA-isolated cells express CK14 but lack CK18 and
EMA, and show punctate staining for �4-integrin (A–D). The EMA-isolated
cells lack CK14 but express CK18 and EMA with no detectable �4-integrin
(E–H). Scale bar, 25 �m.

Figure 2. Expression profile of myoepithelial-related and luminal epithelial-
related genes in isolated cell populations. The CALLA-isolated cells (lane 1)
do not express EMA but express CALLA, DSg3, and tenascin (TN). The
control EMA-isolated cells (lane 2) express EMA but do not express CALLA,
DSg3, or TN. mRNA isolated from normal breast tissue that contains both
luminal and myoepithelial cells show expression of all genes (lane 3).
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gene was not detected in all cell lines examined. This was
confirmed by the absence of any detectable bands in a
second-round PCR performed using the first-round PCR
product as the template. Only myoepithelial cells but not
breast cancer cells displayed expression of MT-1G gene.
Although the MT-1E isoform was expressed in Hs578T,
MDA-MB-231, and myoepithelial cells, no significant dif-
ferences in expression levels of MT-1E were observed
among the three cell lines (P � 0.4517). The expression

level of MT-1A mRNA was significantly lower in Hs578T
cells than that of MDA-MB-231 cells (P � 0.023) and
myoepithelial cells (P � 0.027). MT-1F mRNA expression
in T47D cells was significantly higher than that of Hs578T
(P � 0.001), ZR75-1 (P � 0.001), and MCF7 cells (P �
0.021). There were no significant differences in the ex-
pression levels of the MT-1H gene in all of the cell lines.
Expression of the MT-1X transcript in Hs578T cells was
significantly higher than that that of ZR75-1 cells (P �
0.05). MT-2A mRNA expression level in MCF7 cells was
significantly lower than that of Hs578T (P � 0.001), MDA-
MB-231 (P � 0.001), T47D (P � 0.01), and myoepithelial
cells (P � 0.05). Generally, MT-1A and MT-2A transcript
levels were higher in the invasive compared to the less
invasive breast cancer cell lines. The housekeeping
G3PDH gene showed similar levels of expression in all
cell lines evaluated. Negative controls consistently au-
thenticated the absence of contaminating DNA. Expres-
sion ratios of the MT isoforms in breast tissues is shown in
Table 3. The MT-1B isoform was not detectable whereas
the MT-2A isoform was the highest expressed in both
cancer and adjacent benign tissues (the number of PCR
cycles required for amplification of MT-2A and MT-1E
being lower than the other isoforms). The MT-1G was
expressed in benign tissues, which is similar to that ob-
served in myoepithelial cells. However, MT-1G was also
detected in breast cancer tissues although it was not
present in the breast cancer cell lines.

Table 2. Relative Expression Levels of MT Isoforms by Semiquantitative Conventional RT-PCR in Breast Cell Lines

Gene PCR cycles
MDA-MB-

231 Hs578T T47D ZR75-1 MCF7 Myoepithelial

MT-1A 35 0.87 � 0.03 0.73 � 0.02 0.81 � 0.02 0.82 � 0.03 0.74 � 0.01 0.87 � 0.03
MT-1B 40 0 0 0 0 0 0
MT-1E 25 0.94 � 0.02 0.99 � 0.03 0 0 0 0.93 � 0.04
MT-1F 30 0.86 � 0.04 0.69 � 0.05 1.01 � 0.04 0.72 � 0.03 0.82 � 0.04 0.86 � 0.03
MT-1G 40 0 0 0 0 0 0.78 � 0.03
MT-1H 40 0.68 � 0.09 0.69 � 0.08 0.94 � 0.06 0.79 � 0.07 0.68 � 0.09 0.74 � 0.12
MT-1X 35 0.98 � 0.02 1.03 � 0.03 0.98 � 0.02 0.87 � 0.04 0.91 � 0.03 0.92 � 0.02
MT-2A 25 1.05 � 0.02 1.03 � 0.03 1.00 � 0.02 0.94 � 0.01 0.82 � 0.04 0.96 � 0.02
G3PDH 25 1 1 1 1 1 1

Values shown are mean densitometric readings � SE.

Figure 3. Expression of functional MT-1A, -1B, -1E, -1F, -1G, -1H, -1X, and
-2A isoforms in breast cancer and myoepithelial cell lines by conventional
RT-PCR. Lane M, DNA ladder marker; lane 1, Hs578T cDNA; lane 2,
MDA-MB-231 cDNA; lane 3, T47D cDNA; lane 4, ZR75-1 cDNA; lane 5,
MCF7 cDNA; lane 6, myoepithelial cell cDNA; lane 7, negative control.

Table 3. Relative Expression Levels of MT Isoforms by
Semiquantitative Conventional RT-PCR in Breast
Cancer and Adjacent Benign Tissues (n � 20)

Gene
detected

PCR
cycles Benign tissues Tumor tissues*

MT-1A 35 1.68 � 0.34 1.33 � 0.10
MT-1B 40 0 0
MT-1E 25 0.66 � 0.05 0.55 � 0.09
MT-1F 30 0.36 � 0.03 0.30 � 0.02
MT-1G 40 2.66 � 0.37 1.94 � 0.25
MT-1H 40 1.99 � 0.52 1.62 � 0.20
MT-1X 35 1.91 � 0.37 1.61 � 0.17
MT-2A 25 1.04 � 0.09 0.84 � 0.07
G3PDH 25 1 1

*For tumor tissues, values are adapted from Jin et al.40
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MT Isoform Expression by Real-Time RT-PCR

The MT-1B transcript was not detected by real-time RT-
PCR (concurring with the observation by conventional
RT-PCR) (Tables 4 and 5). However, in contrast to con-
ventional RT-PCR, there were no MT-1A and MT-1H tran-
scripts detected by real-time RT-PCR. This variance in
results may be explained by the necessity for double the
amount of template used in conventional RT-PCR to de-
tect amplified bands compared to the other MT isoforms.
For real-time RT-PCR, the amount of template used was
kept constant for all MT isoforms. MT-1E was expressed
in MDA-MB-231, Hs578T, and in myoepithelial cells but
not in T47D, MCF7, and ZR75-1 cells. The expression of
MT-2A mRNA was also higher in the more invasive breast
cancer cell lines.

Direct Sequencing of RT-PCR Products and
Secondary Structure Analysis

MT-1A, MT-1H, and MT-1X mutations were detected in all
of the cell lines whereas mutations of MT-1E and MT-1G
isoforms were observed only in myoepithelial cells (Table
6). Silent mutations at the third base of a codon such as
those found in MT-1A, MT-1E, MT-1G, MT-1H, and MT-1X
isoforms are not uncommon in human genes but bear
little phenotypic significance. Sequencing of the myoep-
ithelial MT-1G product also showed the insertion of three
additional nucleotides (CAG) between the first and sec-
ond bases of codon 10, adding an alanine residue. A
comparison of the predicted secondary structures of the
MT-1G wild-type versus its variant polypeptide according
to the model of Garnier and colleagues36 showed minor
differences between the two proteins (Figure 4). Se-
quencing of the MT-1H amplicons revealed multiple mu-
tations at codons 8, 10, 13, 50, and within the 3� and 5�
untranslated regions (Table 6). Two cysteines at codons
13 and 50 were substituted by tyrosine and arginine,
respectively, while glutamic acid at position 8 was re-

placed by alanine in the MT-1H amplicons. Furthermore,
secondary structure predictions indicated several nota-
ble differences between the MT-1H wild-type polypeptide
compared with its mutant counterpart (Figure 5). These
data imply the existence of a novel hitherto unreported
mutant MT-1H gene whose sequence was deposited with
GenBank under accession number AF3333888. The
presence of the mutant isoforms was also observed in the
surgically resected breast tissues.

Detection of MT Proteins by
Immunohistochemistry

Positive MT-staining was detected in all of the breast cell
lines with both nuclear and cytoplasmic staining being
observed in the cell (Figure 6; A to C). MT staining was
intense in all of the breast cell lines except ZR75-1 cells,
which portrayed weaker and patchy staining (not shown).
The negative controls did not exhibit any MT staining
(Figure 6D).

Discussion

Expression of specific MT isoforms may hold the key to
the functional significance of MT overexpression in tumor
tissues.16 In this study, the functional MT-1 and MT-2
isoforms were analyzed by conventional and real-time
RT-PCR. As opposed to conventional RT-PCR, which is
semiquantitative and has a high variability, real-time RT-
PCR allows reliable, accurate, and reproducible quanti-
fication of gene expression.37,38

There was absence of MT-1B mRNA expression in
breast cell lines and tissues concurring with earlier re-
ports.39,40 Although the MT-1B transcript is not detect-
able in human kidney,21 the protein has been demon-
strated in equine kidney,41 implying that expression of
MT-1B may be species-specific. However, the MT-1B
transcript has also been observed to be induced by zinc

Table 4. �CT Values of MT Isoforms by Real-Time RT-PCR

Gene MDA-MB-231 Hs578T T47D ZR75-1 MCF7 Myoepithelial

MT-1A NC NC NC NC NC NC
MT-1B NC NC NC NC NC NC
MT-1E 1.63 5.71 NC NC NC 3.62
MT-1F 11.62 13.13 7.14 10.53 8.99 8.12
MT-1G NC NC NC NC NC 12.47
MT-1H NC NC NC NC NC NC
MT-1X 8.24 10.91 7.01 11.07 10.82 7.02
MT-2A 1.79 3.21 3.01 7.13 7.66 2.85

NC, Not computable.

Table 5. ��CT Values of MT Isoforms by Real-Time RT-PCR with Myoepithelial Cells as the Reference Cell Line

Gene MDA-MB-231 Hs578T T47D ZR75-1 MCF7

MT-1E �1.99 2.09 NC NC NC
MT-1F 3.5 5.01 �0.98 2.41 0.87
MT-1X 1.22 3.89 �0.01 4.05 3.80
MT-2A �1.06 0.36 0.16 4.28 4.81

NC, Not computable.
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in erythrocyte precursors in human cord blood,42 thereby
suggesting that the MT-1B isoform is probably an induc-
ible minor isoform in humans, which may play a role
against metal detoxification.

The expression profile of isoforms was examined in
myoepithelial cells. Immunohistochemistry and RT-PCR
confirms a myoepithelial phenotype in CALLA-isolated
cells (CK14, �4-integrin-positive cells expressing the
myoepithelial-associated DSg3, and the myoepithelial
and stromal-related protein tenascin), and a luminal phe-

notype in EMA-isolated cells (CK18-positive cells lacking
the myoepithelial-related CK14, DSg3, and tenascin). In
this study, we observed that the MT-1G isoform was
expressed only in myoepithelial cells but not in any of the
five breast cancer cell lines. This finding was also verified
in adjacent benign breast tissues from mastectomy speci-
mens. However, we are still unclear as to the significance of
the detection of MT-1G isoform in breast cancer tissues.

Although the function of breast myoepithelial cells is to
expel milk from the secretory acini, loss of myoepithelial
cells has been observed to be one of the characteristics
of invasive breast cancer.43 It is believed that myoepithe-
lial cells suppress tumor invasion by virtue of their high
constitutive expression of proteinase inhibitors and they
have also been shown to modulate tumor cell gene ex-
pression.33,44 The fact that MT-1G is expressed only in
myoepithelial cells but not in cancer cell lines in vitro
warrants further investigations into the significance of this
observation. Analysis of the myoepithelial MT-1G se-
quence revealed additional three nucleotides (CAG) be-
tween the first and second bases of codon 10. This may

Table 6. Mutations in the MT Isoforms of the Amplified Products

Product Cell line
Codon
region Mutation Amino acid change

MT-1A All 49 ATA 3 ATC No
MT-1E Myoepithelial 48 TGC 3 TGT No
MT-1G Myoepithelial 10 GGT 3 GCAGGT Gly 3 Ala Gly

46 CAA 3 CAG No
3� UTR

50* T 3 C No
MT-1H All 5� UTR

19† A 3 G No
22† T 3 G No
8 GAG 3 GCC Glu 3 Ala

10 GGT 3 GGA No
13 TGC 3 TAC Cys 3 Tyr
50 TGC 3 CGC Cys 3 Arg
53 GCG 3 GCT No
54 TCA 3 TCG No
55 GAG 3 GAA No

3� UTR
10* A 3 T No
19* G 3 C No
22* A 3 G No
47* A 3 G No

MT-1X All 39 GTC 3 GTG No

Mutated nucleotides and amino acids are shown in bold.
*Nucleotide distance from stop codon.
†Nucleotide distance from start codon.
UTR; Untranslated region; Gly; glycine; Ala; alanine; Cys; cysteine; Tyr; tyrosine; Arg; arginine; Glu; glutamic acid.

Figure 4. Comparison of the predicted secondary structure of the MT-1G
wild-type (A) versus its variant polypeptide (B). A minor structural difference
present in the variant polypeptide is highlighted, by #.

Figure 5. Comparison of the predicted secondary structure of the MT-1H
wild-type (A) versus its variant polypeptide (B). There was a radical struc-
tural alteration with the two coils in the vicinity of the mutation site (*codon
10) being replaced by a �-sheet, and another drastic change in the structure
of the variant in which coils and �-sheets replaced two �-sheets in the
prototype (**).

Expression of Metallothionein Isoforms 2015
AJP November 2003, Vol. 163, No. 5



have resulted from alternative RNA splicing at the accep-
tor site of intron 1 because there exists a GT dinucleotide
immediately downstream of CAG. These three nucleo-
tides are predicted to generate an extra alanine residue
at codon 10. Because alanine is a nonpolar, uncharged,
and hydrophobic amino acid, it may have little influence
on the biochemical properties of MT-1G protein. The
predicted secondary structure of the mutant MT-1H iso-
form showed only minor changes.

MT-1E mRNA was expressed in Hs578T, MDA-MB-
231, and myoepithelial cells and in breast tissues. A
common feature of Hs578T and MDA-MB-231 cells is
their estrogen receptor (ER)-negative status whereas
T47D, ZR75-1, and MCF7 cells are ER-positive. These
results are consistent with that reported by Friedline and
colleagues39 in which differential expression of the
MT-1E gene was observed in ER-positive and ER-nega-
tive human breast cancer cell lines and that reported by
Jin and colleagues45 in ER-negative human invasive duc-
tal breast cancer tissues. However, Barnes and co-work-
ers46 detected a low level of MT-1E mRNA in the ER-
positive PMC42 human breast cancer cell line.
Interestingly, PMC42 cells are believed to show stem cell
features47 and have been shown to exhibit myoepithelial
differentiation,48 hence it is possible that the MT-1E iso-
form was detected in cells that have undergone myoep-
ithelial differentiation. ER-negative breast tumors are re-
ported to be more aggressive than their ER-positive
counterparts.49 As transformation from a hormone-

dependent ER-positive to a hormone-independent ER-
negative tumor is believed to be a crucial step in breast
cancer progression, MT-1E isoform expression may be an
alternative mechanism that replaces the function of ER.43,50

It is also interesting that myoepithelial cells are known to
express the ER� protein but not the ER� protein.51

Constitutive expression of MT-1A was not detectable
by real-time RT-PCR in all of the cell lines. Because
MT-1A expression is associated with exposure to heavy
metals such as zinc,52 its expression level may be cell-
type-specific and inducible. Silent mutations of MT-1A
observed were similar to that reported by Sato and col-
leagues53 who detected MT-1A mRNAs that harbor sev-
eral silent mutations in Japanese patients with age-re-
lated macular degeneration. Recently, we reported that
MT-1F mRNA expression correlated with histological
grade in breast carcinoma.54 In that study, MT-1F mRNA
expression was found to be significantly higher in grade
3 tumors as compared to grade 1 and 2 tumors. How-
ever, no definite pattern of expression with regard to the
invasiveness of the breast cancer cell lines was observed
in this present study. Down-regulation of the MT-1X iso-
form has been documented in advanced prostate can-
cers.55 Although the levels of MT-1X expression in this
study were generally higher in the more invasive breast
cancer cell lines when analyzed by conventional RT-PCR,
this trend was not obvious when the MT-1X isoforms were
analyzed by real-time RT-PCR. Lack of correlation of the
MT-1X isoform in the breast cell lines and the prostate

Figure 6. Light micrographs of MT staining in Hs578T (A), MDA-MB-231 (B), and myoepithelial (C) cells. A negative control of myoepithelial cells in which buffer
was used instead of the primary E9 antibody is shown in D.

2016 Tai et al
AJP November 2003, Vol. 163, No. 5



tissues could in part be explained by their different em-
bryonic origins.16

MT-2A gene expression has been linked with the basic
process of cell proliferation.40 In addition, Abdel-Mageed
and Agrawal34 have demonstrated that down-regulation
of MT-2A induces growth arrest in MCF7 breast cancer
cells suggesting close involvement of MT-2A in the pro-
liferative activity of breast cancer cells. MT-2A mRNA
transcripts in MCF7 cells were significantly lower when
compared with those in Hs578T, MDA-MB-231, and T47D
cells by semiquantitative RT-PCR. The ranking of MT-2A
mRNA expression in the five breast cancer cell lines was
as follows: MDA-MB-231 	 Hs578T 	 T47D 	 ZR75-1 	
MCF7. A similar trend in MT-2A expression was also
observed by real-time PCR. The MT-2A data seems to
suggest a possible relationship between invasiveness of
breast cancer cells and expression of the MT-2A isoform.

Similar to the MT-1A isoform, the expression levels of
MT-1H mRNA were low and similar in all of the cell lines.
A significant variant MT-1H isoform was detected and the
sequence of this mutant MT-1H mRNA was deposited in
GenBank under “MT-1H-like gene, mRNA” under acces-
sion number AF333388. To our knowledge, this is the first
report describing mutations with amino acid replace-
ments in an MT isoform. Although all mammalian MTs are
reported to contain 20 cysteines,2 this variant MT-1H
isoform contains 18 cysteine residues. The substitution
with aromatic amino acid tyrosine appears to exclude this
mutant MT-1H as a typical MT.56 The mutated MT-1H in
this study may represent a new member of MT-1, be-
cause its amino acid at position 11 is glycine rather than
aspartic acid.57 On the other hand, amplification of this
variant by primers specific for MT-1H also makes it pos-
sible that MT-1H is polymorphic or has an RNA-editing
variant. It is unlikely that the mutant MT-1H isoform is an
artifact of long-term cultured cells because the mutant
isoform was detected in the breast tissues. It is also likely
that the mutant 1H isoform is a polymorphic variant rather
than the result of somatic mutation,58 because it was
present in both cancerous and adjacent benign breast
tissues.

In this study, we have demonstrated the differential
expression of MT-1E and MT-2A isoforms in the more
malignant breast cancer phenotypes. The MT-1E isoform
may mediate invasiveness by influencing the expression
of the ER. Expression levels of the MT-2A isoform seem to
be associated with the degree of invasiveness of the
breast cancer cell lines. Of interest is the finding that
similar high levels of MT-1E, MT-2A, and MT-1X are de-
tected in normal myoepithelial cells. It is widely accepted
that the majority of breast carcinomas are derived from
luminal epithelial cells, although it is increasingly evident
from tissue studies that a variable proportion of breast
carcinomas may express markers that are more charac-
teristic of myoepithelial cells, including CK1459 and P-
cadherin,60 and expression of these markers is associ-
ated with a more aggressive phenotype. Perou and
colleagues61 performed cDNA microarray analysis on a
series of 65 carcinomas and using hierarchical clustering
analysis, demonstrated a subset of ER-negative tumors
that expressed myoepithelial-related genes. There is thus

a growing body of evidence to suggest that a proportion of
breast carcinomas may exhibit a myoepithelial phenotype
and this is associated with more aggressive behavior.

Given the acknowledged tumor-suppressor role of
myoepithelial cells in the breast, the correlation of MT
isoform expression profile with the more invasive ER-
negative breast cancer cells appears anomalous. How-
ever, we have recently shown that the invasive capacity
of breast cancer cell lines correlates closely with features
of the myoepithelial phenotype.32 Some workers have
suggested that carcinomas showing a more myoepithe-
lial phenotype are aggressive because they contain a
stem-cell population.62 However, the myoepithelial phe-
notype that confers the ability to express matrix metallo-
proteinases and matrix proteins such as tenascin, as well
as �4-integrin, which has been related to tumor invasive
capacity,63 may also contribute to the aggressive pheno-
type. The biological roles of the different MT isoforms and
mechanism by which differential expression of the MT-2A
isoform may regulate invasiveness of breast cancer cells
remain to be elucidated. In this context, another interest-
ing finding of this study was that the MT-1G isoform was
expressed only in breast myoepithelial cells but not in
cancer cells in vitro. Whether this contributes to the non-
malignant nature of the myoepithelial cell, and the signif-
icance of lack of expression in other cancer cell lines
exhibiting an otherwise similar MT isoform profile to myo-
epithelial cells requires further studies.

This study provides further insight in the biology of
breast cancer metastasis, and may pave the way for
novel approaches to diagnosis and therapy of metastatic
breast disease. We have also demonstrated the pres-
ence of a significant MT-1H variant with amino acid sub-
stitutions in its protein sequence, opening up a new av-
enue of research in the regulation, expression,
specificity, and functions of mutant MT isoforms.
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