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Abstract
Background—The effects of hypercapnia on coronary arteries in humans are not known. We used
transthoracic Doppler echocardiography (TTDE) to evaluate coronary blood flow velocity (CFV)
changes in response to hypercapnia in healthy adults.

Methods and Results—Twenty adults underwent TTDE of the left anterior descending coronary
artery while breathing room air, 40% FiO2, and 40% FiO2 with CO2 supplemented to end-tidal
tensions of +5, +7.5, and +10 mmHg above baseline. Mean (standard deviation) diastolic peak CFV
values for these conditions were 23.1(9.1), 23.0(9.0), 25.5(9.3), 27.9(11.5), and 31.5(13.0) cm/s.
Significant overall differences between conditions (p<0.001) and progressive levels of hypercapnia
(p≤0.01) were observed. CFV increases remained significant after adjusting for increases in cardiac
output (p=0.038).

Conclusions—CFV increases with hypercapnia. This is the first report of human coronary artery
flow responses to hypercapnia. TTDE methodology is feasible for measuring CFV and the effects
of hypercapnia on the coronary circulation.
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Coronary flow reserve (CFR) is defined as the maximal increase in coronary blood flow,
relative to baseline flow, that occurs when the coronary microcirculation is maximally dilated.
CFR is impaired in the setting of epicardial coronary artery disease, as well as in disorders of
the coronary microcirculation, such as diabetes mellitus, hypertension, hypercholesterolemia,
cardiomyopathy, and syndrome X, in which epicardial vessels are angiographically normal.
1-4 Improvement of CFR in some of these disorders has been observed with treatment.1-3,5,
6 Blunted coronary flow velocity (CFV) responses to vasodilators also have been observed in
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disorders of the coronary microcirculation, in the presence and absence of angiographic
coronary artery disease.5,7,8

Although coronary blood flow and CFR traditionally have been studied using an Doppler flow
wire with intracoronary or intravenous administration of vasodilators during coronary artery
catheterization,2,3,9-13 this method is invasive and entails potentially harmful exposures
which limit its routine clinical or experimental use. There are less invasive imaging methods,
including myocardial scintigraphy, magnetic resonance imaging, and transesophageal
echocardiography, but their cost, radiation exposure, availability, and/or incomplete ability to
localize abnormalities limits their application for serial studies of experimental or clinical
conditions.3 Transthoracic Doppler echocardiography (TTDE) is an emerging noninvasive
method to measure CFV.3,4,14-16 The proximity of the distal left anterior coronary artery
(LAD) to the chest wall makes transthoracic CFV and CFR evaluations in this vessel segment
possible, thus decreasing the potential for more distal stenoses and imaging artifacts that could
affect interpretation. Distal LAD CFV and CFR measured by TTDE have been shown to be
comparable to those obtained using the gold-standard Doppler flow wire technique.17-19

Hypercapnia is present in several disease states associated with increased cardiovascular risk,
including obstructive sleep apnea. In animal models, hypercapnia causes coronary vasodilation
and increases coronary arterial blood flow.20 In humans, hypercapnia increases flow in
peripheral conduit arteries, a response that is blunted in the presence of cardiovascular risk
factors through mechanisms that appear to be mediated at least in part by the endothelium.
21-24 The effect of hypercapnia on the coronary arteries in humans, however, is not known.
This study used TTDE to evaluate CFV changes in response to hypercapnia in healthy adults.

METHODS
Subject Characteristics

This study was approved by the Institutional Review Boards of the University of Wisconsin
Medical School and the William S. Middleton Veterans Administration Hospital (Madison,
WI). Subjects were healthy men (18–45 years old) and women (18–50 years old) with no known
cardiovascular risk factors (including dyslipidemia, diabetes mellitus, hypertension, and
current cigarette smoking) or disease or active obstructive pulmonary disease. All provided
informed consent prior to study procedures.

General Procedures
Prior to the hypercapnic interventions, 12-hour fasting blood samples were collected by
antecubital venipuncture for determination of complete blood count, serum electrolytes,
creatinine, blood urea nitrogen, total cholesterol, triglycerides, high-density lipoprotein
cholesterol (HDL-C), high-sensitivity C-reactive protein (hsCRP), carbon monoxide, and
plasma glucose. Low-density lipoprotein cholesterol (LDL-C) was calculated using the
Friedewald equation. Height and weight were measured. Waist circumference was measured
at the midpoint between the inferior margin of the ribcage and the superior border of the iliac
crest.

Experimental Procedures
Subjects were positioned in the left-lateral decubitus position. Heart rate was monitored by
continuous electrocardiography. Blood pressure was monitored non-invasively by automated
upper arm sphygmomanometer (Dinamap, Critikon). Arterial oxygen saturation was measured
non-invasively by continuous pulse oximetry (Model 3740, Ohmeda). Ventilation was
measured with a pneumotachograph attached to a mouthpiece (Model 3700; Hans Rudolph)
from which PETCO2 was sampled continuously (Model CD3A, Ametek). Subjects inspired
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controlled mixtures of air through the mouthpiece with a nose-clip in place, while
simultaneously undergoing echocardiography. CFV values were obtained at 5 stages: Baseline
1, as subjects breathed room air; Baseline 2, as subjects breathed room air supplemented with
oxygen (FIO2=40%); and Stages 1–3, as subjects inspired air supplemented with oxygen and
CO2 concentrations titrated to produce increases in PETCO2 of +5, +7.5, and +10 mmHg above
the eupneic baseline level.

Echocardiography
A trained sonographer obtained echocardiographic images using a digital ultrasound system
(Acuson Sequoia, Siemens Medical Solutions) and 4–7 MHz transducer at a Doppler frequency
of 4 MHz. The acoustic window was localized to the 4th or 5th left intercostal space in the mid-
clavicular line, depending on where the sharpest spectral Doppler envelope representing the
LAD flow signal could be obtained. Color Doppler mapping was used to identify the LAD
position with velocity ranges of ±12 cm/s to ±24 cm/s and pulsed-wave Doppler spectral
tracings of CFV were recorded digitally. Additional echocardiographic images were recorded
at both baseline stages and Stage 3 to permit measurement of the left ventricular outflow tract
(LVOT) diameter, velocity-time integral (VTI) of pulsed-wave Doppler signals from the
LVOT, as well as peak E and A velocities and deceleration times from the transmitral diastolic
spectral Doppler signal. All studies were analyzed off-line using Access Point 2000 software
(Freeland Systems). Measurements were performed by a single reader blinded to study stage
in triplicate and averaged to determine peak diastolic and systolic CFV. Cardiac output was
calculated as 0.785 * (LVOT diameter)2 * VTILVOT * heart rate.25

Data Analysis
SigmaStat for Windows 3.0 (SPSS, Inc.) was used for analyses. Continuous data were
described by means (standard deviation), and categorical data were described using
proportions. Comparisons between experimental stages were performed using one-way
analysis of variance of repeated measures (ANOVA) for the following parameters: peak
diastolic CFV, heart rate, systolic and diastolic blood pressures, VTI, cardiac output, and
diastolic filling parameters. Adjustments for multiple pair-wise comparisons were performed
using the Holm-Sidak method. The general linear model was used to adjust observed changes
in CFV with inspired CO2 for changes in cardiac output, heart rate, and diastolic filling
parameters.

RESULTS
Baseline Characteristics

For the 20 subjects, the mean age was 33 (7) years, 90% were white, and 52% were female
(Table 1). A full set of images at all stages could be acquired from 17 of the subjects. Two
subjects had adequate images at both baseline states but only the first level of hypercapnia. No
images could be obtained in 1 subject. Compared to the others, the 3 with incomplete images
were older (44[3] versus 32[5] years, p<0.001), more tachycardic (79[16] versus 67[8] beats
per minute, p=0.04), and had higher body-mass index (29[5] versus 22[3] kg/m2, p=0.004).

Effects of Hypercapnia
Physiological changes with hypercapnia are reported in Table 2. Representative spectral
Doppler tracings from a subject at baseline and under maximal hypercapneic conditions are
depicted in Figure 1. With increasing levels of inspired CO2, peak diastolic CFV increased in
a dose-response manner (pANOVA<0.001), with significant increases observed with
progressive levels of hypercapnia (p≤0.010 for each stage) (Figure 1). Heart rate and cardiac
output also increased (both pANOVA<0.001), along with systolic blood pressure
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(pANOVA=0.028); however, stroke volume and diastolic blood pressure did not change
significantly. Significant increases in velocities during early (E) and late diastole (A) were
observed, as well as a decrease in deceleration time (p<0.03), but the overall E/A ratio did not
change with inspired CO2 (p=0.18). The hypercapnia-induced changes observed in peak
diastolic CFV remained significant even after adjusting for the change in cardiac output
(p=0.038), but not heart rate (p=0.192). The relationships between CFV and the transmitral
peak E-wave (p=0.072) and E-wave deceleration time (p=0.794) were not statistically
significant after the effects of heart rate were considered. The respiratory rate increased slightly
but significantly with increasing hypercapnia (from baseline 13 [3] to 16 [4] breaths/minute
with maximal CO2 inhalation, p<0.001); the oxygen saturation did not change significantly.

DISCUSSION
This study demonstrated that CFV increases with hypercapnia and that changes in CFV can
be measured with transthoracic echocardiography. Among healthy adults, progressive
hypercapnia increased peak diastolic CFV in dose-dependent fashion, independent of the
concurrent increase in cardiac output. The increased cardiac output with inspired CO2 most
likely was due to an increase in heart rate, as no significant change was observed in stroke
volume. Finally, although significant changes were noted with hypercapnia among individual
diastolic parameters, overall diastolic function as assessed by the transmitral E/A ratio did not
change.

These findings are interesting for several reasons. This is the first study to report effects of
hypercapnia on the human coronary circulation. It adds to previous findings in animal models
showing hypercapnia-induced increases in coronary blood flow20 and in human studies
showing increases in middle cerebral artery and internal thoracic artery flow velocities with
inspired CO2.21-24 The observed arterial effect of inhaled CO2 may be mediated, at least in
part by the endothelium-derived nitric oxide,23 and it is feasible that similar mechanisms may
play a role in the response of the coronary arteries to CO2 shown in the present study. These
considerations have particular relevance when addressing disease states such as obstructive
sleep apnea (OSA), which is marked by both chronic intermittent hypercapnia and increased
CVD risk. The reasons behind the latter are uncertain, but peripheral arterial endothelial
dysfunction has been demonstrated among such cohorts so it is likely that coronary arterial
endothelial dysfunction co-exists. 26-30 It would be interesting to determine whether those
with OSA have a different CFV response to hypercapnia compared to healthy individuals
without OSA, and whether chronically increased CO2 exposures induce a compensatory
response that leads to abnormal endothelial function. However, a deeper understanding of the
mechanisms of the CFV response to hypercapnia is needed before the latter inference can be
made.

The study also is interesting because of the use of TTDE to assess changes in coronary flow
in response to a non-pharmacologic, physiological intervention. Routine use of TTDE for the
evaluation of coronary blood flow to-date has been an emerging technique limited to selected
research facilities. These studies usually have used non-physiological exogenous vasodilators
such as adenosine.2-4,9-11 While a fair amount of technical skill still is required, this study
showed that appropriately trained echocardiographers can perform this technique in response
to hypercapnia, which is a physiological intervention relevant to certain disease states. These
combined techniques may offer a way to non-invasively and safely assess functional aspects
of the coronary arteries among healthy and diseased cohorts, given its relatively minor effects
on heart rate and blood pressure, and its coronary vasodilator effects.
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Limitations
Considerable technical skills are required to perform TTDE evaluations of CFV consistently,
and patient-specific characteristics can make image acquisition more difficult, particularly for
those without extensive previous experience with the technique. Presence of any conditions
that either interfere with echo transmission or promote increased coronary artery motion,
including large body habitus, emphysema, tachycardia, or tachypnea, are examples. In the
present study, the 3 subjects with incomplete or no images did have larger BMI; however, the
one without any images was not overweight (BMI=23.1 kg/m2) but was simply more
tachycardic. Lack of a complete set of images in the other two subjects was due to a combination
of both tachypnea and tachycardia with higher levels of hypercapnia, since acquisition of
images at both baselines and Stage 1 was possible. Thus while the technique is feasible and
appears safe, it does require a skilled technician and may not be ideal for use in all populations.
Use of echo contrast may have eased image acquisition in the more difficult cases; however,
it was not tested in this study. Along with the technical challenges of Doppler signal acquisition,
capturing a consistent two-dimensional image of the LAD sufficient for accurately measuring
its diameter and changes in diameter with interventions, was not possible. Thus we could not
directly determine if the observed changes in CFV values were due to changes in arterial
diameter. In animal models, however, hypercapnia causes coronary vasodilation and increases
coronary arterial blood flow.20

The etiology of increased CFV with inhaled CO2 could not be determined in this pilot study.
Previous work has suggested that the endothelium could be involved, as has been demonstrated
in the cerebral vasculature.23 However, changes in pH, the effect of sympathetic activation on
myocardial oxygen consumption, or activation of opiate receptors could have played a role.
20,23,31 This pilot study did indicate some adrenergic stimulation with hypercapnia, given
that heart rate and cardiac output increased. The increase in CFV was independent of cardiac
output, but not heart rate. Although this may be due to a lack of statistical power and a stronger
association between heart rate and CFV than between hypercapneic stage and CFV, it also may
suggest that increased myocardial oxygen consumption contributed to the increased coronary
flow velocities we observed. The peak transmitral E-wave velocity and deceleration time also
did not independently predict CFV when heart rate was considered, and the E/A ratio did not
change, suggesting that the observed changes in CFV were not due to intrinsic changes in left
ventricular diastolic function or left heart filling pressures. It is likely that several factors affect
CFV during hypercapnia. Future studies of this technique incorporating more specific markers
of endothelial function and/or adrenergic pathways could further clarify these issues.

Conclusions
In healthy individuals, CFV increases with hypercapnia. This is the first report of human
coronary artery flow responses to hypercapnia. These combined techniques offer a feasible,
non-invasive method for studying functional aspects of coronary arteries.
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Figure 1.
Representative Peak Diastolic Coronary Artery Blood Flow Velocities. Top panel = baseline
conditions. Bottom panel = maximal experimental hypercapnia (+10mmHg PETCO2)
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Figure 2.
Change in Peak Diastolic Coronary Blood Flow Velocity With Increasing Levels of Inspired
CO2
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Table 1
Baseline Characteristics, n=20

Age, years 33 (7)
Male, n (%) 9 (48)
White race, n (%) 18 (90)
Body-mass index, kg/m2 23 (4)
Weight, kg 68 (15)
Waist circumference, cm 77 (12)
Heart Rate, beats/min 63 (12)
Systolic blood pressure, mmHg 107 (16)
Diastolic blood pressure, mmHg 60 (10)
Respiratory rate, breaths/min 13 (3)
Oxygen saturation at room air, % 98 (2)
Hemoglobin, g/dL 14.3 (1.5)
CO2, mmol/L 26.1 (1.9)
Carbon monoxide, % 1.0 (0.0)
Creatinine, mg/dL 1.1 (0.2)
C-reactive protein, mg/L 1.5 (1.6)
Glucose, mg/dL 91.2 (7.7) [80–105]
Total cholesterol, mg/dL 165 (26) [108–221]
High-density lipoprotein cholesterol, mg/dL 68 (20) [37–112]
Triglycerides, mg/dL 70 (43) [36–152]
Low-density lipoprotein cholesterol, mg/dL 83 (22) [31–128]

Continuous values reported as mean (standard deviation)

Ranges reported in square brackets
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Table 2
Changes in Peak Diastolic CFV and Other Physiologic Parameters With Increasing Levels of Inspired CO2

Experimental Stages

Baseline 1 Baseline 2 +5 mm Hg
PETCO2

+7.5 mm
Hg

PETCO2

+10 mm Hg
PETCO2

PANOVA

CFV, cm/s 23.1 (9.1) 23.0 (9.0) 25.0 (9.3) 27.9 (11.2) 31.5 (13.0) <0.001
VTILVOT, cm 22.8 (3.0) 21.6 (1.9) -- -- 23.3 (2.6) 0.417
Stroke volume, cm3 80.4 (16.8) 76.3 (15.8) -- -- 81.8 (18.0) 0.337
Heart rate, bpm 61 (10) 62 (8) 63 (9) 67 (7) 67 (11) <0.001
Cardiac Output, L/min 4.9 (1.0) 4.7 (0.8) 5.5 (1.3) <0.001
Systolic blood pressure, mmHg 107 (16) 103 (13) 104 (14) 106 (14) 108 (15) 0.028
Diastolic blood pressure, mmHg 60 (10) 59 (8) 59 (7) 61 (7) 62 (7) 0.126
Diastolic function parameters
  E, cm/s 87.9 (11.1) 90.8 (12.6) -- -- 101.4 (17.0) 0.026
 Deceleration time, ms 199.2 (2.4) 190.2 (30.3) -- -- 173.2 (27.7) 0.002
  A, cm/s 52.5 (8.9) 53.2 (7.5) -- -- 62.3 (12.1) <0.001
  E/A ratio 1.7 (0.3) 1.7 (0.3) -- -- 1.7 (0.3) 0.180

All values reported as mean (standard deviation)

Baseline 1=room air

Baseline 2 and all subsequent stages =room air supplemented with 40% FiO2

CFV = coronary flow velocity

VTILVOT = velocity time-integral of flow in left ventricular outflow tract

ANOVA = analysis of variance
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