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Whether and how thermal reaction norm is under genetic control is fundamental to understand the mechanistic basis of
adaptation to novel thermal environments. However, the genetic study of thermal reaction norm is difficult because it is often
expressed as a continuous function or curve. Here we derive a statistical model for dissecting thermal performance curves into
individual quantitative trait loci (QTL) with the aid of a genetic linkage map. The model is constructed within the maximum
likelihood context and implemented with the EM algorithm. It integrates the biological principle of responses to temperature
into a framework for genetic mapping through rigorous mathematical functions established to describe the pattern and shape
of thermal reaction norms. The biological advantages of the model lie in the decomposition of the genetic causes for thermal
reaction norm into its biologically interpretable modes, such as hotter-colder, faster-slower and generalist-specialist, as well as
the formulation of a series of hypotheses at the interface between genetic actions/interactions and temperature-dependent
sensitivity. The model is also meritorious in statistics because the precision of parameter estimation and power of
QTLdetection can be increased by modeling the mean-covariance structure with a small set of parameters. The results from
simulation studies suggest that the model displays favorable statistical properties and can be robust in practical genetic
applications. The model provides a conceptual platform for testing many ecologically relevant hypotheses regarding
organismic adaptation within the Eco-Devo paradigm.
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INTRODUCTION
Understanding the genetic variation of phenotypic responses to

a range of environments (referred to as phenotypic plasticity or

reaction norm) and its impact on selection and evolution has been

a central challenge for studies in evolutionary genetics and ecology

[1–3]. Environment-dependent responsiveness of a genotype can be

broadly classified into two types in terms of whether the environment

is discrete or continuous. While the mechanistic basis for the

phenotypic plasticity of a genotype to discrete environments has

been extensively investigated [1–6], we know almost nothing about

the pattern of phenotypic expression of a single genotype across

continuous environmental gradients, such as temperature and

humidity gradients [5]. Virtually, many biological traits vary

continuously when the environmental state is continuous, for which

the phenotypic value of a trait can be expressed as a function of the

environmental states. These traits are often called ‘‘infinite-

dimensional’’ traits that require an infinite number of measurements

to be completely described [6]. Thermal performance curves (TPCs)

which are of evolutionary significance present one of such excellent

examples [7–10]. TPCs represent the change in performance of an

individual or a genotype as a function of temperature.

Figure 1 illustrates the growth rate of caterpillars, y, measured at

six temperatures ranging from 11u Celsius to 40u Celsius, that is,

(11, 17, 23, 29, 35, 40) [10]. Although the data are discontinuous,

the underlying relationship between the growth rate and the

temperature (t) can be described by a mathematical function, such

as high-order polynomials, that is biologically meaningful or

statistically justifiable [10]. In general, the TPC curve slowly

increases with increasing temperature, tends to reach a maximum

at some intermediate temperature and then rapidly decreases with

further increase in temperature, but it is obvious that there exists

pronounced differentiation in curve shape among individuals due

to genetic and environmental effects. One purpose of the

development of statistical models is to separate these two different

types of effects on TPCs and test their relative importance in

governing the shape of the curves. The second purpose is to

address an important question about the genetic architecture of

continuous reaction norms: specifically, what are the patterns of

genetic variation and covariation in continuous reaction norms

found in natural populations [2]?

Three distinct modes of variation have been proposed to

describe the variation of TPCs, i.e., hotter-colder, faster-slower

and generalist-specialist [8] (Fig. 2). Specifically, these modes are

defined as follows:

1. The hotter-colder describes variation in the temperature at

which performance is maximal, in which some individuals

(hotter, 1) have maximal performance at hotter temperatures

(t1), whereas others (colder, 0) have maximal performance at

colder temperatures (t0) relative to the mean reaction norm

for the population.

2. The faster-slower captures variation in the overall height of the

reaction norm, in which some individuals (faster, 1) have greater

performance at all temperatures than others (slower, 0).
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3. The generalist-specialist shows variation in the width of the

reaction norm, in which individuals with greater performance

at intermediate temperatures (tI) have lower performance at

low (tL) and high temperatures (tH) (specialists, 1), whereas

individuals with lower performance at intermediate tempera-

tures have greater performance at low and high temperatures

(generalists, 0) relative to the mean reaction norm for the

population.

Each of these three patterns, hotter-colder, faster-slower, and

generalist-specialist, that can be viewed as different directions of

variation may be controlled by a particular set of genes. It is possible

that these three sets of genes may exist simultaneously in the same

population such that this population may contain mixtures of

genotypes that vary along different axes of variation [11]. A central

challenge is to test how specific genes govern each mode of variation

and quantify how much different modes of variation contribute to

the total genetic variation for TPCs in a population [12].

The questions mentioned above can now be addressed by using

genetic mapping approaches [13–16] that capitalizes on molecular

markers to infer the underlying quantitative trait loci (QTL) for

thermal reaction norms. However, these traditional approaches

can only be well used to associate marker genotypes with single

phenotypic values of a trait, and have less power to map

a phenotype, such as thermal reaction norms, expressed as an

‘‘infinite-dimensional’’ curve. Although extensions have been

made to model multiple discrete traits at the same time [17,18],

they are limited for mapping a large number of traits due to

computational prohibition and longitudinal repeated measures

showing an autocorrelation structure. More recently, a new QTL

mapping strategy, called functional mapping, has been proposed

to map traits that vary continuously as a function of an

independent variable [19,20]. By embedding biologically sensible

growth equations into the mapping framework, functional

mapping can estimate the dynamic changes of the genetic effects

of a QTL in development and push hypotheses tests towards the

interplay between genes and development.

In principle, functional mapping can be used to study the

genetic architecture of environmentally sensitive phenotypic

variation for a complex trait. However, a direct use of functional

mapping is problematic because it has not taken into account the

underlying modes of variation unique to thermal reaction norms

[8]. The purpose of this study is to derive a theoretical framework

model for mapping QTL that regulate differentiation in TPC

described by a rational function. By testing the mathematical

parameters that define the optimum performance breadth and

thermal limit of a TPC, a general procedure is given for testing

and identifying possible existence of a particular underlying mode

of variation. The model allows for a further extension to discern

the contributions of multiple modes of variation to TPCs through

a web of genetic actions and interactions. The model and

procedure are derived within the maximum likelihood context

and implemented with the EM algorithm. Monte Carlo simulation

studies are performed to explore the statistical properties of the

model and validate its usefulness in practice.

METHOD

Mixture Model
To simplify the description of the model, we assume a backcross

population in which there are only two contrast genotypes at each

locus. The model can be readily extended to other more

complicated designs, such as the F2, a full-sib family, a natural

population and a structured pedigree with multiple founders. The

backcross considered has n individuals, each genotyped with

polymorphic markers for the construction of a linkage map. This

map is used to identify the genome-wide distribution of QTL that

control TPCs. All the backcross individuals are subjected to

a multitude of temperature (say T), which cover the range suited

for the species studied to grow normally. At each temperature,

body mass or body size (in terms of length, width or volume) of the

backcross is measured at multiple time points, from which the

mean rate of growth is calculated. Thus, the relationship between

growth rate and temperature describe the TPC which is modeled

by a rational function.

Suppose there is a putative QTL segregating with two different

genotypes Qq (coded by 1) and qq (coded by 0) in the assumed

Figure 1. Example of thermal performance curves – growth rate z
was measured at six temperatures for 90 families of caterpillars. This
set of curves has a common shape (slowly increases, tend to reach
a maximum and rapidly decreases). The variation in the curves is due to
both genetic and environmental factors operational in the population.
Adapted from ref. [10].
doi:10.1371/journal.pone.0000554.g001
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Figure 2. Three hypothetical patterns of variation in thermal
performance curves due to the effects of a hotter/colder, faster/
slower and genegeneralist/specialist QTL, respectively.
doi:10.1371/journal.pone.0000554.g002

Thermal Performance Curves

PLoS ONE | www.plosone.org 2 June 2007 | Issue 6 | e554



backcross that affects the shape of TPCs. This QTL is located

somewhere in the genome, which can be detected by the linkage

map. Assume the QTL to reside between a pair of flanking

markers M1 and M2 each with two genotypes coded by 1 and 0.

For each backcross individual, it may carry one (and only one)

QTL genotype, 1 or 0. The probability of a particular individual (i)

to carry QTL genotype 1 or 0 depends on the marker genotype of

this individual at two flanking markers (M1 and M2) that bracket

the QTL. Let r1, r2 and r be the recombination fractions between

M1 and QTL, between QTL and M2 and between the two

markers, respectively. Under the assumption of independent

crossovers, we derive the probability of a QTL genotype given

a marker genotype as

Prob (1j11)~
(1{r1)(1{r2)

1{r
and Prob (0j11)~

r1r2

1{r

for marker genotype 11

Prob (1j10)~
(1{r1)r2

r
and Prob (0j10)~

r1(1{r2)

r

for marker genotype 10

Prob (1j01)~
r1(1{r2)

r
and Prob (0j01)~

(1{r1)r2

r

for marker genotype 01

Prob (1j00)~
r1r2

1{r
and Prob (0j00)~

(1{r1)(1{r2)

1{r

for marker genotype 00

Because each individual has a known marker genotype, 11, 10, 01

or 00, these conditional probabilities are generally expressed by

v1|i and v0|i.

The phenotypic value of growth rate for individual i at different

temperatures, yi = (yi(1),…,yi(T)), is distributed as a mixture distribu-

tion with two different groups of QTL genotypes, expressed as

yi*f (yijHp,Hu,Hv)~v1jif1(yijHu1
,Hv)zv0jif0(yijHu0

,Hv), ð1Þ

where Hp = (v1|i, v0|j) is the vector of individual-specific mixture

proportions (i.e., the conditional probabilities of QTL genotypes)

which are constrained to be non-negative and sum to unity,

Hu~(Hu1
,Hu0

) where Huj
(j~1,0) is a vector that contains the

parameters specific to component (i.e., QTL genotype) j, and Hv

includes the parameters common to all components. We assume that

given the ith individual’s QTL genotype j, its repeated measures

follow a multivariate normal distribution, expressed as

fj(yijHuj
,Hv)~

1

(2p)T=2jSj1=2
exp {

1

2
(yi{uj)

0S{1(yi{uj)

� �
,

where uj = (uj(1),…,uj(T)) is a vector of expected values for QTL

genotype j at different temperatures. At a particular temperature t,

the relationship between the observation and expected mean can be

described by a regression model,

yi(t)~jiu1(t)z(1{ji)u0(t)zei(t), ð2Þ

where ji is the indicator variable denoted as 1 for j = 1 and 0 for j = 0,

and ei(t) is the residual error (i.e., the accumulative effect of polygenes

and errors) that is independently and identically distributed (iid)

normal with mean zero and variance s2(t). The errors at two

different time points or states, t1 and t2, are correlated with

covariance s(t1, t2). The covariance matrix S is composed of s2(t)

and s(t1, t2).

Modeling the Mean-Covariance Structures
Functional mapping models the mean vector and the structure of

covariance matrix for longitudinal traits. The genotypic means for

growth rate over a range of continuous temperatures can be

specified by a biologically meaningful mathematical equation. In

a thermal experiment for brown trout, Ojanguren et al. [21] used

a third-order polynomial function to sufficiently describe the

thermal sensitivity of fish growth. Here, we use a rational function

such that a general form of TPC across different temperatures for

QTL genotype j is expressed as

uj(t)~
aj

1zbj(t{cj)
2
zdj ð3Þ

where a combination of aj and bj describes the height and base

width of the TPC and cj and dj describe the horizontal and vertical

translation of the curve, respectively. If there are differences in a set

of curve parameters, arrayed in Huj
~(aj ,bj ,cj ,dj), between

different genotypes at a QTL, this means that this QTL triggers

an effect on TPCs. Further, by estimating different sets of

parameters, three modes of variation for TPC, controlled by

a hotter-colder, faster-slower and generalist-specialist QTL,

respectively, can be elucidated (Fig. 1).

In statistics, theories and methods have been available to model

the structure of covariances between measurements repeatedly

made at a series of time points [22]. Because of its elegant

mathematical and statistical properties, the autoregressive process

has been widely used for studies of longitudinal data measure-

ments. The first-order autoregressive (AR(1)) model has been

successfully applied to model the structure of the within-subject

covariance matrix for functional mapping. The AR(1) model is

basedon two simplified assumptions, i.e., variance stationarity –

the residual variance (s2) is unchanged over time points, and

covariance stationarity – the correlation between different

measurements decreases proportionally (in r) with increased time

interval. Mathematically, the AR(1) is described as

s2(1)~ � � �~s2(T)~s2

for the variance, and

s(t1,t2)~s2rjt2{t1j

for the covariance between any two time points t1 and t2, where

0,r,1 is the proportion parameter with which the correlation

decays with time lag. The parameters that model the structure of

the covariance matrix are arrayed in Hv = (r, s2).

When the residual covariance matrix (S) is modeled by the

AR(1) model, the closed forms can be derived for its inverse and

determinant, which facilitate model computing and parameter

estimating. The inverse S21 is a tridiagonal symmetric matrix,

whose diagonal elements are

(1,1zr2,1zr2,:::,1zr2,1zr2,1)T

s2(1{r2)
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and second diagonal elements are all

{r

s2(1{r2)
:

The determinant of the matrix is derived as

jSj~½s2(1{r2)�T{1s2:

Let zj|i = [zj|i(1),…,zj|i(T)] = yi2uj, (j = 0,…,j), then we have

zjjiS
{1zjji~

PT{1
t~1 (zjji(t){rzjji(tz1))2z(1{r2)z2

jji(T)

s2(1{r2)
:

In practice, the two simplified assumptions of the AR(1) model

may not hold so that the elegant expressions of the matrix cannot

be used for functional mapping. To make longitudinal data well

suited to the AR(1) model, some treatments are needed. For

example, to remove the heteroscedastic problem of the residual

variance, Carroll and Rupert’s [23] transform-both-sides (TBS)

model is embedded into the growth-incorporated finite mixture

model [24], which does not need any more parameters. Both

empirical analyses with real examples and computer simulations

suggest that the TBS-based model can increase the precision of

parameter estimation and computational efficiency. Furthermore,

the TBS model preserves original biological means of the curve

parameters although statistical analyses are based on transformed

data.

The TBS-based model displays the potential to relax the

assumption of variance stationarity, but the covariance stationarity

issue remains unsolved. Zimmerman and Núñez-Antón [25]

proposed a so-called structured antedependence (SAD) model to

model the age-specific change of correlation in the analysis of

longitudinal traits. The SAD model has been employed in several

studies and displays many favorable properties for genetic

mapping of dynamic traits [26].

Likelihood and Estimation
We implemented the EM algorithm, originally proposed by

Dempster et al. [27], to obtain the maximum likelihood estimates

(MLEs) of three groups of unknown parameters in a QTL

mapping model, that is, the conditional probabilities of QTL

genotypes (Hp) that specify the co-segregation patterns of QTL

and markers in a mapping population, the curve parameters (Huj
)

that model the mean vector, and the parameters (Hv) that model

the structure of the covariance matrix. All these unknowns are

contained within the mixture model described by equation (1).

The likelihood of phenotypic values measured at multiple

temperatures can be written, in terms of a multivariate mixture

model (1), as

L(Hp,Hq)~Pn
i~1 v1jif1(yi)zv0jif0(yi)
� �

,

where Hq~(Huj
,Hv) and fj(yi)~fj(yijHuj

,Hv). The MLEs of the

unknown parameters for a QTL can be computed by implement-

ing the EM algorithm. The log-likelihood is given by

log L(Hp,Hq)~
Xn

i~1

log v1jif1(yi)zv0jif0(yi)
� �

, ð4Þ

with derivative with respect to any element Hz in the unknown

vector (Hp,Hq)

L
LHz

log L(Hp,Hq)~
Xn

i~1

X1

j~0

Lvjji
LHp

fj(yi)zvjji
L

LHq

fj(yi)P1
j0~0 vj0 jifj0 (yi)

~
Xn

i~1

X1

j~0

vjjifj(yi)P1
j0~0 vj0 jifj0 (yi)

Lvjji
LHp

1

vjji
z

L
LHq

log fj(yi)

� �

~
Xn

i~1

X1

j~0

Vjji
Lvjji
LHp

1

vjji
z

L
LHq

log fj(yi)

� �

where we define

Vjji~
vjjifj(yi)P1

j0~0 vj0 jifj0 (yi)
, ð5Þ

which could be thought of as a posterior probability that

individual i have QTL genotype j. Conditional on

V~ Vjji; i~1,:::,n; j~0,1
� �

, we solve for

L
LHz

log L(Hp,Hq)~0: ð6Þ

The log-likelihood equations are derived to estimate the

parameters in (H
p
, H

q
) through the EM algorithm. In the E step,

the posterior probabilities of a QTL given marker genotypes and

phenotypes observations are calculated with equation (2). Then, in

the M step, different parameters are estimated with equation (3).

The log-likelihood equations in the M step are given in the

Appendix. The iterations between the E and M steps are repeated

until the estimates converge. The values at the convergence are

regarded as the MLEs. In practice, the QTL position parameter

(h) can be viewed as a fixed parameter because a putative QTL

can be searched at every 1 or 2 cM on a map interval bracketed by

two markers throughout the entire linkage map. The log-likelihood

ratio test statistic for a QTL at a particular map position is

displayed graphically to generate a likelihood map or profile. The

genomic position that corresponds to a peak of the profile is the

MLEof the QTL location.

Hypothesis Tests
Existence of a QTL The merit of functional mapping includes

the tests of a number of biologically meaningful hypotheses

regarding the genetic and developmental control of dynamic

traits. After the genetic parameters are obtained, we need to test

whether there is a QTL that affects the shape of TPC. The

existence of a QTL can be tested by formulating the following

hypotheses:

H0 : Huj
:H�uu (for j ~1,0) vs: H1 : Not H0, ð7Þ

where the null hypothesis H0 states that the data can be fit with

only one mean curve by parameters Hū = (a, b, c, d), whereas in

the alternative hypothesis H1 two distinct curves exist showing

that there is a segregating QTL forTPC. The test statistic is the

log-likelihood ratio (LR) of the full (H1) over reduced model (H0),

Thermal Performance Curves
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expressed as

LR~{2log
L(eHHu,eHHv)

L( bHHp , bHHu , bHHv )

" #
,

where the tildes and hats denote the MLEs of the unknown

parameters under the H0 and H1, respectively. Note that the

estimation of (Ĥp, Ĥu, Ĥv) depends on both phenotypic values

and marker data, whereas the estimation of (
~
Hu ,

~
Hp) only

depends on phenotypic values. The critical threshold for the

declaration of a QTL can be determined from permutation tests

(Churchill and Doerge 1994).

Type of QTL After a significant QTL for TPCs is identified,

the next step is to test how this QTL affects the patterns of TPCs.

Three different modes of variation are specified for thermal

performance curves [8]. Each of these modes may be controlled by

a different gene. The proposed model can be used to identify

mode-specific QTL by formulating relevant hypotheses. Whether

there is a QTL that controls the hotter-colder variation can be

tested on the basis of the following hypotheses

H0 : t1~t0 vs: H1 : t1=t0,

where t1 and t0 are the temperatures at which the TPC reaches

a maximum value for QTL genotype 1 and 0, respectively. These

temperatures corresponding to the maximum performance can be

obtained by solving the following equations

L
Lt

a1

1zb1(t{c1)2
zd1

� �
~

{2a1b1(t{c1)

½1zb1(t{c1)2�2
~0[t1~c1

and

L
Lt

a0

1zb0(t{c0)2
zd0

� �
~

{2a0b0(t{c0)

½1zb0(t{c0)2�2
~0[t0~c0

Thus, testing hypothesis (8) is equivalent to testing the hypothesis

H0 : c1~c0 vs: H1 : c1=c0:

The QTL for the faster-slower mode of variation can be detected

by

H0 : u1(t)~u0(t) vs: H1 : u1(t)=u0(t): ð8Þ

Although the alternative hypothesis of (1) contains two possibilities

u1(t).u0(t) or u1(t),u0(t), the property of a rational function

indicates that only one possibility exists consistently at all

temperatures during the entire range. Thus, the rejection of the

null hypothesis suggests that one QTL genotype performs better at

all temperatures than the second genotype.

The identification of a so-called generalists-specialist QTL is

more difficult, compared with that of the hotter-colder and faster-

slower QTL. First, by solving the equation u1(t) = u0(t), we obtain

the two temperatures, denoted by t�1 and t�2 (assuming t�2wt�1), at

which the two QTL genotypic TPCs cross over. Second, based on

these two temperatures, the TPC is divided into three distinct

regions of temperature (1,t�1),(t�1,t�2),(t�2,T). The hypotheses for

detecting the generalist-specialist QTL are made on the basis of

the area under curve, i.e.,

H0 : A1½1,t�1�~A0½1,t�1� vs: A1½1,t�1�=A0½1,t�1� ð9Þ

A1½t�1,t�2�~A0½t�1,t�2� vs: A1½t�1,t�2�=A0½t�1,t�2� ð10Þ

A1½t�2,T �~A0½t�2,T � vs: A1½t�2,T �=A0½t�2,T � ð11Þ

where

Aj ½t1,t2�~
ðt2

t1

aj

1zbj(t{cj)
2
zdj

 !
dt

~
ajffiffiffiffi
bj

p arctan
2bj(t2{cj)

2
ffiffiffiffi
bj

p !
{arctan

2bj(t1{cj)

2
ffiffiffiffi
bj

p !" #
zdj(t2{1){dj(t1{1)

The rejection of each null hypothesis from (9) to (11) indicates the

existence of a generalists-specialist QTL.

Different from the hypothesis test about the existence of a QTL

(7), there is no problem of non-identifiability for hypothesis tests

(8)–(11). Thus, the log-likelihood test statistics calculated for the

hypotheses tests (8)–(11) can be reasonably assumed to asymptot-

ically follow a x2-distribution with the degree of freedom equal to

the difference in the number of parameters to be estimated under

the null and alternative hypotheses.

Monte Carlo Simulation
Design We performed simulation studies to investigate the

statistical behavior of the proposed model. A backcross design with

two genotypes 1 and 0 at each locus is simulated. We simulated 10

equally spaced markers, with the recombination fraction of r = 0.2

apart, to construct a linkage map of 229.87 cM. Assume that

a putative QTL is located at 5.27 cM from the second marker

(with the recombination fraction (r1 = 0.05) between the second

marker and QTL). The first marker was randomly generated using

Bernoulli (0.5). The succeeding markers were randomly generated

using Bernoulli (p) where p depends on the genotype of the

previous marker; that is, if the previous marker genotype was 0,

then the next marker genotype was Bernoulli (r) and ifit was 1,

then Bernoulli (12r). The QTL was generated using Bernoulli (r1)

if the second marker genotype was 0 and Bernoulli (12r1), if it was

genotype 1.

The phenotypic values for TPCs are simulated by summing the

QTL genotypic curves and multivariate-normally distributed

residual errors with mean vector zero and covariance matrix S
structured by the AR(1) model. The genotypic TPCs are assumed

separately for different modes of variation in temperature-

dependent performance, hotter-colder, faster-slower and general-

ist-specialist. Each mode corresponds to the control of a different

QTL accordingly defined as the hotter-colder, faster-slower and

generalist-specialist QTL. The TPC parameters that specify each

of these modes for different types of QTL were chosen from the

space of these curve parameters (see an example in Fig 1). The

simulation studies were designed for different sample sizes (n = 100

and 400) and different heritabilities (H2 = 0.1 and 0.4). The

covariance-structuring AR(1) parameters are given to assure the

heritability of the phenotypic values at the middle temperature at

H2 = 0.1 and 0.4.
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Results The simulated marker and phenotypic TPC data are

analyzed by the proposed model. By assuming a putative QTL at

every 2 cM on the simulated linkage group, the log-likelihood ratio

test statistics (LR) calculated for hypotheses (7) were plotted (Fig. 3).

The peak of the LR profile corresponds to the MLE of the QTL

location. The critical value for declaring the existence of a QTL

was determined from 100 permutation tests.

The means and standard errors (SEs) of the MLEs of the QTL

location, genotype-specific curve parameters, and covariance-

structuring parameters were calculated from 100 repeated

simulations (Table 1). In general, the proposed model can provide

a reasonable estimate of the QTL location for different modes of

variation. But there is the best estimation precision for the location

of the generalist-specialist QTL, followed by the hotter-colder and

faster-slower QTL, although such difference disappears for a large

sample size and heritability (Table 1). As expected, the estimation

accuracy and precision of the QTL location increase exponentially

with increasing sample sizes and heritability levels of TPC for all

the modes of variation.

Although the model can reasonably estimate the curve and

AR(1) parameters, the accuracy and precision of estimation

depend heavily upon the mode of variation (Table 1). Figure 4

illustrates the comparisons between the estimated and given TPCs

for different QTL genotypes from each mode of variation. The

estimation of the faster-slower mode is least precise, whereas the

generalist-specialist mode has the best estimation precision, with

the hotter-colder mode intermediate. For all the modes,a modest

sample size (100) and heritability (0.1) can be sufficient to estimate

the parameters of TPC curves, but increasing sample sizes and

heritabilities are always favorable to improve the precision of

parameter estimation.

An additional simulation study was conducted to examine how

poorly TPC-fitted data affect the estimates of model parameters.

We simulated TPC data for the hotter-colder gene by considering

three different scenarios: (1) all backcross individuals are fitted by

a given QTL genotype-specific TPC with a large coefficient of

determination (R2 = 0.9–1.0), (2) a half of individuals are fitted by

a large coefficient of determination (R2 = 0.9–1.0), whereas the

other half fitted by a low coefficient of determination (R2 = 0.5–

0.6), and (3) all individuals are fitted by a low coefficient of

determi-

nation (R2 = 0.5–0.6). Table 2 tabulates the means and SEs of the

MLEs for the QTL position, curve parameters and covariance-

structuring parameters. As expected, the accuracy and precision

of parameter estimates increases with a higher proportion of

individuals that can be better fitted by TPCs (see also Fig. 5). But

even if all individuals have a modest coefficient of determination,

the model can still provides reasonable parameter estimation.
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Figure 3. LR plotted over the interval of markers. Solid curves correspond to n = 400 whereas broken curves to n = 100. Higher curves for each n
correspond to higher heritability. The vertical dotted line shows the true location of the QTL at 30.81 cM from the first marker.
doi:10.1371/journal.pone.0000554.g003
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DISCUSSION
Growth is an integrative process that involves digestion, absorp-

tion, assimilation, metabolic expenditure and excretion [28,29].

All of these functions are mediated by enzymatic activities that are

largely affected by temperature [30,31]. Ultimately, thermal

regimen emerges as the main factor controlling the growth rate

of an organism [7,8]. An accurate description of thermal depend-

ence of any aspect of organismal performance should include three

critical parameters: (1) temperature or range of temperatures for

maximal performance (i.e. optimum), (2) thermal performance

breadth (range of temperatures in which performance is above

certain level) and (3) tolerance zone or range of above-zero

performance [7,32,33]. Extensive studies have been carried out to

establish an empirical model for specifying the relationship

between growth rate and temperature in a variety of organisms

[8,10] and integrate it into the evolutionary and developmental

context of adaptation [7,8,10,33]. However, further incorporation

of thermal sensitivity into evolutionary studies is limited by our

poor understanding of the genetic machinery of this phenomenon.

To our knowledge, no analytical model has been available to

detect and characterize specific quantitative trait loci (QTL) that

control thermal performance curves (TPC) based on their

underlying mathematical functions.

Thanks to functional mapping, a general framework con-

structed to map QTL for quantitative traits that undergo

developmental changes [19,20], we are now able to derive an

analytical model for mapping TPCs by implementing the

biological principle of the thermal sensitivity. The new model

includes two components. First, it integrates mathematical

equations that specify the shape and process of TPCs into

a statistical framework for QTL mapping, thus increasing the

biological relevance and statistical power of the model. Second,

because of the autocorrelation between longitudinal measures

[22], parametric modeling of the structure and pattern for the

covariance matrix increases the robustness of the model. Although

a similar analytical principle of functional mapping has been used

for its derivation process, the new model is different from the

original model in the aspects as follows.

First, the new model embeds fundamental ideas of thermal

sensitivity within QTL mapping, allowing for the characterization

of different types of QTL that contribute to different modes of

variation in TPC. Variation in TPC may be due to three different

modes, hotter-colder, faster-slower and generalist-specialist [8].

Empirical studies suggest that these modes play different roles in

affecting TPC differentiation in a population [10]. These roles can

now be discerned by our model through the detection of the

underlying genetic control mechanisms due to specific QTL. In

this article, we propose a quantitative procedure for testing the

existence and effect of so-called hotter-colder, faster-slower and

generalist-specialist QTL on thermal performance. Second, the

new model has for the first time provided a general framework in

Table 1. The averaged MLEs of the QTL position, curve and AR(1) parameters and their standard errors (given in parentheses) for
different QTL types under different sample sizes (n) and heritabilities (H2) based on 100 simulation replicates

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mode
H2 n QTL Location QTL genotype 1 QTL genotype 0 AR(1) parameter

â1 b̂1 ĉ1 d̂1 â0 b̂0 ĉ0 d̂0 ŝ2 r̂r

Hotter-colder 0.1 100 29.74 (6.97) 1.02
(0.10)

0.21
(0.07)

5.00
(0.15)

10.00
(0.10)

1.03
(0.12)

0.21
(0.06)

3.49
(0.15)

9.98
(0.11)

0.22
(0.01)

0.60
(0.03)

0.1 400 30.68 (2.21) 1.01
(0.05)

0.20
(0.03)

5.01
(0.06)

10.00
(0.05)

1.01
(0.06)

0.20
(0.03)

3.50
(0.06)

10.00
(0.05)

0.22
(0.01)

0.60
(0.01)

0.4 100 31.00 (2.88) 1.01
(0.04)

0.20
(0.02)

5.00
(0.05)

10.00
(0.03)

1.01
(0.04)

0.20
(0.02)

3.50
(0.06)

9.99
(0.04)

0.04
(0.00)

0.59
(0.03)

0.4 400 30.86 (1.37) 1.00
(0.02)

0.20
(0.01)

5.00
(0.02)

10.00
(0.02)

1.00
(0.02)

0.20
(0.01)

3.50
(0.02)

10.00
(0.02)

0.04
(0.00)

0.60
(0.01)

Faster- slower 0.1 100 31.10 (6.90) 1.15
(0.83)

0.22
(0.12)

4.99
(0.26)

10.37
(0.86)

1.06
(0.19)

0.23
(0.11)

4.95
(0.23)

9.96
(0.18)

0.56
(0.04)

0.60
(0.03)

0.1 400 30.34 (3.16) 1.02
(0.09)

0.20
(0.05)

5.01
(0.10)

10.49
(0.08)

1.01
(0.09)

0.21
(0.06)

4.97
(0.12)

10.00
(0.08)

0.56
(0.02)

0.60
(0.01)

0.4 100 30.74 (3.10) 1.01
(0.07)

0.20
(0.03)

5.00
(0.09)

10.50
(0.05)

1.01
(0.07)

0.21
(0.04)

4.97
(0.09)

10.00
(0.06)

0.09
(0.01)

0.59
(0.03)

0.4 400 30.74 (1.38) 1.00
(0.03)

0.20
(0.02)

4.99
(0.04)

10.50
(0.03)

1.00
(0.03)

0.20
(0.02)

5.00
(0.04)

10.00
(0.03)

0.09
(0.00)

0.60
(0.01)

Generalist- specialist 0.1 100 30.22 (4.38) 1.25
(0.06)

0.61
(0.08)

5.00
(0.06)

10.00
(0.04)

1.02
(0.14)

0.11
(0.04)

4.96
(0.16)

9.98
(0.14)

0.14
(0.01)

0.60
(0.03)

0.1 400 30.64 (2.07) 1.25
(0.03)

0.60
(0.04)

5.00
(0.03)

10.00
(0.02)

1.00
(0.08)

0.10
(0.02)

4.98
(0.09)

10.00
(0.08)

0.14
(0.00)

0.60
(0.01)

0.4 100 30.72 (2.63) 1.25
(0.03)

0.60
(0.03)

5.00
(0.02)

10.00
(0.02)

1.01
(0.05)

0.10
(0.01)

4.99
(0.06)

9.99
(0.05)

0.02
(0.00)

0.59
(0.02)

0.4 400 30.88 (1.31) 1.25
(0.01)

0.60
(0.01)

5.00
(0.01)

10.00
(0.01)

1.00
(0.03)

0.10
(0.01)

4.99
(0.03)

10.00
(0.03)

0.02
(0.00)

0.60
(0.01)

The residual covariance matrix is modeled by correlation r = 0.6 and variance s2 = 0.22/0.04 for the hotter-colder QTL, 0.56/0.09 for the faster-slower QTL and 0.14/0.02
for the generalist-specialist QTL when the heritability of TPCs is 0.1/0.4, respectively.
doi:10.1371/journal.pone.0000554.t001..
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which development and genetics can be integrated with ecology to

further and deepen the idea of Eco-Devo, aimed to study the

developmental mechanism of ecological processes [34,35]. In

a couple with real genetic and phenotypic data to be collected in

the design of this study, this model can be expected to push

ecological genetic studies into a level at which a detailed picture of

the developmental machinery of adaptation and evolution can be

clearly elucidated. The utilization of the new model is validated
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Figure 4. Estimated (solid) and given (broken) TPCs for two different QTL genotypes at different types of QTL under different samples and

heritabilities. The given curves for two different QTL genotypes are specified by u1(t)~
1

1z0:2(t{5)2
z10 and u0(t)~

1

1z0:2(t{3:5)2
z10 for the

hotter-colder gene; u1(t)~
1

1z0:2(t{5)2
z10:5 and u0(t)~

1

1z0:2(t{5)2
z10 for the faster-slower gene and u1(t)~

1:25

1z0:6(t{5)2
z10 and

3u0(t)~
1

1z0:1(t{5)2
z10 for the generalist-specialist gene. In many cases, the estimated curves overlap with the given curves, suggesting that the

model provides an unbiased estimate of TPCs. Curve parameters defined to specify three different modes of variation in TPC each controlled by
a different QTL type in a backcross population.
doi:10.1371/journal.pone.0000554.g004

Table 2. The averaged MLEs of the QTL position, curve and AR(1) parameters and their standard errors (given in parentheses) for
different simulation scenarios for a hotter-colder QTL under n = 200 and H2 = 0.4 based on 100 simulation replicates. The true
parameters are a1 = a0 = 1, b1 = b0 = 0.2, d1 = d0 = 10, c1 = 5.0, c0 = 3.5, s2 = 0.036, and r = 0.6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scenario QTL Location Genotype Qq Genotype qq AR(1) parameter

â1 b̂1 ĉ1 d̂1 â0 b̂0 ĉ0 d̂0 ŝ2 r̂r

1 31.52 (1.53) 1.17 (0.03) 0.17 (0.02) 5.02 (0.04) 9.88 (0.03) 1.16 (0.03) 0.17 (0.02) 3.46 (0.04) 9.89 (0.03) 0.036 (0.002) 0.569 (0.021)

2 32.24 (3.00) 1.21 (0.05) 0.19 (0.03) 5.07 (0.08) 9.89 (0.07) 1.22 (0.05) 0.18 (0.03) 3.41 (0.08) 9.88 (0.05) 0.158 (0.005) 0.097 (0.025)

3 31.46 (4.15) 1.23 (0.05) 0.21 (0.04) 5.07 (0.10) 9.90 (0.06) 1.25 (0.05) 0.20 (0.03) 3.40 (0.09) 9.89 (0.05) 0.281 (0.007) 0.046 (0.024)

Note: Scenario 1–the coefficients of determination (R2) equal to 0.9–1.0 for all individuals; Scenario 2–R2 = 0.9–1.0 for a half of individuals and R2 = 0.5–0.6 for the other
half; Scenario 3–R2 = 0.5–0.6 for all individuals.
doi:10.1371/journal.pone.0000554.t002..
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through extensive simulation studies under different conditions

that are faced in practice.

In this article, we limited our analysis to the mean rates of

growth during a time course at individual temperatures. This

treatment has simplified our modeling and calculation, but has

ignored the role of development in the regulation of TPC

differentiation. The biological relevance of our model can be

enhanced by incorporating the growth equation into the mean

vector. As a universal phenomenon, growth follows a rule that can

be described by mathematical functions derived on the basis of the

goodness-of-fit of observational data [36] or from fundamental

biological principles [37]. If a logistic equation is used to describe

growth trajectory, we can estimate the growth curve parameters

for each QTL genotype and test how the detected QTL for TPC

exerts its pleiotropic effect on time-dependent growth. This

integrative model is supposed to be in a better position to unravel

the genetic and developmental mechanisms of ecological adapta-

tion within the Evo-Devo and Eco-Devo contexts [38].

In statistics, this model can be modified or extended to be more

powerful. For the sake of description, the model was proposed on

the basis of simple interval mapping [13]. But it is straightforward

to incorporate composite interval mapping [14,15] into the model,

increasing the mapping resolution of linked QTL on the same

chromosome. Composite interval mapping combines the idea of

interval mapping and partial regression analysis with markers

outside the test interval, minimizing the impacts of all those QTL

residing outside the interval. As pointed out by Yang et al. [39],

however, parametric fitting of individual marker effects will inhibit

the implementation of composite interval mapping for dynamic

traits. While a parametric method is used for interval mapping,

partial regression analysis with other markers as co-factors can

be effectively constructed by a nonparametric approach. The

deployment of composite interval mapping will allow our model to

precisely characterize the QTL that regulate thermal performance

trajectories in additive or interactive manners. The computer code

to perform linkage disequilibrium analyses can be requested from

the corresponding author (rwu@stat.ufl.edu).

Appendix
In what follows, we derive the log-likelihood functions used to esti-

mate the parameters (Vuj
,Vv)~((aj ,bj ,cj ,dj),(s

2,r)). The symbol ’

denotes the estimates of parameters from the previous step.
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Figure 5. Results from simulation scenarios for a hotter-colder QTL. Scenario 1–the coefficients of determination (R2) equal to 0.9–1.0 for all
individuals; Scenario 2–R2 = 0.9–1.0 for a half of individuals and R2 = 0.5–0.6 for the other half; Scenario 3–R2 = 0.5–0.6 for all individuals. Upper panel:
LR plotted over the interval of markers. Lower panel: Estimated (solid) and given (broken) TPCs for two different QTL genotypes.
doi:10.1371/journal.pone.0000554.g005

Thermal Performance Curves

PLoS ONE | www.plosone.org 9 June 2007 | Issue 6 | e554



a0 j ~f
XN

i~1

Pij½
XT{1

t~1

((yi(t){dj){r(yi(tz1){dj))

(
1

1zbj(t{cj)
2
{

r

1zbj(tz1{cj)
2

)

z
(1{r2)(yi(T){dj)

1zbj(T{cj)
2
�g=

f
XN

i~1

Pij½
XT{1

t~1

(
1

1zbj(t{cj)
2
{

r

1zbj(tz1{cj)
2

)2

z
1{r2

(1zbj(T{cj)
2)2
�g,

b0 j ~fbj

XN

i~1

Pij½
XT{1

t~1

(
aj

1zbj(t{cj)
2
{

raj

1zbj(tz1{cj)
2

)

½( t{cj

1zbj(t{cj)
2

)2{r(
tz1{cj

1zbj(tz1{cj)
2

)2�

z
(1{r2)aj(T{cj)

2

(1zbj(T{cj)
2)3
�g=

f
XN

i~1

Pij½
XT{1

t~1

((yi(t){dj){r(yi(tz1){dj))

½( t{cj

1zbj(t{cj)
2

)2{r(
tz1{cj

1zbj(tz1{cj)
2

)2�z

(1{r2)(yi(T){dj)(
T{cj

1zbj(T{cj)
2

)2�g,

c0 j ~f
XN

i~1

Pij½
XT{1

t~1

C1(
t

1zbj(t{cj)
2
{

tz1

1zbj(tz1{cj)
2

)

z
C2T

1zbj(T{cj)
2
�g=f

XN

i~1

Pij½
XT{1

t~1

C1

(
1

1zbj(t{cj)
2
{

1

1zbj(tz1{cj)
2

)z
C2

1zbj(T{cj)
2
�g,

where

C1~(yi(t){
aj

1zbj(t{cj)
2
{dj){r(yi(tz1){

aj

1zbj(tz1{cj)
2
{dj)

and

C2~(1{r2)(yi(T){
aj

1zbj(T{cj)
2
{dj),

d 0 j ~f
XN

i~1

Pij½
XT{1

t~1

((yi(t){
aj

1zbj(t{cj)
2

)

{r(yi(tz1){
aj

1zbj(tz1{cj)
2

))(1{r)

z(1{r2)(yi(T){
aj

1zbj(T{cj)
2

)�g=

f
XN

i~1

Pij½(T{1)(1{r)2z(1{r2)�g,

s20~
1

TN(1{r2)

X2

j~1

XN

i~1

Pij

f
XT{1

t~1

½yi(t){gj(t){r(yi(tz1){gj(tz1))�2

z(1{r2)(yi(T){gj(T))2g,

and

r0~½1{
NT{N{B

A
r3{

BzC{NTzN

A
r�,

where

A~
X2

j~1

XN

i~1

Pij

XT{1

t~1

(yi(t){gj(t))(yi(tz1){gj(tz1)),

B~
X2

j~1

XN

i~1

Pij½
XT{1

t~1

(yi(t){gj(t))
2{(yi(T){gj(T))2�,

C~
1

s2

X2

j~1

XN

i~1

Pijf
XT{1

t~1

½yi(t){gj(t){r(yi(tz1){

gj(tz1))�2z(1{r2)(yi(T){gj(T))2g:

ACKNOWLEDGMENTS
The authors wish to acknowledge the constructive comments of two

anonymous reviewers on the earlier version of this manuscript.

Author Contributions

Conceived and designed the experiments: RW. Performed the experi-

ments: JY CC. Analyzed the data: JY CC. Wrote the paper: RW.

REFERENCES
1. Stearns SC (1989) The evolutionary significance of phenotypic plasticity.

BioScience 39: 436–445.

2. Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev
Ecol Syst 24: 35–68.

3. Schlichting CD, Pigliucci M (1998) Phenotypic Evolution: a Reaction Norm
Perspective. Sunderland, MA: Sinauer Associates.

4. Lynch M, Walsh B (1998) Genetics and Analysis of Quantitative Traits.

SunderlandMA: Sinauer.

5. Via S, Gomulkiewicz R, de Jong G, Scheiner SE, Schlichting CD, van

Tienderen P (1995) Adaptive phenotypic plasticity: consensus and controversy.

Trends Ecol Evol 10: 212–217.

6. Gomulkiewicz R, Kirkpatrick M (1992) Quantitative genetics and the evolution
of reaction norms. Evolution 46: 390–311.

7. Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm
performance. Trends Ecol Evol 4: 131–135.

8. Huey RB, Kingsolver JG (1993) Evolution of resistance to high temperature in
ectotherms. Am Nat 142: S21–S46.

9. Angilletta MJ, Wilson RS, Navas CA, James RS (2003) Trade-offs and the

evolution of thermal reaction norms. Trends Ecol Evol 18: 234–240.

10. Izem R, Kingsolver JG (2005) Variation in continuous reaction

norms: quantifying directions of biological interest. Am Nat 166: 277–

289.

Thermal Performance Curves

PLoS ONE | www.plosone.org 10 June 2007 | Issue 6 | e554



11. Kingsolver JG, Gomulkiewicz R, Carter PA (2001) Variation, selection and

evolution of function-valued traits. Genetica 112/113: 87–104.
12. Kingsolver JG, Ragland GJ, Shlicht JG (2004) Quantitative genetics of

continuous reaction norms: Thermal sensitivity of caterpillar growth rates.

Evolution 58: 1521–1529.
13. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying

quantitative traits using RFLP linkage maps. Genetics 121: 185–199.
14. Jansen RC, Stam P (1994) High resolution mapping of quantitative traits into

multiple loci via interval mapping. Genetics 136: 1447–1455.

15. Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:
1457–1468.

16. Xu S, Atchley WR (1995) A random model approach to interval mapping of
quantitative trait loci. Genetics 141: 1189–1197.

17. Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for
quantitative trait loci. Genetics 140: 1111–1127.

18. Korol AB, Ronin IY, Kirzhner VM (1995) Interval mapping of quantitative trait

loci employing correlated trait complexes. Genetics 140: 1137–1147.
19. Ma CX, Casella G, Wu RL (2002) Functional Mapping of Quantitative Trait

Loci Underlying the Character Process: A Theoretical Framework. Genetics
161: 1751–1762.

20. Wu RL, Lin M (2006) Functional mapping – How to map and study the genetic

architecture of dynamic complex traits. Nat Rev Genet 7: 229–237.
21. Ojanguren AF, Reyes-Gavilan FG, Brana F (2001) Thermal sensitivity of

growth, food intake and activity of juvenile brown trout. J Thermal Biol 26:
165–170.

22. Diggle PJ, Heagerty P, Liang KY, Zeger SL (2002) Analysis of Longitudinal
Data. Oxford, UK: Oxford University Press.

23. Carroll RJ, Ruppert D (1984) Power-transformations when fitting theoretical

models to data. J Am Stat Assoc 79: 321–328.
24. Wu RL, Ma CX, Lin M, Wang ZH, Casella G (2004) Functional mapping of

quantitative trait loci underlying growth trajectories using a transform-both-sides
logistic model. Biometrics 60: 729–738.

25. Zhao W, Chen UQ, Casella G, Cheverud JM, Wu RL (2005) A nonstationary

model for functional mapping of complex traits. Bioinformatics 21: 2469–2477.
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