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ABSTRACT

Although the frequency and effects of neutral and nearly neutral mutations are critical to evolutionary
patterns and processes governed by genetic drift, the small effects of such mutations make them difficult
to study empirically. Here we present the results of a mutation-accumulation experiment designed to
assess the frequencies of deleterious mutations with undetectable effects. We promoted the accumulation
of spontaneous mutations by subjecting independent lineages of the RNA virus f6 to repeated population
bottlenecks of a single individual. We measured fitness following every bottleneck to obtain a complete
picture of the timing and effects of the accumulated mutations with detectable effects and sequenced
complete genomes to determine the number of mutations that were undetected by the fitness assays. To
estimate the effects of the undetected mutations, we implemented a likelihood model developed for
quantitative trait locus (QTL) data (Otto and Jones 2000) to estimate the number and effects of the
undetected mutations from the measured number and effects of the detected mutations. Using this
method we estimated a deleterious mutation rate of U ¼ 0.03 and a gamma effects distribution with mean
�s ¼ 0:093 and coefficient of variation ¼ 0.204. Although our estimates of U and �s fall within the range of
recent mutation rate and effect estimates in eukaryotes, the fraction of mutations with detectable effects
on laboratory fitness (39%) appears to be far higher in f6 than in eukaryotes.

THE frequency with which neutral and nearly
neutral mutations arise is critical to evolutionary

patterns and processes that are governed by genetic
drift, including the genetic basis of quantitative trait
variation (Keightley and Hill 1988; Eyre-Walker

et al. 2006), the molecular clock (Ohta 1977), and
Muller’s ratchet (Butcher 1995). However, because
mutations with small effects are impossible to detect
using phenotypic assays, most experiments designed to
measure directly the frequency and effects of sponta-
neous mutations have neglected this class of mutations
(but see Davies et al. 1999; Estes et al. 2004). Estimates
of nearly neutral mutation rates have, therefore, been
limited mostly to inferences from phylogenetic analyses
of sequence data, inferences that are only as good as
the assumptions they make about population demog-
raphy and the neutrality of synonymous mutations.

Empirical attempts to measure the shape of the
mutation effect distribution come from two sources—-
collections of artificially induced mutations (Elena et al.
1998; Sanjuan et al. 2004) and mutation-accumulation
(MA) experiments (e.g., Mukai 1964; Wloch et al.

2001). Two recent studies—one of spontaneous and in-
duced mutations in yeast (Wloch et al. 2001) and one of
induced mutations in the RNA virus vesicular stomatitis
virus (VSV) (Sanjuan et al. 2004)—offer the most direct
measures of the mutation effect distribution. These
studies represented substantial advances over previous
MA experiments because they directly measured the
effects of individual mutations. Nonetheless, they serve
to illustrate the two major difficulties inherent in any
attempt to measure the rate of mutations with small ef-
fects. First, the yeast study used a phenotypic assay to de-
tect mutations and was limited to estimating the rates
and effects of mutations of moderate to large effect. And
second, studies that use induced mutations to overcome
the first limitation may not accurately capture the pro-
perties of spontaneous mutations. The relative abun-
dance of mutations of small and large effects was found
to differ among spontaneous and induced mutations in
yeast (Wloch et al. 2001). Thus, although the use of site-
directed mutagenesis to induce mutations in the VSV
genome allowed the detection of a substantial fraction
of mutations with neutral or nearly neutral effects,
it is not known whether this fraction is representative of
spontaneous mutations.

We attempted to overcome both of these difficulties
by conducting a traditional MA experiment with the RNA
bacteriophage f6, a model system in which it is possible
to obtain complete knowledge of the mutational and
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fitness changes that occurred over the course of the
experiment. Following the usual design of MA experi-
ments, we promoted the accumulation of spontaneous
mutations by subjecting 10 independent lineages to
repeated population bottlenecks of a single individual.
The extreme bottlenecks effectively eliminated selec-
tion, allowing nonlethal mutations, regardless of
whether they were advantageous, deleterious, or neu-
tral, to increase to fixation (a frequency of 100%) with
approximately the same probability. We measured
fitness following every bottleneck and sequenced whole
genomes before and after mutation accumulation.
These data provided a complete picture of the timing
and effects of the accumulated mutations and allowed
us to determine the relative frequencies of mutations
with large, small, and nearly neutral effects on fitness.

MATERIALS AND METHODS

Strains and culture conditions: The RNA bacteriophage f6
used in this study is a laboratory genotype descended from the
original isolate (Vidaver et al. 1973). Pseudomonas syringae pv.
phaseolicola, the standard host of f6, was obtained from the
American Type Culture Collection (ATCC no. 21781). Details
of diluting, filtering, culture, and storage of phage and bacteria
are published (Mindich et al. 1976; Chao and Tran 1997). All
phage and bacteria were grown in LC medium (5 g/liter yeast
extract, 10 g/liter bactotryptone, 5 g/liter NaCl) at 25�.

Serial propagation through bottlenecks of a single phage:
The standard culture method for viruses easily allows for
creating bottlenecks. Following the protocol described in
(Burch and Chao 1999), phage were inoculated onto plates
containing a lawn of the standard host P. phaseolicola at a
sufficiently low density to ensure the formation of isolated
plaques after a 24-hr incubation. Because plaques are gener-
ally initiated by a single phage, bottlenecks of a single phage
were achieved by harvesting phage from a single randomly
chosen plaque. Phage from this plaque were plated on a fresh
lawn to obtain a new set of plaques, and the cycle was repeated
40 times in 10 independent lineages. Each bottleneck corre-
sponds to �5 generations, bringing the total to 200 gener-
ations of mutation accumulation.

Fitness measures: The fitness of individual phage genotypes
was determined from measures of plaque size, as described in
(Burch and Chao 2004). Phage were plated on a lawn of
P. phaseolicola and incubated for 24 hr, and digital pictures were
taken and used to measure the area of isolated plaques on
each plate. In f6, we have shown that under the current
culture conditions log(fitness) is related to plaque area by
the following linear relationship: log W ¼ 0.044 3 (plaque
area) � 0.340 (R 2 ¼ 0.968, F1,7 ¼ 213.4, P , 0.0001) (Burch

and Chao 2004). Day-to-day variation in plaque size affects all
genotypes equally, shifting the line up and down without
affecting the slope. To ensure that day-to-day variation did not
affect estimates of mutational effects (s), all of the data for an
individual lineage (i.e., for a single plot in Figure 1) were
collected on the same day from frozen stocks. Data for
different lineages were collected on different days. Therefore,
day-to-day variation explains the difference among lineages in
the plaque area of the ancestral phage.

Genome isolation, RT–PCR, and sequencing: Concen-
trated phage preparations were treated with DNase and
RNase, then treated with 50:50 phenol:chloroform, and
ethanol precipitated. The resulting RNA pellet was suspended

in 50 ml TE and used as template for a reverse transcriptase
reaction performed using N6 primers (first-strand cDNA
synthesis kit; Amersham Biosciences, Piscataway, NJ). The
product of the reverse transcriptase reaction was then ampli-
fied with f6-specific primers by PCR, and PCR products were
sequenced directly at the University of North Carolina Core
Sequencing Facility using both forward and reverse primers to
achieve double coverage of most genome regions. In total, we
sequenced 12,381 bases (92.5%) of each genome, including
all of the coding regions but missing the first and last 70–200
noncoding bases of each genome segment. Although these
noncoding regions are known to contain regions of RNA 2�
structure necessary for genome replication and packaging, we
did not sequence them because the methods required to
sequence the ends of linear genome segments are technically
difficult and prone to sequencing errors.

Stepwise regression analysis of fitness trajectories: The
timing of mutational events and the effects of mutations on
fitness were estimated using a forward stepwise least-squares
linear regression. Our algorithm started with a model that
assumed no mutations (i.e., steps that decrease or increase
fitness) and iteratively added mutations in the following
manner. In each iteration one additional mutation is added
to the set of existing mutations. The location of the mutation is
chosen in such a way that addition of a step at that location
produces the largest reduction in the residual sum of squares
(RSS). Mutations were added to the model until each bottle-
neck was associated with a mutation. At the end of this process a
nested sequence of fitted models was obtained. We then chose
the ‘‘best’’ model as the one that gave the smallest value for
the Bayesian information criterion (BIC). This criterion is a
popular method for model selection proposed by Schwarz

(1978). The BIC balances the RSS of a model and the number
of parameters involved in fitting that model. Note that with the
addition of each mutation to the model there is a reduction in
the RSS, but two parameters are added to the model, one for the
step location and the other for the height of the added step. To
reflect the underlying biological process, we also implemented
a constrained version of the algorithm that allowed only
deleterious mutations (i.e., steps that reduced fitness). In this
case, when mutations were added to the model, we considered
only locations that would result in decreasing steps.

We investigated the nature of the detection bias in the
stepwise analysis by analyzing simulated MA lineages. In the
simulated lineages, mutations accumulated according to a
Poisson process with the observed rate U ¼ 0.028 (Table 2;
estimated from sequence data), and mutation effects were
drawn randomly from a gamma distribution with the observed
mean effect �s ¼ 0:066 and coefficient of variation (or shape
parameter) b¼ 0.162 (Table 2; maximum-likelihood estimate,
MLE, for nDEL ¼ 56). The simulated measure of fitness at a
particular time during MA was determined by summing the
effects of accumulated mutations and the experimental error,
which was drawn randomly from a normal distribution with
mean zero and the standard deviation observed in the real
data. Our simulated data contained only deleterious muta-
tions; therefore, we analyzed the simulated data using the
constrained algorithm that allowed only decreasing steps.

We modeled the detection bias using a logistic function g(s)
that describes the ratio of detected mutations to actual
mutations as a function of mutation effect s. We use a logistic
equation of the form

g ðsÞ ¼ h

1 1 e�1=wðs�sminÞ; ð1Þ

where h represents the ratio of detected to actual mutations for
mutations of large effects and can exceed 1 if a measurement bias

468 C. L. Burch et al.



causes the effects of large effect mutations to be overestimated, w
describes the width of the detection threshold or the extent to
which an increase in effect size leads to an increase in detectability,
and smin describes the location of the detection threshold.

We simulated and analyzed 100,000 MA lineages to yield
collections of both simulated and detected mutation effect sizes.
We divided both collections into bins of width 0.01 and de-
termined the ratio of detected mutations to simulated mutations
for each bin. We then plotted this ratio vs. the average effect size
for each bin and fitted Equation 1 to the data by determining the
values of h, w, and smin that minimized the residual sum of
squares over the range 0 , s , 0.3 (see Figure 2B).

Estimating the distribution of mutational effects: We
modified the maximum-likelihood approach of Otto and

Jones (2000) to estimate the effects of the undetected
mutations from the measured effects of the detected muta-
tions. The approach was developed for an analogous problem
in quantitative trait analysis in which only the largest quanti-
tative trait loci (QTL) can be detected, but one hopes to
estimate the number and effects of QTL that were not
detected. In our scenario, the method uses maximum likeli-
hood to estimate the distribution of effects of the accumulated
mutations from the observed mutational effects si and the
location and nature of the detection threshold g(s).

To calculate a likelihood of the observed mutational effects,
we first determine the probability density function for detect-
able mutations,

fd½s; �s;b� ¼
fd½s; �s;b�3 g ½s�

Ð 1
0 fd½s; �s;b�3 g ½s�ds

; ð2Þ

where s is the effect of the mutation of interest, �s is the average
mutational effect, b is the coefficient of variation of the effects
distribution, and fd½s; �s;b� is the probability density function of the
gamma distribution specified by �s and b. If we now let the random
variable S ¼ (s1, s2, . . . , sn) represent the n observed mutational
effects, the likelihood of obtaining these observations is

L½S� ¼
Y

i

fd½si ; �s;b�: ð3Þ

Using this equation it is possible to obtain MLEs for both �s and b
by searching the joint parameter space or to obtain an MLE for b
after specifying a fixed value for �s. Note that the mean mutational
effect �s is exactly determined by the total drop in fitness due to
mutation accumulation (

P
si) and the number of accumulated

deleterious mutations (nDEL). That is, �s ¼
P

si=nDEL. Therefore,
by assuming that all of the accumulated mutations had nonzero
deleterious fitness effects, we can specify nDEL ¼ 56 (on the basis
of genome sequence data) and �s ¼

P
si=56 ¼ 0:066.

Estimating the effect of selection within the plaque:
Modifying the approach of Kibota and Lynch (1996) to fit
plaque growth dynamics (which differ from bacterial colony
growth dynamics), we obtained loss probabilities (Ploss) from a
deterministic model that assumes that an individual phage is
transferred after 24 hr of plaque growth, that phage achieve
five discrete generations in 24 hr, and that wild-type and newly
mutated phages have relative fecundities of 1 and 1 � s per
generation, respectively. Letting q[s, t] be the frequency of
mutations with a particular effect s after t generations, the
initial frequency is q[s, 0] ¼ 0. Each generation, mutation acts
to increase and selection acts to decrease the frequency of
deleterious mutations according to

q½s; t 1 1� ¼ q½s; t�1 m½s�ð1� q½s; t�Þ � sq½s; t�
1� sq½s; t�: ð4Þ

We used this iterative equation to calculate q[s, 5] for each s.
We specified m½s� ¼ 10�3 for all s, but the resulting estimates

of Ploss(s) were not sensitive to this choice. The probability of
loss was then calculated as

PlossðsÞ ¼ 1� q½s; 5�
q½0; 5�: ð5Þ

Model-based analyses of mutation rate and effects: To
investigate the extent to which our analysis represented an
improvement over more traditional analysis methods, we
implemented two model-based methods for estimating U
and s—the Bateman–Mukai (BM) method and a maximum-
likelihood (ML) method. Both methods assume a model of
the mutational process to estimate U and s from fitness data
collected only at the start and end of mutation accumulation.

The BM method assumes that the number of mutations per
lineage is Poisson distributed with parameter U and that
mutations have identical effects, s. U and s are then de-
termined from the equations

s ¼ �s2ðlog W1Þ � s2ðlog W0Þ
Eðlog W1Þ � Eðlog W0Þ

ð6Þ

U ¼ ½Eðlog W1Þ � Eðlog W0Þ�2
s2ðlog W1Þ � s2ðlog W0Þ

; ð7Þ

where W0 and W1 are, respectively, fitness before and after
mutation accumulation, E(log Wi) is the expectation, or mean,
of log Wi over the 10 lineages, and s2 is the among-line variance.
Note that our use of log fitness instead of fitness differs from the
original approach of Bateman and Mukai (Bateman 1959;
Mukai 1964). We discuss the advantage of analyzing means and
variances of log fitness in (Burch and Chao 2004).

The ML approach also assumes that the number of mu-
tations per lineage is Poisson distributed with parameter U, but
assumes that mutational effects are drawn from a gamma
distribution with scale and shape parameters a and b. The ML
estimates for U and �s ¼ ab were calculated using a C program
provided by Peter Keightley (Keightley 1994). The program
evaluates the log likelihood of the data as a function of par-
ticular parameter combinations using numerical integration
(Keightley 1994, 1998). We searched over a wide range of pa-
rameter combinations to ensure that we found the global maxi-
mum likelihood. Ninety-five percent confidence limits were
defined by a x2

½1;0:05�=2 ¼ 1:92-fold drop in the log likelihood
relative to its maximum value.

Phylogenetic estimation of the genomewide deleterious
mutation rate: Sequences of 24 f6 relatives were downloaded
from GenBank (accession nos. DQ273591 to DQ273614, L
segment; DQ273639 to DQ273662, S segment). The sequences
were truncated to coding regions with entire codons, with a
final length of 411 nt (L) and 249 nt (S). These truncated se-
quences aligned perfectly with the f6 sequences (NC003715,
L; NC00371, S) with no gaps. The L and S sequence align-
ments contained 96 and 54 variable sites, respectively. Because
reassortment (i.e., recombination) among segments is frequent
(Silander et al. 2005), the L and S sequence sets were analyzed
separately.

MrBayes (http://mrbayes.csit.fsu.edu/index.php) was used
to reconstruct phylogenetic trees for each set of 25 sequences,
using the general time-reversible model of nucleotide sub-
stitution and the gamma model of among-site rate variation
(discretized gamma distribution with four categories). The al-
gorithm was run for 2,000,000 generations, with trees sampled
every 1000 generations, and reached convergence as assessed
by the standard error of split frequencies. The sampled trees
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were used to make a consensus tree after a burn-in period
of 1000, using the ‘‘allcompat’’ option to provide a fully re-
solved tree. Although some nodes were not well supported, the
dN/dS analysis described below is robust to noise in the tree
topology.

We used the CODEML program in PAML (version 3.15;
http://abacus.gene.ucl.ac.uk/software/paml.html) to estimate
the dN/dS ratios for each tree. We used the F3x4 codon model
and allowed PAML to estimate the transition/transversion
ratio. We tested models that allowed among-site variation in
dN/dS, but these models either failed to improve the fit to the
data (L segment) or did not substantially change the overall
dN/dS (S segment).

RESULTS

Identification of mutations by genome sequencing:
To obtain a direct measure of the distribution of muta-
tional effects, we used the bacteriophage f6 to found 10
lineages that were independently propagated through
40 bottlenecks of a single phage. To obtain an exact
count of the number of mutations that occurred during
mutation accumulation, we sequenced the phage ge-
notype from each lineage following the 40th popula-
tion bottleneck. Sequencing 92.5% of the complete
genomes (including all coding regions) revealed a total
of 52 mutations. We estimate that 4 additional muta-
tions were missed by our sequencing efforts (0.075
portion unsequenced 3 52 observed mutations), bring-
ing the total estimated mutation count to 56. The iden-
tity and molecular consequences of the 52 identified
mutations are listed in Table 1. Most mutations resulted
from base substitutions, although one insertion muta-
tion was also observed. Transitions outnumbered trans-
versions by 46 to 5, and we observed 32 nonsynonymous
coding, 10 synonymous coding, and 10 noncoding
mutations.

We used a chi-square goodness-of-fit statistic (Sokal

and Rohlf 1995) to compare the observed distribution
of mutations among lineages to a Poisson distribution
with parameter l¼ 5.2 (52 total mutations/10 lineages)
and found no significant deviation (x2¼ 3.827; d.f.¼ 5;
P ¼ 0.5746). This result indicates that mutations were
not significantly clustered among lineages and suggests
that the per generation mutation rate remained con-
stant across the 10 lineages throughout the experiment.
In addition, a comparison of the observed location of
mutations on the three genome segments (small segment,
13; medium, 18; large, 26) to the random expectation
given the proportion of sequenced bases in each seg-
ment (small, 0.213 proportion of sequenced bases 3 52
identified mutations ¼ 11.1; medium, 0.299 3 52 ¼
15.6; large, 0.487 3 52 ¼ 25.3) demonstrated that the
location of mutations did not deviate significantly from
a random distribution among genome segments (x2 ¼
0.1183; d.f. ¼ 1; P ¼ 0.7309).

Identification of mutations by their effects on
fitness: We measured the fitness of each lineage

TABLE 1

Accumulated mutations

Lineage
Segment/nt
mutationa

Gene or
regionb

Functional
consequence

A S/a1378g P9 K13R
S/c2164t P5 A182V
S/a2453g 39-UTR S11L
M/a804g First IGR
L/c489t P7

B L/a270g P14 M1V; start codon lost

C S/t1867c P5 V83A
S/g2141a P5 Silent
S/c2627t 39-UTR K42R
M/a491g P10 E51G
M/t760c First IGR N406D
M/a3660 P13 Silent
L/a5166g P1
L/g5774a P1

D L/a315g P14 T16A
L/t4668c P1 S240P
L/a5296g P1 Y449C
L/c5931t P1 L611F

E S/c2352t 39-UTR Premature termination
M/35261a P13 L4S
L/t280c P14 Silent
L/g835a P7 N56K
L/c1110g P2 A104T
L/g3252a P4 K197R
L/a3532g P4

F S/g410a P8 A36T
S/t2513c 39-UTR A40T
M/a3424c Third IGR T142M
L/g387a P14 V355A
L/c882t P7 N578D
L/t2006c P2 Silent
L/a2674g P2 Q28R
L/c3441t P4
L/a4033g P1

G S/c1438t P9 A33V
S/a1489g P9 Q50R
S/a1744c P5 K42T
M/c827t First IGR T361I
M/c2556t P3 D39N
M/g3623a P13 Silent
L/c1524t P2

H M/g2908a P3 Silent
M/c938a First IGR Silent
M/a965t First IGR
L/t1096c P2

I S/t1266c P12 Silent
L/g1024a P2 A28T
L/a4245g P1 N99D

J M/c2478t P3 T335I
L/t580c P7 Silent
L/a4054g P1 Q35R
L/c4586t P1 Silent

a Substitution mutations are indicated using the conven-
tion: ancestral nucleotide, position, mutant nucleotide. Inser-
tion mutations are indicated using the convention: position
plus added nucleotide.

b Nomenclature is as follows: P1–P14, protein 1–protein 14;
UTR, untranslated region; IGR, intergenic region.
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following each of the 40 single-phage bottlenecks (Fig-
ure 1). Because mutations are acquired in discrete events,
the appearance of deleterious mutations should be de-
tectable in these data as stepwise changes in fitness at
discrete time points. Therefore, we attempted to iden-
tify mutational events by assessing the fit to the data of
regression models containing different numbers of steps.
We assessed the fit of the data to two types of regression
models—models in which both beneficial and delete-
rious mutations were allowed and models that were
constrained to contain only deleterious mutations. The
best-fit models of both types are shown in Figure 1.

For the most part, models that included beneficial
mutations (red lines in Figure 1) were deemed biolog-
ically unrealistic. In particular, three of four of the de-
tected beneficial mutations occurred within one or two
bottlenecks of a deleterious mutation (lineages A, B, and
J), suggesting that these steps resulted from noise in the
data rather than actual beneficial mutations. Therefore,
it seemed biologically more plausible to assume that our
data set did not contain any beneficial mutations. Models
that were constrained to contain only deleterious muta-

tions gave a good fit to the data (blue lines in Figure 1).
The constrained stepwise regression analysis detected
between one and four mutations in each lineage, for a
combined total of 22 mutations across all 10 lineages.
The distribution of effects of these mutations is shown
in Figure 2A. The effects of the detected mutations
ranged from smin¼ 0.054 to smax¼ 0.418, and mutations
of small effect were more common than mutations of
large effect.

The absence of detectable mutations with effects ,

�5% confirmed the expectation that phenotypic assays
often miss mutations with the smallest effects. In our
assay, it was feasible to collect only one fitness measure
per bottleneck; thus, statistical power relied on obtain-
ing fitness measures of the same genotype over many
consecutive bottlenecks. In this case, limitations on our
ability to detect mutations with small phenotypic effects
depended on the relative magnitudes of experimental
error and mutational effects and on the number of
bottlenecks that occurred between mutational events.

Investigation of the detection threshold: We investi-
gated the nature of the detection threshold in the

Figure 1.—Stepwise regression analy-
sis of fitness data. Data are mean plaque
size at each bottleneck during mutation
accumulation for 10 lineages labeled A–
J. The illustrated regression models give
the best fit to the data and were chosen
from among models with different num-
bers of steps that either allowed both
beneficial and deleterious mutations
(red) or allowed only deleterious muta-
tions (blue).
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stepwise regression analysis by analyzing simulated data
sets. We simulated the accumulation of mutations in
100,000 MA lineages using the mutation rate and effect
parameters estimated from the real data. We assumed
that all of the mutations that accumulated were delete-
rious, allowing us to fix the mutation rate parameter U¼
0.028 (56 mutations/10 lineages/200 generations per
lineage) and the average mutation effect �s ¼

P
si=

56 ¼ 0:066. Note that the detection threshold depends
on U and the shape of the effect distribution (i.e., on b)
so we had to estimate the detection threshold and b

simultaneously. We began with b ¼ �s (exponential distri-
bution) and iterated through a process of (1) estimating
the detection threshold using data simulated with the
current estimate of b and (2) updating the estimate of b

using the current detection threshold to obtain a more
accurate MLE of b (below). After a small number of
iterations, the detection threshold and the MLE of b

remained unchanged.
By analyzing the simulated MA lineages using the

stepwise regression method, we can calculate the ratio
of detected to simulated mutations for any effect size
and determine the nature of the detection threshold
from these data. The resulting data and detection thresh-
old are shown in Figure 2B. Thirty-nine percent of the
simulated mutations had effects that were too small to
be detected by the stepwise regression analysis, but the
probability of detecting a mutation increased rapidly as
the effect size increased above smin¼ 0.059. We also noted
a tendency to overestimate the effect size of mutations
with large effects s . 0.08, a phenomenon that is anal-
ogous to the ‘‘Beavis effect’’ in QTL analyses (Beavis

1994, 1998). The best-fitting logistic equation (smin ¼
0.059, w ¼ 0.0105, h ¼ 1.17) accurately describes the
nature of the detection threshold (Figure 2B), espe-
cially over the range of effect sizes in which mutations
tended to fall (89% of detected mutations had effects
s , 0.3).

Estimating the distribution of mutation effects:
From the genome sequencing we knew that the number
of accumulated deleterious mutations was nDEL # 56
and that the remaining 56� nDEL mutations have essen-
tially neutral effects. To investigate the shape of the mu-
tation effect distribution we started with the assumption
that all of the accumulated mutations were deleterious;
i.e., nDEL ¼ 56. In this case, the average mutation effect
was fixed at �s ¼

P
si=56 ¼ 0:066, and we compared the

likelihood of the observed mutation effects for gamma
effects distributions with various coefficients of varia-
tion, b. The resulting MLE of b was 0.162 (95% C.I.:
0.082 # b # 0.457), which corresponds to the L-shaped
gamma distribution shown in Figure 2, A and C (dashed
lines). We also allowed nDEL , 56 and compared the
likelihood of the observed mutation effects for gamma
effects distribution with various �s and b (likelihood pro-
file shown in Figure 2D). The resulting MLEs were �s ¼
0:109 (nDEL ¼ 33.4) and b ¼ 0.116, but the 95% con-
fidence limits on these estimates include the ML gamma
distribution that corresponds to nDEL ¼ 56. Figure 2A
illustrates that the gamma distributions corresponding
to nDEL¼ 56 and nDEL ¼ 33.4 both give a good fit to the
data.

Estimating the effect of selection within the plaque:
Although we tried to minimize its effects, selection

Figure 2.—Comparison of observed and
simulated distributions of deleterious muta-
tion effects. (A) Points indicate the cumula-
tive frequency of deleterious mutations with
measured effects between zero and s. Note
that the measured effect of 34/56 mutations
was zero because these mutations were not de-
tected by the stepwise analysis. Lines illustrate
the effects of distributions corresponding to
the global MLE (nDEL ¼ 33.4, solid line)
and the constrained MLE (nDEL ¼ 56, dashed
line). (B) Detection threshold estimated from
data simulated using the gamma distribution
of mutation effects corresponding to the con-
strained MLE. (C) Probability density func-
tion of the global MLE (solid line) and the
constrained MLE (dashed line). To aid the
comparison, we adjusted the total area under
the curves to correspond to the proportion of
mutations with deleterious effects. Total area
was 33.4/56 ¼ 0.596 (global MLE) or 56/56 ¼
1 (constrained MLE). (D) Likelihood profile
of the 22 detected deleterious mutation ef-
fects. We show the global MLE (closed circle),
the constrained MLE (open circle), and con-
tour lines corresponding to drops in ln(likeli-
hood) of �1.92 (95% confidence region,
thick line), �10, and �20 (thin lines).
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operating during the growth of each plaque will have
caused the distribution of mutations that fixed in our
experiment to deviate somewhat from the distribution
we hoped to measure—the distribution of new muta-
tions. To estimate the effects distribution of new mu-
tations we modeled the probability that newly arisen
deleterious mutations were lost due to selection during
plaque growth. The resulting loss probabilities are plot-
ted in Figure 3A. Although the probability that new
mutations with small to moderate effects (i.e., s , 0.1)
were lost due to selection is negligible, we observed a
number of mutations with effects large enough (s . 0.2)
that their probability of accumulating in our experiment
was reduced by .30% relative to a neutral mutation.

To obtain estimates of the probability density func-
tions of new mutations, we combined the loss probability
function Ploss[s] (Figure 3A) with the probability density
functions of fixed mutations (estimated above; Figure
2C) as follows:

fnew½s; �s;b� ¼
ffixed½s; �s;b�=ð1� Ploss½s�ÞÐ 1

0 ffixed½s; �s;b�=ð1� Ploss½s�Þds
: ð8Þ

In addition, we used the loss probability function to
correct the genomewide deleterious mutation rate
estimate,

Unew ¼
Ufixed

1�
Ð 1

0 fnew½s; �s;b�Ploss½s�ds
; ð9Þ

where Unew and Ufixed are the rates at which mutations
appear and fix in our experiments, respectively. Ufixed

was estimated by the ML procedure described above.
We compare the resulting probability density func-

tions of new vs. fixed mutations in Figure 3B (nDEL¼ 56)
and 3C (nDEL ¼ 33.4). Although the distributions are
visually similar, in each case the distribution of new
mutations contains substantially more weight in the tail
of large s-values and substantially less weight at s-values
near zero. The resulting distributions are no longer
gamma shaped, but they are nonetheless characterized
by a mean effect �s and coefficient of variation b. We
report the adjusted U, �s, and b in Table 2. Note that the
estimates of U are not much affected by selection in the
plaque, but the distribution parameters �s and b change
substantially. For example, in the case of the distribution
estimated by assuming that all of the accumulated
mutations are deleterious (i.e., nDEL ¼ 56), the mean
mutational effect changes from �s ¼ 0:066 (fixed muta-
tions) to �s ¼ 0:093 (new mutations), a difference of 41%.

Traditional MA analyses: To compare the conclusions
from the current data-driven analysis to the conclusions
of the traditional model-based MA analyses, we also
analyzed the data using the BM approach (Bateman

1959; Mukai 1964) and the ML approach of Keightley

(1994). These analyses used fitness data only from
the start and finish of MA (before mutation accumula-

tion, Eðlog W0Þ ¼ �0:043 and s2ðlog W0Þ ¼ 0:0033; af-
ter mutation accumulation, Eðlog W1Þ ¼ �0:227 and
s2ðlog W1Þ ¼ 0:0083). To estimate the rate and effects
of mutations in the absence of fitness data at interme-
diate time points, these methods assume that mutations
are acquired through a Poisson process with rate U and
that mutation effects are drawn from either an equal-
effects distribution (BM) or a gamma distribution with
shape and scale parameters a and b (ML). Estimates
of �s, U, and the coefficient of variation in mutation
effects (b) from the data-driven analysis and from these
model-based analyses are compared in Table 2. The
model-based analyses both estimated mutation rates that
were higher than the number of mutations that occurred

Figure 3.—Selection in the plaque biases the distribution
of fixed mutations toward mutations of small effect. (A) Prob-
ability that a new mutation with effect s is lost due to selection.
Probabilities were calculated using a deterministic model of
plaque growth. (B) The probability density function of fixed
mutations (solid line) was adjusted using the loss probability
function to obtain a probability density function of new mu-
tations (dashed line). Both probability density functions cor-
respond to the constrained MLE in which nDEL ¼ 56. (C)
Probability density function of fixed mutations (solid line)
and of new mutations (dashed line) corresponding to the
global MLE in which nDEL ¼ 33.4.
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(as determined from genome sequencing) and, there-
fore, mutational effects that were smaller than in reality.
Note that the ML approach estimated an equal-effects
distribution, despite the considerable variation in effect
sizes exhibited by the underlying data (Figure 2A).

Phylogenetic estimation of selective constraint at
nonsynonymous sites: An alternative way to estimate the
fraction of mutations with deleterious effects is to
estimate from phylogenetic data the extent of selective
constraint operating on coding sequences (e.g., Eyre-
Walker and Keightley 1999). By assuming that synon-
ymous mutations are neutral, it is possible to estimate
the fraction of nonsynonymous mutations that are also
neutral as the dN/dS ratio. We estimated the dN/dS ratio
from a collection of f6 relatives isolated from nature
(Silander et al. 2005). Phylogenetic trees were con-
structed from the two alignments of coding sequences in
that study: 411 bp of the polymerase gene P2 and 249 bp
of the nucleocapsid shell gene P8. The estimated dN/dS

ratios were 0.0076 and 0.1009, respectively, combining
for an average dN/dS ratio of 0.0542. In other words, very
few nonsynonymous mutations evolve neutrally in f6.

DISCUSSION

In this article we present the results of an MA
experiment designed to provide a direct measure of

the distribution of spontaneous mutational effects on
fitness in an RNA virus. By measuring fitness following
every bottleneck during mutation accumulation and
sequencing whole genomes at the conclusion of the
experiment we could make substantial refinements in
analysis and interpretation compared to previous MA
experiments. Although we were similarly constrained to
assume a particular type of effects distribution (gamma),
the ability to measure directly the effects of accumulated
mutations with the largest effects provided both greater
power to estimate the underlying distribution parame-
ters (i.e., the mean and variance in mutational effects)
and greater confidence that a gamma distribution was a
reasonable assumption.

In addition, we note that our data differ somewhat from
the data produced via site-directed mutagenesis of the
RNA virus VSV (Sanjuan et al. 2004). Both experimental
designs produced measures of the effects of mutations
with the largest effects and an estimate of the relative
abundances of mutations with detectable and undetect-
able effects on laboratory fitness. Although the shapes of
the effect distributions estimated for spontaneous dele-
terious mutations in f6 and for induced deleterious
mutations in VSV are difficult to distinguish, the mean
mutational effect and the proportion of mutations with
detectable effects on laboratory fitness both differed. The
mean effect of spontaneous mutations in f6 (�s ¼ 0:093)
was lower than the mean effect of random induced
nonlethal mutations in VSV (�s ¼ 0:132; estimated from
Table 1 in Sanjuan et al. 2004), and the proportion of
spontaneous mutations in f6 with detectable effects
on laboratory fitness (39%) was lower than that in VSV
(55%; estimated from Table 1 in Sanjuan et al. 2004).

It would be a stretch to conclude that the underlying
causes of these differences are biological rather than
experimental, but in both cases the direction of the
difference is consistent with our a priori expectation of
the difference between spontaneous and random in-
duced mutations. Whereas the probability of sampling a
particular random induced mutation does not depend
on the identity of the mutation, the probability of sam-
pling a particular spontaneous mutation can depend
radically on mutation identity. In particular, transition
mutations are expected to be far more likely than trans-
version mutations, especially in RNA viruses (in our data
set transitions outnumbered transversions by 46 to 5).
Furthermore, redundancy in the genetic code is ex-
pected to make the average effect of a transition smaller
than the average effect of a transversion. As a result, the
distribution of spontaneous mutations is expected to
contain a greater proportion of small-effect mutations
than the distribution of random induced mutations.
In sum, the fundamental difference between the iden-
tities of spontaneous and induced mutations likely
explains our lower estimates of both �s and the propor-
tion of mutations with detectable effects on laboratory
fitness.

TABLE 2

Comparison of analysis methods

Estimation method U �s b

Data-driven estimates of the distribution of
fixed mutations

Detected mutationsa (Umin, �smax) 0.011 0.169 0.076
MLEb (nDEL ¼ 56) 0.028 0.066 0.162
MLEb (nDEL # 56) 0.017 0.109 0.116

Data-driven estimates of the distribution of
new mutationsc

MLE (nDEL ¼ 56) 0.030 0.093 0.204
MLE (nDEL # 56) 0.021 0.142 0.141

Model-based estimates of the distribution of
fixed mutations

Bateman–Mukai 0.035 0.0269 0d

Maximum likelihoode 0.045 0.0207 0

a Mutations whose fitness effects were detected by the step-
wise regression analysis.

b Estimated using the method of Otto and Jones (2000) by
specifying that all of the accumulated mutations were delete-
rious (nDEL ¼ 56) or allowing a fraction of the accumulated
mutations to be neutral (nDEL # 56).

c Estimated by correcting the estimated fixed mutation dis-
tributions for the probability that mutations of various effect
sizes were lost due to selection during plaque growth.

d The Bateman–Mukai analysis method does not estimate
Var(s). Rather, it assumes Var(s) ¼ 0.

e Estimated using the method of Keightley (1994).
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Shape of the mutation effect distribution: We
assessed the fit of two qualitatively different effect distri-
butions: a continuous gamma distribution in which all
mutations are deleterious but many have small effects
(dashed line in Figure 2A) and a discontinuous distri-
bution in which most mutations are deleterious with
gamma-distributed effects, but other mutations are es-
sentially neutral, i.e., have essentially no effect on fitness
(solid line in Figure 2A). From a statistical perspective,
the simpler model in which all mutations are deleterious
is preferable. The more complex model that includes two
categories of mutations—deleterious and neutral—does
not significantly improve the fit to the data. However,
from a biological perspective, our intuition tells us that
mutation effects are likely to be divided into two cate-
gories with qualitatively different effects. In general, we
expect nonsynonymous mutations to have deleterious
effects and synonymous and noncoding mutations to be
essentially neutral. The close match between the num-
ber of deleterious mutations predicted by the maximum-
likelihood analysis (nDEL ¼ 33.4) and the number of
accumulated nonsynonymous mutations (32) supports
this view.

In addition, patterns of molecular evolution in f6
support our intuition that the distribution of mutational
effects is discontinuous. dN/dS ratios in f6 gene phy-
logenies are near zero (mean dN/dS¼ 0.05), suggesting
that nonsynonymous mutations are almost universally
deleterious (i.e., s . 1/Ne) and that synonymous muta-
tions are effectively neutral (i.e., s , 1/Ne). Noncoding
mutations also appear to evolve neutrally, at rates that
are similar to the synonymous substitution rate (Silander

et al. 2005).
We note that the deleterious mutations in the

estimated discontinuous distribution are described by
a gamma distribution that is not L-shaped, but very
nearly exponential—the exact distribution shape that
has been assumed for decades.

Comparisons to other methods and organisms: One
of the most puzzling outcomes of our analysis arises
from the comparison with the traditional MA analysis
methods. First, despite the extensive variation in effect
sizes among the mutations in our collection, the
traditional ML analysis (Keightley 1994) indicated
that the fitness declines were best modeled using an
equal-effects distribution. Second, the assumption
made by the traditional analysis methods that mutations
have identical effects is expected to cause U to be
underestimated and s to be overestimated. Contrary to
this expectation, the BM and ML estimates of U (and s)
are higher (and lower) than our more accurate esti-
mates. Although the BM and ML estimates differ from
our estimates only by 2- to 3-fold, it is difficult to gain an
intuition for why the estimate of U (that is supposed to
be an underestimate) exceeds the value obtained by
counting the total number of mutations by genome
sequencing even though this count includes many effec-

tively neutral mutations. We note that our data were
subject to day effects that had similar effects on the ini-
tial and final fitness measures for each lineage and that
the ML method uses a statistical model that includes
environmental (i.e., plate) effects, but not day effects
(Keightley 1994). Even so, while the presence of day
effects might explain the surprising ML estimates, it can-
not explain the surprising BM estimates.

A comparison of the U and s estimates obtained here in
an RNA virus to previous estimates from eukaryotic
organisms also yields a surprising outcome. Contrary to
the a priori expectation that RNA viruses are radically
different from other organisms, our estimates of U¼ 0.030
and s¼ 0.093 are both within the range of recent estimates
in eukaryotes: 10�3 , U , 10�1 and 0.06 , s , 0.2
(Keightley and Caballero 1997; Fry et al. 1999; Wloch

et al. 2001; Shaw et al. 2002; Joseph and Hall 2004; Baer

et al. 2005). Clearly some RNA viruses have higher geno-
mic deleterious mutation rates than f6, but our data sug-
gest that it is inappropriate to lump RNA viruses together
into a single group that is subject to different evolutionary
rules than organisms with DNA genomes.

Although estimates of the average mutation effect in
f6 and other organisms are similar, the distribution of
mutation effects appears to differ. In our experiment, as
in the previous study of the RNA virus VSV (Sanjuan

et al. 2004), more than one-third of mutations (22/56)
had detectable effects on laboratory fitness. In contrast,
MA studies of the eukaryote Caenorhabditis elegans showed
that only 1–4% of mutations have detectable effects on
laboratory fitness (Davies et al. 1999; Estes et al. 2004).
It is tempting to explain this difference by claiming that
viral genomes are more compact than eukaryotic
genomes or that viral genomes contain more functional
RNA secondary structure (Brinton and Dispoto 1988;
Brown et al. 1992; Berkhout and Schoneveld 1993).
However, it is also possible that the laboratory envi-
ronment more closely mimics the natural environment
of viruses than it does the natural environment of
C. elegans. We favor the latter explanation because most
gene knockouts in f6 either are lethal or have sub-
stantial effects on laboratory fitness (Mindich 2005),
whereas most gene knockouts in eukaryotes show no
detectable effect on laboratory fitness (Shoemaker et al.
1996; Winzeler et al. 1999). We suspect that viral
genomes are not qualitatively different from eukaryotic
genomes (except in size), but rather that measuring
fitness in the laboratory has led to an underestimation
of both the rate and the effects of deleterious mutations
in eukaryotes.
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